Strategic Communication with Lying Costs

NAVIN KARTIK

Columbia and UCSD

Lying Costs

Navin Kartik

- Cheap talk (soft information): costless lying about private information
 - Crawford-Sobel (1982)
- ► Verifiable disclosure (hard information): lying is impossible
 - Milgrom (1981); Grossman (1981)

- Cheap talk (soft information): costless lying about private information
 - Crawford-Sobel (1982)
- Verifiable disclosure (hard information): lying is impossible
 - Milgrom (1981); Grossman (1981)
- But lying is often feasible albeit costly, for various reasons
 - Technological
 - Legal
 - Psychological/moral

 Propose a model based on CS, but with costly lying/misrepresentation

When type t sends a message that has literal/exogenous meaning that he is type t̂, incurs a direct cost k ⋅ C(t̂, t)

- Propose a model based on CS, but with costly lying/misrepresentation
- When type t sends a message that has literal/exogenous meaning that he is type t̂, incurs a direct cost k ⋅ C(t̂, t)
- $k = 0 \Leftrightarrow$ cheap talk; $k = \infty \Leftrightarrow$ verifiable disclosure
- ► This paper: k ∈ (0,∞), especially interested in moderate values

- Some of the main results
 - No full separation for any finite k
 - Characterize a natural class of partially-pooling equilibria
 - formally justified by variation of D1 refinement criterion
 - inflated language
 - Iow types separate; high types pool
 - Comparative statics with lying cost intensity
 - Unify polar results of cheap talk and verifiable disclosure for large biases

Application to Delegation vs. Communication (Dessein, 2002)

Related Literature

- Kartik, Ottaviani, and Squintani (2007 JET)
- Ottaviani and Squintani (2006 IJGT)
- Chen (2007)
- Chen, Kartik, and Sobel (2008 ECMA)

Related Literature

- Kartik, Ottaviani, and Squintani (2007 JET)
- Ottaviani and Squintani (2006 IJGT)
- Chen (2007)
- Chen, Kartik, and Sobel (2008 ECMA)
- Austen-Smith and Banks (2000 JET)
- Bernheim and Severinov (2003 JPE)
- Mailath (1987 ECMA)

Model: Basics

- Sender (S) and Receiver (R)
- S has type $t \in [0,1]$, prior density f(t) > 0
- *R* takes an action $a \in \mathbb{R}$
- Sender utility $U^{S}(a, t)$: $U_{11}^{S} < 0$, $U_{12}^{S} > 0$
- Receiver utility $U^R(a, t)$: $U^R_{11} < 0$, $U^R_{12} > 0$
- Ideal actions $a^{S}(t) > a^{R}(t)$

Model: Basics

- Sender (S) and Receiver (R)
- S has type $t \in [0, 1]$, prior density f(t) > 0
- *R* takes an action $a \in \mathbb{R}$
- Sender utility $U^{S}(a, t)$: $U_{11}^{S} < 0$, $U_{12}^{S} > 0$
- Receiver utility $U^R(a, t)$: $U^R_{11} < 0$, $U^R_{12} > 0$
- Ideal actions $a^{S}(t) > a^{R}(t)$
- ► EXAMPLE

•
$$f(t) = 1$$

• $U^{R}(a, t) = -(a - t)^{2}$
• $U^{S}(a, t) = -(a - t - b)^{2}, b > 0$ bias

Model: Lying Costs

• S sends R a message about his type, $m \in M$

•
$$M = \bigcup_t M_t$$
, with $M_t \cap M_{t'} = \emptyset$ if $t \neq t'$

• Rich language: for all t, $|M_t| = \infty$ (suff. large)

• Hence, there is a function $\Psi: M \to T$

• Interpret: *m* has the literal meaning "my type is $\Psi(m)$ "

Model: Lying Costs

• S sends R a message about his type, $m \in M$

•
$$M = \bigcup_t M_t$$
, with $M_t \cap M_{t'} = \emptyset$ if $t \neq t'$

• Rich language: for all t, $|M_t| = \infty$ (suff. large)

• Hence, there is a function $\Psi: M \to T$

• Interpret: *m* has the literal meaning "my type is $\Psi(m)$ "

- *m* is payoff-relevant to *S*, with a cost $k \cdot C(\Psi(m), t)$
 - k > 0 and $C_{11} > 0 > C_{12}$
 - Hence, \exists weakly increasing $r^{S} : T \rightarrow T$ s.t.

