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Motivation (1)

Sequential observational learning model (Banerjee ’92; BHW ’92)

unknown state ω ∈ Ω

each n = 1, 2, . . . takes action an ∈ A (finite set)

using private signal and (full) history of actions

homogenous prefs u(an,ω)

Many extensions, variations

Fundamental Q: does society eventually learn ω?

Received A: Unbounded vs. bounded beliefs (SS ’00; AMF ’21)

∀ω, can posterior from a single signal ≈ Pr(ω) = 1?

∀ω, is posterior from single signal bounded away from Pr(ω) = 0?
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Motivation (2)

Unbounded beliefs ⇐⇒ learning for all prefs

Bounded beliefs ⇐⇒ nonlearning for all (nontrival) prefs

Exhaustive (more or less) with two states ⇝ most papers

But with multiple states, a significant gap

Suppose Ω = {1, 2, 3} and signals N (ω, 1)

Can become certain about 1 or 3 but not 2

Neither unbounded nor bounded!

So is there learning? Say for u(a,ω) = −(a− ω)2
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This Paper

For wide class of observational networks,

1. Excludability as a characterization of learning

simple cond over prefs & info

new perspective: learning requires agents’ ability to displace wrong actions,

not take the correct action (individually)

2. Permits study of learning for broad pref classes. Main application:

One-dim state: Single-crossing prefs & directionally unbounded beliefs

covers quadratic loss, normal info e.g.

3. Methodology: General approach to learning + welfare
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Literature

Most related

Smith & Sørensen ’00; Arieli & Mueller-Frank ’21

Acemoglu, Dahleh, Lobel, Ozdaglar ’11; Lobel & Sadler ’15

Other mechanisms for Bayesian learning

Non-Bayesian / Misspecified learning
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Model



Environment

Countable set of states Ω (|Ω| ≤ ∞)

Signal space S (standard Borel)

when MLRP is mentioned, both S and Ω are ordered

Signal/info structure f(s|ω) (R-N densities)

no signal can exclude any state: f(·) > 0

Action set A (standard Borel)

can focus on finite

more general setup in paper: e.g., Ω = [0, 1] or non-full-support signals

5 / 19



The Game

Unobservable state ω drawn from prior pmf µ0 ∈ ∆Ω

Agents 1, 2, . . . sequentially choose actions; each agent n observes both

conditionally indep private signal sn ∼ f(·|ω)
actions of all predecessors in her neighborhood B(n) ⊆ {1, . . . , n− 1}

B(·) defines social (observational) network structure (common knowledge)

e.g., immediate predecessor or complete networks

for talk, only deterministic networks; papers covers stochastic networks

Strategy σn : S ×AB(n) → ∆A

All agents share bounded vNM utility u : A× Ω → R (assm optimal action exists ∀ beliefs)

Bayes Nash equilibria (or refinements)

→ no real strategic interaction
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Learning

Full-information exp utility u∗(µ) :=
󰁓

ω maxa u(a,ω)µ(ω)

Given prior µ0 and eqm σ, agent n has ex-ante exp utility Eσ,µ0un

Definition

There is adequate learning if for every prior µ0 and every eqm σ, Eσ,µ0un → u∗(µ0) as n → ∞.

Adequate learning clearly impossible if

∃K ∈ N : |{n : B(n) ⊆ {1, . . . ,K}}| = ∞

Assumption (Expanding Observations)

∀K ∈ N, |{n : B(n) ⊆ {1, . . . ,K}}| < ∞.

Examples: complete and immediate predecessor networks (or any last M)

Under expanding obs, for what (u, f) is there adequate learning?
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Example



Unbounded Beliefs

Given belief µ, let µs(ω) be posterior after signal s

Definition

Signal structure has unbounded beliefs if ∀µ ∈ ∆Ω with full support, ∀ε > 0:

∀ω, Pr{s : µs(ω) > 1− ε} > 0.

Unbounded beliefs =⇒ adeq learning for all prefs

∵ every individual can take correct action

With only two states, adeq learning for any (nontrivial) pref =⇒ unbounded beliefs

∵ if ω not distinguishable from ω′, take prior µ0(ω
′) ≈ 1
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Learning without Unbounded Beliefs

1 2

3

µ

Normal info: sn ∼ N (ω, 1)

fails unbounded beliefs
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Learning without Unbounded Beliefs

Complete network

Ω = A = {1, 2, 3}
sn ∼ N (ω, 1)

Consider realization ω = 2

µ ∈ Gray region: no signal leads to
correct action (a = 2)
→ first few surely take wrong actions

But either wrong a can be displaced,
eventually leading to correct action
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Characterizations of Learning



Excludability

Definition

Ω′ is distinguishable from Ω′′ if ∀µ ∈ ∆(Ω′ ∪ Ω′′) with µ(Ω′) > 0, ∀ε > 0:

Pr{s : µs(Ω
′) > 1− ε} > 0.

