Lemonade from Lemons:

Information Design with Interdependent Values

Navin Kartik Weijie Zhong

April 2021

Introduction

Asymmetric information can affect market outcomes

- (in)efficiency & distribution
- Various mechanisms can alter—help or hurt—outcomes
- Our paper: information design
 - fix a canonical interdependent-values trading environment
 - characterize **all** outcomes as participants' info varies
 - \rightarrow interested in more than just efficiency
- Interpretations
 - designer with some objective (e.g., regulator)
 - predictions across info structures

Punchlines

Information design can achieve a lot

- with no restrictions, all feasible and "indiv. rational" payoffs
- restrictions to canonical classes of info do matter; but not in some salient cases

Methodological contributions

- allow information to vary on both sides of market
- identify role of canonical information classes

Example

Example (1)

Seller can sell one indivisible good

	Prob(1/2)	Prob(1/2)
Buyer's valuation v	1	2
Seller's cost $c(v)$	1/2	2

Seller posts a TIOLI price $p \in \mathbb{R}$

Payoffs:

	Seller	Buyer
No trade	0	0
Trade	p - c(v)	v-p

Akerlof benchmark: Fully-informed Buyer; Uninformed Seller

• eqm price p=2 (or p>2); no gains from trade; foregone surplus 1/4

Example (2)

Both informed: eqm price p = v; all surplus to Seller

Example (2)

Both informed: eqm price p = v; all surplus to Seller

■ ∃ Seller info (with informed Buyer) giving all surplus to Buyer?

- Yes: reveal c = 2 sometimes and o-wise induce belief with $\mathbb{E}c = 1$. Upon latter, Seller prices at 1, efficient trade, no surplus to Seller.
- **All** points in \triangle with some Seller info (and informed Buyer)
- Feasibility + IR \implies nothing else implemented with **any** info design

Example (3)

	Prob(1/2)	Prob(1/2)
Buyer's valuation v	1	2
Seller's cost $c(v)$	0.3	1.8

Akerlof benchmark: p = 2; still inefficient, but some gains from trade

Example (3)

	Prob(1/2)	Prob(1/2)
Buyer's valuation v	1	2
Seller's cost $c(v)$	0.3	1.8

Akerlof benchmark: p = 2; still inefficient, but some gains from trade

Implement other payoffs with some Buyer info and uninformed Seller
In fact, a superset of those with fully-informed Buyer

Example (4)

- Nothing else implementable if Buyer more informed than Seller
- But o-wise can implement still more
 - e.g., Uninformed Buyer; with ε pr. Seller is informed of v = 1
 Seller's p ≈ Ec indep of signal; Buyer gets approx entire surplus
 → Seller's info makes off-path belief that v = 1 credible
- lacksquare Using joint info design, can fill in the entire feasible & IR riangle

General Results

Uninformed Seller sufficient for more-informed Buyer

- more generally, if Buyer does not update from price
- All three triangles coincide if and only if either
 - Akerlof info can generate full trade
 - Akerlof info can generate no trade

Literature

Monopoly pricing

- BBM 2015
- Roesler, Szentes 2017

Info design in games

- Berg, Morris 2016
- Doval, Ely 2020
- Makris, Renou 2021

Others

- Kessler 2001; Levin 2001
- Bar-Isaac, Jewitt, Leaver 2020

Model

Model

- Buyer's valuation: $v \in [\underline{v}, \overline{v}]$; prior μ with support V
- Seller's cost: $c(v) \leq v$, continuous with $\mathbb{E}[v c(v)] > 0$
- Private signals $t_b, t_s \sim P(t_b, t_s | v)$: info structure; design variable \rightarrow private signals are wlog
- Seller posts a price $p \in \mathbb{R}$; Buyer decides whether to accept
- Seller, Buyer vNM payoffs: $\begin{cases} (0,0) & \text{if no trade} \\ (p-c(v),v-p) & \text{if trade} \end{cases}$
- weak Perfect Bayesian Equilibrium
 - + strengthenings
- Nb: not assuming $c(v)\uparrow$

subsumes monopoly pricing, adverse or favorable selection

Canonical Info Structures and Payoff Sets

 $\Gamma \equiv (c(v),\mu)$ is the environment

Canonical information classes

- **T**: all (joint) info structures
- \mathbf{T}_{mb} : Buyer more informed than Seller, i.e., t_b is suff statistic for v
- **T**_{us}: Seller uninformed (singleton signal space)
- \mathbf{T}_{fb} : Buyer fully informed of v

Implementable payoffs

- $\blacksquare \ \Pi(\Gamma)$: payoff vectors across all info structures and all wPBE
- $\Pi^*(\Gamma)$: subset with price-independent beliefs
 - ightarrow Buyer does not update from price, after conditioning on t_b
 - \rightarrow implied by NSWYDK if Buyer more informed
- \blacksquare $\Pi^*_i(\Gamma):$ further subset when information structure is restricted to class i=mb,us,fb

 $\boldsymbol{\Pi}^*_{us}(\Gamma) \cup \boldsymbol{\Pi}^*_{fb}(\Gamma) \subset \boldsymbol{\Pi}^*_{mb}(\Gamma) \subset \boldsymbol{\Pi}^*(\Gamma) \subset \boldsymbol{\Pi}(\Gamma)$

Results

All Info Structures

Total surplus: $\mathbb{E}[v - c(v)] \equiv S(\Gamma)$ Seller guarantee: $\max \{ \underline{v} - \mathbb{E}[c(v)], 0 \} \equiv \underline{\pi}_s(\Gamma)$ Buyer guarantee: 0

Theorem (All info structures and equilibria.)

$$\mathbf{\Pi}(\Gamma) = \left\{ \begin{array}{c} \pi_b \ge 0 \\ (\pi_b, \pi_s) : & \pi_s \ge \underline{\pi}_s(\Gamma) \\ & \pi_b + \pi_s \le S(\Gamma) \end{array} \right\}$$

Moreover, $\forall \varepsilon > 0 \exists$ a finite information structure and price grid whose set of sequential equilibrium payoffs is an ε -net of $\mathbf{\Pi}(\Gamma)$.