$$r^{S}(t) := \operatorname*{arg\,min}_{t' \in T} C(t', t)$$

▶ For talk, assume *r*^S is strictly incr. with range [0, 1]

• EXAMPLE:
$$C(t',t) = (t'-t)^2 \Rightarrow r^S(t) = t$$

Lying Costs

Model: Timing

Timing

- 1. S privately learns Nature's draw of his type t
- 2. S sends message, m, to R
- 3. R takes her action, a
- Payoffs: $U^{R}(a, t)$ and $U^{S}(a, t) kC(\Psi(m), t)$
- Everything common knowledge except value of t

Strategies and Equilibrium

- S strategy is $\mu : T \to M$; define $\rho := \Psi \circ \mu$
- R beliefs is a cdf $G(t \mid m)$
- R strategy is $\alpha: M \to \mathbb{R}$
- Monotone pure strategy Perfect Bayesian Equilibrium:
 - 1. Best responses & Bayes rule
 - 2. $\rho(t) \ge \rho(t')$ if t > t'

No Separating Equilibria

Lemma

If types (t_l, t_h) are separating in a monotone equilibrium, then for each $t \in (t_l, t_h)$,

 $\rho(t) > r^{S}(t)$

and

$$\rho'(t) = \frac{U_1^S\left(a^R(t), t\right) \frac{da^R}{dt}(t)}{kC_1\left(\rho(t), t\right)}.$$
 (DE)

No Separating Equilibria

Lemma

If types (t_l, t_h) are separating in a monotone equilibrium, then for each $t \in (t_l, t_h)$,

 $\rho(t) > r^{\mathcal{S}}(t)$

and

$$\rho'(t) = \frac{U_1^S\left(a^R(t), t\right) \frac{da^R}{dt}(t)}{kC_1\left(\rho(t), t\right)}.$$
 (DE)

Theorem

There is no separating equilibrium.

Intuition

- Can show that separating equilibrium must be monotone (using r^S(0) = 0)
- By Lemma, language must be inflated throughout, but one "runs out" of types to mimic because r^S(1) = 1

- Barrier to full separation is ρ = 1, hence focus on equilibria with separation up to some type <u>t</u> and then partial-pooling on highest messages.
- Riley condition (LCSE) $\Rightarrow \rho(0) = r^{S}(0) = 0$
- Separating Function is any function that solves (DE) with the initial condition $\rho(0) = 0$.

Lemma

There is a unique separating function, ρ^* , whose maximal domain is $[0, \overline{t}]$, with $\overline{t} \in (0, 1)$.

Definition

A Sender's strategy μ is a LSHP (Low types Separate and High types Pool) strategy if there exists $\underline{t} \in [0, \overline{t}]$ such that:

1. for all
$$t < \underline{t}$$
, $\rho(t) = \rho^*(t)$

2. for all
$$t \geq \underline{t}$$
, $\rho(t) = 1$.

An equilibrium (μ, α) is a LSHP equilibrium if μ is an LSHP strategy.

Definition

A Sender's strategy μ is a LSHP (Low types Separate and High types Pool) strategy if there exists $\underline{t} \in [0, \overline{t}]$ such that:

1. for all
$$t < \underline{t}$$
, $ho(t) =
ho^*(t)$

2. for all
$$t \geq \underline{t}$$
, $\rho(t) = 1$.

An equilibrium (μ, α) is a LSHP equilibrium if μ is an LSHP strategy.

Remark

► Types in [<u>t</u>, 1] need not form a single pool, since |M₁| = ∞ (rich language assumption)

Definition

A Sender's strategy μ is a LSHP (Low types Separate and High types Pool) strategy if there exists $\underline{t} \in [0, \overline{t}]$ such that:

1. for all
$$t < \underline{t}$$
, $ho(t) =
ho^*(t)$

2. for all
$$t \geq \underline{t}$$
, $\rho(t) = 1$.

An equilibrium (μ, α) is a LSHP equilibrium if μ is an LSHP strategy.