→ can become ≈ certain about Ω′ relative to all of Ω′′, simultaneously

→ e.g., Ω = {1, 2, 3}, s ∼ N (ω, 1):

can become certain about 2 vs 1 and 2 vs 3 separately, but not simultaneously

so 2 is not distinguishable from {1, 3}
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Excludability

Definition

Ω′ is distinguishable from Ω′′ if ∀µ ∈ ∆(Ω′ ∪ Ω′′) with µ(Ω′) > 0, ∀ε > 0:

Pr{s : µs(Ω
′) > 1− ε} > 0.

→ can become ≈ certain about Ω′ relative to all of Ω′′, simultaneously

If each ω′ ∈ Ω′ is distinguishable from Ω′′, then so is Ω′.

So Ω′ distinguishable from Ω′′ if [and only if, for finite Ω]:✓

✒

✏

✑
∀ω′ ∈ Ω′:

∃ (si) s.t. ∀ω′′ ∈ Ω′′, lim
i→∞

f(si|ω′′)/f(si|ω′) = 0.
(writing as if S countable)

Definition

There is excludability if ∀a, a′:
{ω : u(a,ω) > u(a′,ω)} is distinguishable from {ω : u(a′,ω) > u(a,ω)}.

→ can become ≈ certain that a ≻ a′ (starting from any non-precluding belief)
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Excludability and Learning

Theorem

Excludability =⇒ adeq learning ∀ choice sets. If Ω finite, also the converse.

For converse, consider binary choice sets and extreme prior

Say that µ is stationary if ∃a that is optimal no matter the signal

Say that µ has adequate knowledge if ∃a that is optimal ∀ω ∈ Suppµ

Straightforward: adeq learning =⇒ all stationary beliefs have adequate knowledge

∵ at a stationary prior, there can be an immediate info cascade

Theorem

(Fix any choice set.) Adeq learning ⇐⇒ all stationary beliefs have adequate knowledge.

Excludability thm follows ∵ excludability =⇒ any inadeq knowledge belief µ is not stationary

→ a∗(ω) ≻ω a∗(µ), so a∗(µ) will be displaced . . . perhaps never by a∗(ω) 11 / 19



Excludability vs Unbounded Beliefs

Though a joint cond on prefs & info, excludability can usefully separate prefs and info classes

Excludability for all prefs ⇐⇒ info has unbounded beliefs

i.e., each ω is distinguishable from Ω \ ω

Corollary: adeq learning for all prefs ⇐⇒ unbounded beliefs

But unbounded beliefs very demanding when |Ω| > 2

Remark

Assume |Ω| > 2. MLRP =⇒ NOT unbounded beliefs.
recall normal info

12 / 19



Main Application:

One-Dimensional State with Single-Crossing Prefs



Single-Crossing Differences

Now let Ω ⊂ R

h : R → R is single crossing if sign[h] is monotonic

Definition

Utility u : A× Ω → R has single-crossing differences (SCD) if

∀a, a′ : u(a,ω)− u(a′,ω) is single crossing in ω.

à la Milgrom & Shannon ’94, but no order on A (Kartik, Lee, Rappoport ’23)

implied by supermodularity if A ordered
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Directionally Unbounded Beliefs

Definition

There is directionally unbounded beliefs (DUB) if every ω is
distinguishable from {ω′ : ω′ < ω} and also from {ω′ : ω′ > ω}.

But need not distinguish ω simultaneously from both lower and higher states

Under MLRP, DUB ⇐⇒ “pairwise distinguishability” (e.g., normal info)
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SCD-DUB Result

Proposition

SCD prefs & DUB info =⇒ adeq learning.

Proof sketch (for finite Ω)

SCD =⇒ ∀a, a′, min{ω : a ≻ a′} > max{ω : a′ ≻ a}
or vice-versa

DUB =⇒ disjoint upper and lower sets are distinguishable from each other

Apply Excludability Thm
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SCD-DUB Result

Proposition

SCD prefs & DUB info =⇒ adeq learning. They are a minimal suff. pair (varying choice set).

Excludability for all SCD prefs =⇒ DUB

→ Consider a′ ≻ω a′′ iff ω ≥ ω∗. Excludability =⇒ ω∗ distinguishable from lower set

Absent SCD, excludability fails for some binary choice set under normal info (∵ MLRP)

a13
a2

1 2

3

µ

µ is stationary and has inadeq knowledge 15 / 19



Application:

Multi-dimensional State with Intermediate Prefs



Multidimensional Application

Ω, A ⊂ Rd

Intermediate Prefs: ∀a′ ∕= a′′, either Ωa′,a′′ = ∅ or Ωa′,a′′ = Ω or

∃h ∈ Rd and c ∈ R s.t. Ωa′,a′′ = {ω : h · ω > c}.

Grandmont ’78; Caplin & Nalebuff ’88

e.g., Weighted Euclidean: u(a,ω) = −l((a− ω)′W (a− ω)),

for some d× d sym. positive definite matrix W and str. ↑ loss function l

e.g., CES: u(a,ω) = (ω1a
r
1 + · · ·ωda

r
d)

1/r with r ∕= 0

Location-shift info: S = Rd, uniformly cts standard density g : Rn → R s.t.
f(s|ω) = g(s− ω)

Say g is subexponential if ∃p > 1: g(s) < exp (−󰀂s󰀂p) when 󰀂s󰀂 large

e.g., g is multidim N (ω,Σ) 16 / 19



Multidimensional Application

Ω, A ⊂ Rd

Intermediate Prefs: ∀a′ ∕= a′′, either Ωa′,a′′ = ∅ or Ωa′,a′′ = Ω or

∃h ∈ Rd and c ∈ R s.t. Ωa′,a′′ = {ω : h · ω > c}.

