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Introduction

» Cheap talk (soft information): costless lying about private
information

» Crawford-Sobel (1982)

» Verifiable disclosure (hard information): lying is impossible
» Milgrom (1981); Grossman (1981)
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Introduction

» Cheap talk (soft information): costless lying about private
information

» Crawford-Sobel (1982)

» Verifiable disclosure (hard information): lying is impossible
» Milgrom (1981); Grossman (1981)

» But lying is often feasible albeit costly, for various reasons

» Technological
> Legal

» Psychological /moral
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Introduction

» Propose a model based on CS, but with costly
lying /misrepresentation

» When type t sends a message that has literal /exogenous
meaning that he is type %, incurs a direct cost k - C(%, t)
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Introduction

» Propose a model based on CS, but with costly
lying /misrepresentation

» When type t sends a message that has literal /exogenous
meaning that he is type %, incurs a direct cost k - C(%, t)

» k =0 < cheap talk; k = 0o < verifiable disclosure

» This paper: k € (0,00), especially interested in moderate
values
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Introduction

» Some of the main results

> No full separation for any finite k

» Characterize a natural class of partially-pooling equilibria
» formally justified by variation of D1 refinement criterion
> inflated language
> low types separate; high types pool

» Comparative statics with lying cost intensity

» Unify polar results of cheap talk and verifiable disclosure for
large biases

» Application to Delegation vs. Communication (Dessein, 2002)
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Model: Basics

» Sender (S) and Receiver (R)

v

S has type t € [0, 1], prior density f(t) >0

v

R takes an action a € R

v

Sender utility U°(a, t): Up, <0, UD, >0

v

Receiver utility UR(a, t): UR <0, UR >0

v

Ideal actions a>(t) > a®(t)
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Model: Basics

» Sender (S) and Receiver (R)

v

S has type t € [0, 1], prior density f(t) >0

v

R takes an action a € R

v

Sender utility U°(a, t): Up, <0, UD, >0

v

Receiver utility UR(a, t): UR <0, UR >0

v

Ideal actions a>(t) > a®(t)

v

EXAMPLE
» f(t)=1
» UR(a,t) = —(a—t)?
» US(a,t) = —(a—t— b)?, b> 0 bias
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Model: Lying Costs
» S sends R a message about his type, m e M
» M =J, M, with Mi "My =0 if t £t
» Rich language: for all t, |M;| = co (suff. large)

» Hence, there is a function WV : M — T
> Interpret: m has the literal meaning “my type is W(m)

”
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Model: Lying Costs
» S sends R a message about his type, me M
» M =J, M, with Mi "My =0 if t £t
» Rich language: for all t, |M;| = co (suff. large)

» Hence, there is a function W: M — T
> Interpret: m has the literal meaning “my type is W(m)”

» m is payoff-relevant to S, with a cost k - C(WV(m), t)
» k>0 and C11>0>C12

» Hence, 3 weakly increasing r° : T — T s.t.

r3(t) := argmin C(t, t)
t'eT

» For talk, assume r® is strictly incr. with range [0, 1]

» Exampre: C(t,t)=(t' —t)2 =r(t)=t
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Model: Timing

» Timing
1. S privately learns Nature's draw of his type t

2. S sends message, m, to R

3. R takes her action, a
» Payoffs: UR(a, t) and U°(a, t) — kC(W(m), t)

» Everything common knowledge except value of t

Lying Costs Navin Kartik



Strategies and Equilibrium

v

S strategy is yu: T — M; define p:=Vop

v

R beliefs is a cdf G(t | m)

v

R strategy isa: M — R

v

Monotone pure strategy Perfect Bayesian Equilibrium:

1. Best responses & Bayes rule

2. p(t) > p(t)ift >t/
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No Separating Equilibria

Lemma
If types (t;, ty) are separating in a monotone equilibrium, then for
each t € (t, tp),

p(t) > r(t)

and

(DE)
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No Separating Equilibria
Lemma
If types (t;, ty) are separating in a monotone equilibrium, then for
each t € (t, tp),
p(t) > r(t)
and o
Up (3" (1), t) %= (1)
p(t) =— (). £) G : (DE)
kCi(p(t), )

Theorem
There is no separating equilibrium.