Remark

- ► Types in [<u>t</u>, 1] need not form a single pool, since |M₁| = ∞ (rich language assumption)
- Bernheim & Severinov's (2003) "mD1" forward-induction refinement selects precisely LSHP equilibria (up to off path differences)

Theorem (Existence and Characterization) In any LSHP equilibrium, there is a cutoff type, $\underline{t} \in [0, \overline{t}]$, and a partial-partition, $\langle t_0 = \underline{t}, t_1, \dots, t_J = 1 \rangle$, such that

$$U^{S}(a^{R}(t_{j-1}, t_{j}), t_{j}) - U^{S}(a^{R}(t_{j}, t_{j+1}), t_{j}) = 0 \qquad \forall j \in \{1, \dots, J-1\},$$
(1)
$$U^{S}(a^{R}(\underline{t}, t_{1}), \underline{t}) - kC(1, \underline{t}) = U^{S}(a^{R}(\underline{t}), \underline{t}) - kC(\rho^{*}(\underline{t}), \underline{t}) \qquad \text{if } \underline{t} > 0.$$
(2)

Theorem (Existence and Characterization) In any LSHP equilibrium, there is a cutoff type, $\underline{t} \in [0, \overline{t}]$, and a partial-partition, $\langle t_0 = \underline{t}, t_1, \dots, t_J = 1 \rangle$, such that

$$U^{S}(a^{R}(t_{j-1}, t_{j}), t_{j}) - U^{S}(a^{R}(t_{j}, t_{j+1}), t_{j}) = 0 \qquad \forall j \in \{1, \dots, J-1\},$$
(1)
$$U^{S}(a^{R}(\underline{t}, t_{1}), \underline{t}) - kC(1, \underline{t}) = U^{S}(a^{R}(\underline{t}), \underline{t}) - kC(\rho^{*}(\underline{t}), \underline{t}) \qquad \text{if } \underline{t} > 0.$$
(2)

Conversely, given any cutoff type and partial-partition that satisfy (1), (2), and

 $U^{S}(a^{R}(\underline{t},t_{1}),0)-kC(1,0)\geq U^{S}(a^{R}(0),0)-kC(0,0) \quad \text{if } \underline{t}=0, \quad (3)$

there is a corresponding LSHP equilibrium.

Theorem (Existence and Characterization) In any LSHP equilibrium, there is a cutoff type, $\underline{t} \in [0, \overline{t}]$, and a partial-partition, $\langle t_0 = \underline{t}, t_1, \dots, t_J = 1 \rangle$, such that

$$U^{S}(a^{R}(t_{j-1}, t_{j}), t_{j}) - U^{S}(a^{R}(t_{j}, t_{j+1}), t_{j}) = 0 \qquad \forall j \in \{1, \dots, J-1\},$$
(1)
$$U^{S}(a^{R}(\underline{t}, t_{1}), \underline{t}) - kC(1, \underline{t}) = U^{S}(a^{R}(\underline{t}), \underline{t}) - kC(\rho^{*}(\underline{t}), \underline{t}) \qquad \text{if } \underline{t} > 0.$$
(2)

Conversely, given any cutoff type and partial-partition that satisfy (1), (2), and

 $U^{S}(a^{R}(\underline{t},t_{1}),0)-kC(1,0)\geq U^{S}(a^{R}(0),0)-kC(0,0) \quad \text{if } \underline{t}=0, \quad (3)$

there is a corresponding LSHP equilibrium.

For any k > 0, there is an LSHP equilibrium. If k is sufficiently large, there is an LSHP equilibrium with $\underline{t} > 0$.

Lying Costs

Figure: A LSHP equilibrium: solid red curve represents Sender's strategy via $\rho(t)$; dotted green curve is the separating function, ρ^* ; dashed blue curve represents Receiver's strategy via $\beta(t) = \bigcup_{m \in M_t} \alpha(m)$.

Lying Costs

Navin Kartik

Proposition (Comparative Statics)

- 1. As $k \to 0$, $\overline{t}(k) \to 0$.
- 2. If k is small, every LSHP eqm is close to the "most informative" CS equilibrium (cf. Chen, Kartik, and Sobel 2008).