Grandmont ’78; Caplin & Nalebuff ’88

e.g., Weighted Euclidean: u(a,ω) = −l((a− ω)′W (a− ω)),

for some d× d sym. positive definite matrix W and str. ↑ loss function l

e.g., CES: u(a,ω) = (ω1a
r
1 + · · ·ωda

r
d)

1/r with r ∕= 0

Proposition

In this setting, there is excludability (hence adeq learning) if g is subexponential.

Intuition: {ω : h · ω > c} and {ω : h · ω < c} can be distinguished ∵ g has thin tail.
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Methodology



Backbone Result

Theorem

Adequate learning ⇐⇒ all stationary beliefs have adequate knowledge.

Proof idea (⇐=): (elaborate)

1 If agent’s social belief distr is not close to stationary, can achieve a min utility improvement

→ ΦS ⊂ ΦBP ⊂ ∆∆Ω; and ΦBP is compact (weak topology; ∆∆Ω may not be compact)

→ complement of ε-nbhd of ΦS is a closed (hence compact) subset (Prohorov metric)

→ exp utility / improvement is cts in belief, also cts on distrs

2 Expanding observations =⇒ improvement principle: these min improvements propogate (e.g.,
consider immediate-predecessor network); so they can occur only finitely often

→ eventually as if every agent has arb. close to stationary social belief

→ eventual exp utility is at least that of the worst stationary belief distr: Theorem 3

→ when all stationary beliefs have adeq knowledge, there is adeq learning

test
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Backbone Result

Theorem

Adequate learning ⇐⇒ all stationary beliefs have adequate knowledge.

Recall this characterization is for any given action set A

Excludability is sufficient for learning; necess requires varying choice sets

Subsumes existing learning results (and “info diffusion”; Lobel & Sadler ’15)

Including “responsive prefs” with infinite action spaces (Lee ’93; Ali ’18)

→ E.g., if Ω = {0, 1}, A = [0, 1], and u(a,ω) = −(a− ω)2,

then given any informative signal structure, only stationary beliefs are {0, 1}

Suppose only 2 states and finite actions, as much of the literature

→ Adeq knowledge means knowing the state (modulo trivialities)

→ So unbounded beliefs
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Discussion



Most-Related Papers

Complete network: Smith & Sørensen ’00 (two states)
Arieli & Mueller-Frank ’21 (general)

unbounded beliefs characterizes learning for all prefs

AMF ’21: “vanishing value of private information”, analogous to our Backbone Lemma

→ Martingale approach, which fails for general networks

General networks, but only two states and two actions

Acemoglu, Dahleh, Lobel, Ozdaglar ’11: introduce improvement principle approach

Lobel & Sadler ’15 introduce “info diffusion” (and correlated networks)

→ Both rely critically on two states & actions to derive minimum improvement

→ Our methodology using compactness/continuity works generally

Study of broad pref classes is new to social learning (but classical approach!)

AMF ’21 have example with a special utility
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Conclusion

Std condition for learning, unbounded beliefs, very demanding with > 2 states

For a given pair of prefs and info, excludability characterizes learning

in general environment with social networks satisfying expanding observations

Permits a study of learning for canonical classes of prefs

SCD prefs + DUB info

Intermediate prefs + subexponential location-shift info

Beyond learning, general welfare bound

Interesting future directions:

Other pairs of suff conds

Heterogenous prefs

Speed of convergence

DUB in other contexts
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Thank you!



More on Backbone Result✞
✝

☎
✆u∗(µ0) := infϕ∈ΦS u(ϕ) , where ΦS ⊂ ΦBP ⊂ ∆∆Ω is set of Bayes-Plausible stationary distrs

Theorem

In any equilibrium σ, lim infn Eσ,µ0 [un] ≥ u∗(µ0).

When all stationary beliefs have adeq knowl, u∗ is full-information utility, so adeq learning.

Proof idea: (ideas)

ΦBP is compact, even when ∆∆Ω is not (∆∆Ω metrized by Prohorov)

Fix small ε > 0 and let ΦS
ε be an ε-nbhd of ΦS

Expected improvement I(ϕ) is cts, so attains minimum δ(ε) > 0 over (ΦS
ε )

c (closed hence compact)

Whereas for ϕ ∈ ΦS
ε , u(ϕ) > u∗ − γ(ε), with γ(ε) → 0 as ε → 0 (using unif cont of u)

By an improvement principle, lim infn Eun ≥ u∗ − γ(ε) (this step adapts ADLO ’11)
E.g., consider immediate-predecessor network
Each Eun ≥ min{u∗ − γ(ε),Eun−1 + δ(ε)}
Iterate

Result follows ∵ ε > 0 is arbitrary