Intuition

» Can show that separating equilibrium must be monotone
(using r°(0) = 0)

» By Lemma, language must be inflated throughout, but one
“runs out” of types to mimic because r°(1) =1
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LSHP Equilibria

» Barrier to full separation is p = 1, hence focus on equilibria
with separation up to some type t and then partial-pooling on
highest messages.

» Riley condition (LCSE) = p(0) = r>(0) =0

» Separating Function is any function that solves (DE) with the
initial condition p(0) = 0.

Lemma
There is a unique separating function, p*, whose maximal domain
is [0,%], with t € (0,1).
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LSHP Equilibria

Definition
A Sender’s strategy 1 is a LSHP (Low types Separate and High
types Pool) strategy if there exists t € [0, t] such that:

1. for all t < t, p(t) = p*(t)

2. forall t > t, p(t) = 1.
An equilibrium (i, ) is a LSHP equilibrium if x is an LSHP
strategy.
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LSHP Equilibria

Definition
A Sender’s strategy 1 is a LSHP (Low types Separate and High
types Pool) strategy if there exists t € [0, t] such that:

1. for all t < t, p(t) = p*(t)

2. forall t > t, p(t) = 1.
An equilibrium (i, ) is a LSHP equilibrium if x is an LSHP
strategy.

Remark

» Types in [t, 1] need not form a single pool, since |M;| = oo
(rich language assumption)

Lying Costs Navin Kartik



LSHP Equilibria

Definition
A Sender’s strategy 1 is a LSHP (Low types Separate and High
types Pool) strategy if there exists t € [0, t] such that:

1. for all t < t, p(t) = p*(t)

2. forall t > t, p(t) = 1.
An equilibrium (i, ) is a LSHP equilibrium if x is an LSHP
strategy.

Remark

» Types in [t, 1] need not form a single pool, since |M;| = oo
(rich language assumption)

» Bernheim & Severinov’s (2003) “mD1" forward-induction
refinement selects precisely LSHP equilibria (up to off path
differences)
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LSHP Equilibria

Theorem (Existence and Characterization)

In any LSHP equilibrium, there is a cutoff type, t € [0,t], and a
partial-partition, (ty = t, t1,...,t; = 1), such that

US(aR(tj*17 tJ)7 tj) - US(BR(tj’ tj+1)7 tj) =0 Vj € {17 N 1}7
(1)

US(a(t 1), 1) — kC(1, 1) = UP(aR(1), 1) — kC(p* (1), 1)  ift>0.
(2)
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LSHP Equilibria

Theorem (Existence and Characterization)

In any LSHP equilibrium, there is a cutoff type, t € [0,t], and a
partial-partition, (to = t, t1,...,t; = 1), such that

US(‘QR(tJ’*17 tJ)7 tj) - US(aR(tj7 tj+1)7 tj) =0 Vj € {17 N 1}7
(1)

US(a(t 1), 1) — kC(1, 1) = UP(aR(1), 1) — kC(p* (1), 1)  ift>0.
(2)

Conversely, given any cutoff type and partial-partition that satisfy (1),
(2), and

US(aR(t, t1),0) — kC(1,0) > U°(aR(0),0) — kC(0,0) ift=0, (3)

there is a corresponding LSHP equilibrium.
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LSHP Equilibria

Theorem (Existence and Characterization)

In any LSHP equilibrium, there is a cutoff type, t € [0,t], and a
partial-partition, (to = t, t1,...,t; = 1), such that

US(‘QR(tJ’*17 tJ)7 t.i) - US(aR(tj7 t.i+1)7 t.i) =0 Vj € {17 N 1}7
(1)

US(a(t 1), 1) — kC(1, 1) = UP(aR(1), 1) — kC(p* (1), 1)  ift>0.
(2)

Conversely, given any cutoff type and partial-partition that satisfy (1),
(2), and

US(aR(t, t1),0) — kC(1,0) > U°(aR(0),0) — kC(0,0) ift=0, (3)
there is a corresponding LSHP equilibrium.

For any k > 0, there is an LSHP equilibrium. If k is sufficiently large,
there is an LSHP equilibrium with t > 0.
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LSHP Equilibria
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Figure: A LSHP equilibrium: solid red curve represents Sender’s strategy
via p(t); dotted green curve is the separating function, p*; dashed blue

curve represents Receiver's strategy via 8(t) = Umem,a(m).
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LSHP Equilibria

Proposition (Comparative Statics)
1. Ask —0, t(k) — 0.

