Electoral Ambiguity and Political Representation

Navin Kartik Richard Van Weelden Stephane Wolton

October 2015

Ambiguity and Representation

Motivation

How much discretion should elected representatives exercise?

- Delegate vs. Trustee models
 - James Madison and Edmund Burke

Our contribution

- Formal framework to study political representation
- Connection with electoral ambiguity
- What is the optimal level of discretion to allow?
- How much discretion emerges from electoral competition?

Framework

- Hotelling-Downs tradition
- Candidates impose constraints on their post-election policies
- Can announce a single policy or be ambiguous (any policy set)
- Policy-relevant state learned after taking office
 - Ambiguous platforms allow adapting policy to the state
- Voters' tradeoff: policy adaptability vs. bias

Preview of Results

- Optimal representation is *in between* delegate and trustee models
 - delegate only if candidate is very biased; trustee only if unbiased
 - familiar from literature on delegation
- Ambiguity: Intervals that bound policy in direction of bias
 - UK Conservatives promised to \uparrow funding for Dept Health by $\geq \pounds 8B$
 - Romney 2012: social security reform would entail "no change for those at or near retirement"
 - Obama 2008: "no family making less than \$250K a year will see any form of tax increase"
- \blacksquare Divergence: expected policy of the candidate R is to the right of the candidate L
- The elected candidate's platform is generally not voter-optimal
 - More moderate candidate wins, but with an overly ambiguous platform
 - Ambiguity correlated with success; but not causal

Related Literature

- Optimal delegation
 - Principal-Agent settings, following Hölmstrom (1977)
 - Ours is a delegation game: 2 agents propose sets to a principal
 - We build on results from Alonso and Matouschek (2008)
- Ambiguity in politics
 - Downs (1957) noted "puzzle" of ambiguity
 - Explanations incl. risk loving prefs (Shepsle 1972, Aragones and Postlewaite 2002), behavioral characteristics, ...
 - Aragones and Neeman (2002): candidates value ambiguity.
 Difference: voters in our model also benefit from ambiguity

Model

Game Form

Two candidates, $i \in \{L, R\}$, and a representative/median voter

1 Candidates simultaneously propose platforms $A_i \subseteq \mathbb{R}$

- Require A_i to be closed
- Timing doesn't actually matter
- **2** State of the world $\theta \in [-1, 1]$, privately observed by elected candidate
- **3** Elected candidate then chooses policy action $a_i \in A_i$
 - Commitment to platform

Preferences

Voter's payoff:

$$u_0(a,\theta) = -(a-\theta)^2$$

■ Candidate *i*'s payoff when *e* is elected:

$$u_i(a, \theta, e) = \begin{cases} \phi - (a - b_i - \theta)^2 & \text{if } i = e, \\ -(a - b_i - \theta)^2 & \text{if } i \neq e, \end{cases}$$

where $b_R \geq 0 \geq b_L$ and $\phi \geq 0$

• biases are commonly known

State Distribution

 $\blacksquare \ \theta \sim F(\cdot)$ with differentiable density $f(\cdot) > 0$ on [-1,1]

Density is symmetric around 0 and doesn't change too fast:

$$-f(\theta) \le f'(\theta) \le f(\theta),$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[\theta|\theta\geq t]<1 \text{ and } \frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[\theta|\theta\leq t]<1.$$

log-concavity implies latter condition

Ambiguity and Representation

Some Basics

Study Subgame Perfect Nash Equilibria

If *i* is elected with platform A_i , proper subgame with (essentially) unique eqm: $a_i(\theta, A_i)$

Goal is to characterize eqm platforms and voter behavior. Terminology:

- A_i is minimal if $\text{Im}(a_i(\cdot, A_i)) = A_i$
 - No redundant policies
 - Without essential loss, focus on minimal platforms
- A_i is ambiguous if $|A_i| > 1$
 - Voter is unsure of final policy if and only if platform is ambiguous
- There is convergence if $A_L = A_R$
 - Weak notion; compatible with different ex-post policies

Optimal Political Representation

Voter-optimal platforms

Define thresholds \bar{a}^0 and \underline{a}^0 by $\bar{a}^0 = \mathbb{E}[\theta|\theta \ge \bar{a}^0 - b_R]$ and $\underline{a}^0 = \mathbb{E}[\theta|\theta \le \underline{a}^0 - b_L]$ $\mathbf{a}^0 \le 1 + b_R, \downarrow \text{ in } b_R \in [0, 1], \text{ range } [0, 1], \text{ equals } 0 \text{ for } b_R \ge 1$

Proposition

The two candidates' respective voter-optimal platforms are

$$\begin{split} A_R^0 &:= \begin{cases} \{0\} & \text{if } b_R \ge 1, \\ [-1+b_R, \bar{a}^0] & \text{if } b_R \in [0,1). \end{cases} \\ A_L^0 &:= \begin{cases} \{0\} & \text{if } b_L \le -1, \\ [\underline{a}^0, 1+b_L] & \text{if } b_L \in (-1,0]. \end{cases} \end{split}$$

Interval with cap against bias (formally proved using AM 2008)

Ambiguity necessary to achieve optimal representation

• delegate and trustee models as extremes

Ambiguity and Representation

Comparative Statics

Let $W_0(A_i, i)$ be voter's welfare when i is in office with platform A_i .