Proposition (Comparative Statics)

- 1. As $k \to 0$, $\overline{t}(k) \to 0$.
- 2. If k is small, every LSHP eqm is close to the "most informative" CS equilibrium (cf. Chen, Kartik, and Sobel 2008).
- 3. For large k, every LSHP eqm has a single pool.
- 4. As $k \to \infty$, $\underline{t}(k) \to 1$ in every sequence of LSHP equilibria

 \Rightarrow converge to full separation

Proposition (Comparative Statics)

- 1. As $k \to 0$, $\overline{t}(k) \to 0$.
- 2. If k is small, every LSHP eqm is close to the "most informative" CS equilibrium (cf. Chen, Kartik, and Sobel 2008).
- 3. For large k, every LSHP eqm has a single pool.
- 4. As $k \to \infty$, $\underline{t}(k) \to 1$ in every sequence of LSHP equilibria

 \Rightarrow converge to full separation

5. If conflict of interest is large $(a^{S}(0) > a^{R}(1))$, every LSHP eqm has a single pool.

Withholding Information

- Verifiable disclosure models allow the Sender to withhold information but not lie
- Under large conflict of interest
 - cheap talk \Rightarrow only uninformative equilibria
 - $\blacktriangleright \ \ \text{verifiable disclosure} \Rightarrow \text{full revelation}$

Withholding Information

- Verifiable disclosure models allow the Sender to withhold information but not lie
- Under large conflict of interest
 - cheap talk \Rightarrow only uninformative equilibria
 - $\blacktriangleright \ \ \text{verifiable disclosure} \Rightarrow \text{full revelation}$
- Section 5 of the paper shows that the costly lying model can be extended to allow withholding at no cost, and that LSHP equilibria extend naturally
- ► LSHP equilibria span the two polar predictions of k = 0 and k = ∞, with specific predictions about the eqm *language*

Application: Delegation vs. Communication

Leading example: uniform-quadratic of CS with quadratic lying costs $% \left({{\left[{{{\left[{{C_{\rm{s}}} \right]}} \right]_{\rm{s}}}}} \right)$

Proposition

In the leading example, there is a finite \hat{k} such that for any $k \ge \hat{k}$, communication is superior to delegation for all b > 0. In particular, if $k \ge \frac{1}{4}$ and $b \in (0, \frac{3}{16})$, communication is superior to delegation.

Application: Delegation vs. Communication

Leading example: uniform-quadratic of CS with quadratic lying costs $% \left({{\left[{{{\left[{{C_{\rm{s}}} \right]}} \right]_{\rm{s}}}}} \right)$

Proposition

In the leading example, there is a finite \hat{k} such that for any $k \ge \hat{k}$, communication is superior to delegation for all b > 0. In particular, if $k \ge \frac{1}{4}$ and $b \in (0, \frac{3}{16})$, communication is superior to delegation.

Remark

- 1. Dessein (2002, ReStud) showed that under cheap talk, comm \succ del iff *b* is large.
- 2. Straightforward that for any fixed b > 0, comm \succ del iff k is large enough.
- 3. Proposition shows that threshold k(b) does not diverge to infinity as $b \rightarrow 0$.

Application: Delegation vs. Communication

Figure: Receiver's ex-ante welfare gain from communication over delegation as a function of the bias, *b*, in leading example. Highest curve is b^2 , $(k = \infty)$; next three are for single-pool LSHP equilibrium with k = 1, k = 0.5, and k = 0.25 respectively; lowest curve is for most-informative equilibrium of cheap talk.

Costly Lying from Behavioral Cheap Talk

- Messages are costless
- ▶ Prob $q \in (0,1)$, R naively plays $a = a^R(\Psi(m))$
- Prob 1 q, R rationally plays $a = \alpha(m)$

 \Rightarrow Payoff for S:

$$(1-q)U^{S}(\alpha(m),t)+qU^{S}(a^{R}(\Psi(m)),t)$$

Costly Lying from Behavioral Cheap Talk

- Messages are costless
- ▶ Prob $q \in (0,1)$, R naively plays $a = a^R(\Psi(m))$
- Prob 1 q, R rationally plays $a = \alpha(m)$

 \Rightarrow Payoff for S:

$$(1-q)U^{S}(\alpha(m),t) + qU^{S}(a^{R}(\Psi(m)),t)$$

$$\downarrow$$

$$U^{S}(\alpha(m),t) - kC(\nu(\Psi(m)),t)$$
where $k \equiv \frac{q}{1-q}, \nu(\cdot) = a^{R}(\cdot), C(x,t) \equiv -U^{S}(x,t)$

more general model in the paper handles this setting as well

Conclusion

A model of communication with costly lying

- Language inflation arises naturally, even when information is transmitted very precisely (large costs)
- Intuitive comparative statics with cost intensity
- Costly lying provides a bridge between verifiable disclosure and cheap talk models
- Model can be used in applications: an example to question of delegation vs. communication