2. If k is small, every LSHP eqm is close to the “most

informative” CS equilibrium (cf. Chen, Kartik, and Sobel
2008).
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LSHP Equilibria

Proposition (Comparative Statics)

1.

2.

Lying Costs

As k — 0, t(k) — 0.

If k is small, every LSHP eqm is close to the “most
informative” CS equilibrium (cf. Chen, Kartik, and Sobel
2008).

For large k, every LSHP eqm has a single pool.

. As k — oo, t(k) — 1 in every sequence of LSHP equilibria

= converge to full separation
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LSHP Equilibria

Proposition (Comparative Statics)

1.

2.

Lying Costs

As k — 0, t(k) — 0.

If k is small, every LSHP eqm is close to the “most
informative” CS equilibrium (cf. Chen, Kartik, and Sobel
2008).

For large k, every LSHP eqm has a single pool.

. As k — oo, t(k) — 1 in every sequence of LSHP equilibria

= converge to full separation

If conflict of interest is large (a°(0) > af*(1)), every LSHP
eqm has a single pool.
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Withholding Information

» Verifiable disclosure models allow the Sender to withhold
information but not lie

» Under large conflict of interest

» cheap talk = only uninformative equilibria

» verifiable disclosure = full revelation

Lying Costs
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Withholding Information

Lying Costs

Verifiable disclosure models allow the Sender to withhold
information but not lie

Under large conflict of interest

» cheap talk = only uninformative equilibria

» verifiable disclosure = full revelation

Section 5 of the paper shows that the costly lying model can
be extended to allow withholding at no cost, and that LSHP
equilibria extend naturally

LSHP equilibria span the two polar predictions of kK = 0 and
k = oo, with specific predictions about the eqm /anguage
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Application: Delegation vs. Communication

Leading example: uniform-quadratic of CS with quadratic lying
costs

Proposition

In the leading example, there is a finite k such that for any k > IA<
communication is superior to delegation for all b > 0. In
particular, if k > % and b € (0, 1%) communication is superior to
delegation.
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Application: Delegation vs. Communication

Leading example: uniform-quadratic of CS with quadratic lying
costs

Proposition

In the leading example, there is a finite k such that for any k > IA<
communication is superior to delegation for all b > 0. In
particular, if k > % and b € (0, 1—36) communication is superior to
delegation.

Remark

1. Dessein (2002, ReStud) showed that under cheap talk, comm
>~ del iff b is large.

2. Straightforward that for any fixed b > 0, comm > del iff k is
large enough.

3. Proposition shows that threshold k(b) does not diverge to
infinity as b — 0.
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Application: Delegation vs. Communication
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Figure: Receiver's ex-ante welfare gain from communication over
delegation as a function of the bias, b, in leading example. Highest
curve is b?, (k = 00); next three are for single-pool LSHP equilibrium
with k =1, k = 0.5, and k = 0.25 respectively; lowest curve is for
most-informative equilibrium of cheap talk.
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Costly Lying from Behavioral Cheap Talk

» Messages are costless
» Prob g € (0,1), R naively plays a = af(W(m))

» Prob 1 — g, R rationally plays a = a(m)

= Payoff for S:

(1 q)U°(a(m), t) + qU (a%(W(m)). t)
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Costly Lying from Behavioral Cheap Talk

» Messages are costless
» Prob g € (0,1), R naively plays a = af(W(m))

» Prob 1 — g, R rationally plays a = a(m)

= Payoff for S:

(1 q)U°(a(m), t) + qU (a%(W(m)). t)

!
U*(a(m), t) = kC(v(W(m)), )
where k = 7, () = aR(), C(x,t) = —U°(x,t)

» more general model in the paper handles this setting as well
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Conclusion

v

A model of communication with costly lying

» Language inflation arises naturally, even when information is
transmitted very precisely (large costs)

» Intuitive comparative statics with cost intensity

» Costly lying provides a bridge between verifiable disclosure and
cheap talk models

» Model can be used in applications: an example to question of
delegation vs. communication
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