Nb: a single information structure implements entire payoff set

Proof of All-Info Theorem

Assume, for simplicity, $\underline{v} \geq \mathbb{E}[c(v)]$.

- Neither player receives any information
- Seller randomizes between $p_l \in [v, \mathbb{E}[v]]$ and $p_h = \mathbb{E}[v]$ \rightarrow two parameters: p_l and $\sigma(p_l)$

Buyer accepts p_l but randomizes after p_h to make Seller indifferent

$$\pi_s = p_l - \mathbb{E}[c(v)]$$
 , $\pi_b = \sigma(p_l)(\mathbb{E}[v] - p_l)$

- As $p_l \uparrow$, π_s traverses $[\underline{\pi}_s(\Gamma), S(\Gamma)]$ As $\sigma(p_l) \uparrow$, π_b traverses $[0, S(\Gamma) - \pi_s]$
- Off path Buyer belief is $v = \underline{v}$, so Buyer rejects all off-path $p \geq \underline{v}$
- Violates NSWYDK (consider monopoly pricing) ^(c)
 But can be modified: e.g., if Pr(<u>v</u>) > 0, Seller occasionally learns <u>v</u>
 In fact, get sequential eqm—even "D1"—in discretizations

More-informed Buyer

$$\underline{\pi}_{s}^{us}(\Gamma) \equiv \inf \left\{ \pi_{s} : \exists (\pi_{b}, \pi_{s}) \in \mathbf{\Pi}_{us}^{*}(\Gamma) \right\}$$

Theorem (Equilibria with price-independent beliefs.)

$$\mathbf{1} \ \mathbf{\Pi}^*(\Gamma) = \mathbf{\Pi}^*_{mb}(\Gamma) = \mathbf{\Pi}^*_{us}(\Gamma).$$

$$\mathbf{2} \ \mathbf{\Pi}_{us}^*(\Gamma) = \{(\pi_b, \pi_s) \in \mathbf{\Pi}(\Gamma) : \pi_s \geq \underline{\pi}_s^{us}(\Gamma) \}.$$

3 $\forall (\pi_b, \pi_s) \in \mathbf{\Pi}_{us}^*(\Gamma)$ with $\pi_s > \underline{\pi}_s^{us}(\Gamma)$, $\exists \tau \in \mathbf{T}_{us}$ s.t. all equilibria have payoffs (π_b, π_s) .

- Given price-indep beliefs, uninformed Seller is sufficient
- Only additional constraint now is $\underline{\pi}_s^{us}(\Gamma) \ge \underline{\pi}_s(\Gamma)$. Inequality is strict if $\underline{v} \le \mathbb{E}[c(v)]$ and $c(v) < v \ \forall v$.

Unique implementation

Price-indep Beliefs Theorem: Proof Sketch

- \blacksquare With price-indep beliefs, $\pi_s \geq \underline{\pi}^{us}_s(\Gamma)$
 - price-indep beliefs \implies info cannot hurt Seller
- Show $\underline{\pi}^{us}_s(\Gamma)$ is implementable with some $\tau^* \in \mathbf{T}_{us}$ (i.e., $\inf = \min$)

Lemma

```
orall (\pi_b,\pi_s)\in \mathbf{\Pi}(\Gamma) with \pi_s> \underline{\pi}^{us}_s(\Gamma),
```

 \exists garbling of τ^* s.t. all equilibria have payoffs (π_b, π_s) .

Suppose τ^* has fully-informed Buyer and prior μ has density:

Identify z^* and $p^* \in [z^*, \mathbb{E}[v|v>z^*]]$:

• $z^* \leftarrow \text{Surplus: } \pi_s + \pi_b = \Pr(v > z^*)\mathbb{E}[v - c(v)|v > z^*]$ • $p^* \leftarrow \text{Seller payoff: } \pi_s = \Pr(v > z^*)\mathbb{E}[p^* - c(v)|v > z^*]$

Fully-Informed Buyer

$$\underline{\pi}_s^{fb}(\Gamma) \equiv \sup_p \int_p^{\overline{v}} (p - c(v)) \mu(\mathrm{d}v)$$

Theorem (Fully-informed Buyer, w/ price-indep beliefs.)

$$\mathbf{1} \ \mathbf{\Pi}_{fb}^*(\Gamma) = \{ (\pi_b, \pi_s) \in \mathbf{\Pi}(\Gamma) : \pi_s \ge \underline{\pi}_s^{fb}(\Gamma) \}.$$

• Of course,
$$\underline{\pi}_s^{fb}(\Gamma) \ge \underline{\pi}_s^{us}(\Gamma)$$
; strictly if $\underline{\pi}_s^{fb}(\Gamma) > \underline{\pi}_s(\Gamma)$

 Proof via "incentive compatible distributons", generalizing Bergemann, Brooks & Morris' (2015) "extreme markets"

Approx. unique implementation

In Sum

Extensions/other issues:

- characterizing uninformed-Seller bound $\underline{\pi}_s^{us}$ (\checkmark linear v)
- more general correlation in c, v (\checkmark if $c \leq v$)
- negative trading surplus (✓ for all info structures; nonlinear frontier)
- other mechanisms
 - if $\underline{v} \mathbb{E}[c(v)] \leq 0$, cannot implement any more s.t. participation
 - if $\underline{v} \mathbb{E}[c(v)] > 0$, mech design is useful

Thank you!