Proposition

- For any $i \in \{L, R\}$ and b_i with $|b_i| \in (0, 1)$,
 - **1** A_i^0 is decreasing in $|b_i|$.
 - **2** $W_0(A_i^0, i)$ is decreasing in $|b_i|$;
 - 3 $\mathbb{E}[a_L(\theta, A_L^0)] < 0 < \mathbb{E}[a_R(\theta, A_R^0)]$, with

$$\lim_{b_i \to 0} \mathbb{E}[a_i(\theta, A_i^0)] = \lim_{|b_i| \to 1} \mathbb{E}[a_i(\theta, A_i^0)] = 0.$$

In expectation, policy moved in direction of candidate's bias
Nb: Var[a_i(θ, A⁰_i)] = 0 when |b_i| = 1 but is maximal when b_i = 0

Ambiguity and Representation

Equilibrium Ambiguity and Representation

Solving for Equilibrium

Lemma

In any equilibrium in which R wins with pos prob, he plays a pure strategy, choosing a platform A_i^* such that either

•
$$A_R^* = \{a_R^*\}$$
 with $a_R^* \ge 0$, or

• $A_R^* = [-1 + b_R, \bar{a}_R^*]$ with $\bar{a}_R^* \in [\bar{a}^0, 1 + b_R]$.

(Analogous for L.)

- Key insight: unless losing for sure, a candidate must use a pairwise Pareto optimal platform
 - Maximize some convex combination of voter and candidate's utilities
 - Isomorphic to earlier problem, with suitably scaled down bias
 - Set consists of intervals if $|b_i| < 1$
- Pure strategies from eqm considerations
 - discontinuous gain from winning (even if $\phi=0)$

Ambiguity and Representation

Equilibrium Characterization (1)

Proposition

An equilibrium exists. Assume (wlog) $b_R \leq -b_L$.

1 If $b_R = 0$: in any eqm, an elected i has $b_i = 0$ and $A_i^* = A_i^0 = [-1, 1]$.

2 If
$$b_R \ge 1$$
: in any eqm, $A_i^* = A_i^0 = \{0\}$.

3 If $b_R = -b_L \in (0,1)$: in any eqm, $A_i^* = A_i^0$, where

$$A_L^0 = [\underline{a}^0, 1 + b_L]$$
 and $A_R^0 = [-1 + b_R, \overline{a}^0].$

- In all these ["special"?] cases, voter-optimal platforms emerge.
- In part 3: expected policy divergence, non-monotonic in candidate polarization
- Nb: Voter strategy not pinned down

Equilibrium Characterization (2)

Proposition (Asymmetric candidates)

Assume $b_R < (0, \min\{-b_L, 1\}).$

4 If $W_0(A_L^0, L) > W_0(\mathbb{R}, R)$: Unique eqm.

$$A_L^* = A_L^0$$
 and $A_R^* = [-1+b_R, \overline{a}_R^*],$

where $\overline{a}_R^* \in (\overline{a}^0, 1 + b_R)$ s.t. $W_0(A_L^0, L) = W_0(A_R^*, R)$. The voter elects R.

5 If $W_0(A_L^0, L) \leq W_0(\mathbb{R}, R)$: unique eqm outcome. In any eqm,

 $A_R^* = [-1 + b_R, 1 + b_R]$ and the voter elects R.

If one candidate is more ambiguous (and wins with pos prob), he wins

but ambiguity does not cause success

■ Winning candidate is over-ambiguous; competition → efficiency

Ambiguity and Representation

Discussion

Discussion

- Commitment
 - Key assm: Allow policy sets, but no state-contingent promises.
 - In our view, reasonable
 - If candidates can only choose singletons, converge to 0.
 Lower welfare (strictly when b_L, b_R ∈ (−1, 1)).
 - With state-contingent promises, $a(\theta) = \theta$. Higher welfare.
- Heterogeneous voters
 - Let voter v have payoff $u_v(a, \theta) = -(a v \theta)^2$.
 - Logic carries over with median voter v = 0.
- Non-deterministic elections
 - With valence shocks, both candidates can win, never get voter-optimal platforms, but converge to them as $\phi \to \infty$.
 - Valence sym. distributed and large ϕ : less-biased candidate wins more often and is more ambiguous.

Conclusions

Recap

- Formal framework to study classical question in political representation
- Optimal representation usually in between "delegate" and "trustee" relationship
- Divergence and ambiguity beneficial for welfare when candidates not too polarized.
- Advantaged candidates are overly ambiguous, yet win anyway.
- Non-monotonic relationship between polarization in candidates and the action they take.