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Introduction (1)

Agent with utility u(a,0), a€ Aand €O C R"”

Important result in 1-dim signaling & mech design

— IC reduces to local IC under single-crossing property (= “interval choice”)

How to extend to multi-dim types?
This paper: convex choice

— from any choice set, any action is chosen by a convex set of types

Natural requirement; useful even beyond local IC



Introduction (2)

Main results:

@ Sense in which convex choice characterizes sufficiency of local IC
® Other applications: implementability; cheap talk
©® Convex choice <= ‘directional single crossing”

O For EU on lotteries, convex choice = “one-dim or affine” representation
u(a,0) =v(a) -0+ w(a)

This affine form has been salient in multi-dim studies
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Convex Choice

Agent with utility u(a,6), a€ A and 6§ € © C R", © convex

Definition

u has convex choice if VB C A and Va € B, (Enough to only consider all

binary choice sets)
6 : {a} = argmax u(b, 9)} is convex.
beB

m Grandmont’'s 1978 “betweeness”

m In 1-dim, “interval choice” of Kartik, Lee, Rappoport 2024



Convex Choice

Agent with utility u(a,6), a€ A and 6§ € © C R", © convex

Definition

u has convex choice if VB C A and Va € B, (Enough to only consider all

binary choice sets)
{9 : {a} = argmax u(b, 9)} is convex.
beB

For talk, maintain “regular” indifferences:

[u(d’,8") > u(a”,6') and u(d’,8") = u(a”,8")] = u(d’,0) > u(a",0) VO <€ (¢',6").

Satisfied, e.g., by no indifferences or by A C R™ and u(a,6) =a -0



Incentive Compatibility

Ny C © denotes open neighborhood of 6
Direct mechanisms © — A

Definition

Mechanism m : © — A is

m incentive compatible (IC) if V6 € ©,
Vo' € © : u(m(6),0) > u(m(#),0) and u(m(0'),0") > u(m(6),0").
m locally ICif V8 € ©, ANy C O s.t.

VO' € N : w(m(0),0) > u(m(0),0) and u(m(8'),0") > u(m(9),0").

Analogously for a mechanism defined on ©’ C ©



Sufficiency of Local IC (1)

Local IC does not generally imply 1C:

a = a" a’ - a

Mechanism

Not convex choice!



Sufficiency of Local IC (2)

Proposition

u has convex choice = if m:© — Ais locally IC then it is IC.

!

for any line segment ¢ C © and any mechanism m : £ — A, if m is locally IC then it is IC.

m So IC between 6 and 6’ requires only checking local IC along line segment (6,6")
m Such “integration up” is a common strategy

m Corollary: sufficiency of local IC on full type space ©



Sufficiency of Local IC (2)

Proposition

u has convex choice = if m:© — Ais locally IC then it is IC.

!

for any line segment ¢ C © and any mechanism m : £ — A, if m is locally IC then it is IC.

m Sufficiency of local IC on ©® =& CC

m But sufficiency on all line segments does

m All line segments of interest because:

@ Reduces checking IC between any two types
to a 1-d task, which is ‘tractable’

® A tractable problem must remain tractable
when restricted to lower dimensions



Sufficiency of Local IC (2)

Proposition
u has convex choice = if m:© — Ais locally IC then it is IC.

!

for any line segment ¢ C © and any mechanism m : £ — A, if m is locally IC then it is IC.

Proof idea: Necessity of CC captured by earlier 1-dim example

" " !/ / "

a=d d'=ad d=a




Sufficiency of Local IC (2)

Proposition

u has convex choice = if m:© — Ais locally IC then it is IC.

!

for any line segment ¢ C © and any mechanism m : £ — A, if m is locally IC then it is IC.

Proof idea:  Heuristic for sufficiency
Assume no indiff, take any 6,0’ and a fine grid on their line segment, 0 = 61,...,0,, = ¢’

m local IC = u(m(6;),60;) > u(m(b;i+1),0;) Vi=1,2
u(m(03), 03) > u(m(@z), 03)

m convex choice = u(m(6y),61) > u(m(6s),60;)

m iterate logic, using local IC and CC each time, to get u(m(6;),61) > u(m(6;),6,).



Sufficiency of Local IC (2)

Proposition

u has convex choice = if m:© — Ais locally IC then it is IC.

!

for any line segment ¢ C © and any mechanism m : £ — A, if m is locally IC then it is IC.

Carroll 2012 establishes sufficiency of local IC using “domain representation” of prefs
Our parameter representation approach is complementary

Formally, his result is subsumed by A € R™ and u(a,0) =a -6

» Implementability



Cheap Talk

In cheap talk or costly signaling,

sender’s utility having convex choice =—> every eqm is “convex partitional”

Has been interest in extending Crawford & Sobel 1982 to multiple dims
m Levy & Razin 2004, 2007; Chakraborty & Harbaugh 2007

Also commmon-interest cheap talk with finite messsage space
m Jager, Metzger, Riedel 2011; Saint-Paul 2017; Sobel 2016; Bauch 2024

Remark

Assume A C R™ and u(a,0) = —I(||la — 0]|), with [(-) strictly 7.

Convex choice <= norm is weighted Euclidean

(i.e., |z]| = VaWzT, with W sym pos def)



Directional Single Crossing



Directional Single Crossing (1)
Convex choice can be viewed as single crossing
Definition

f : © — R is directionally single crossing if 3o € R™\ {0} s.t. V6,6 € ©,
(0—0) -a>0 = sign(f(0)) > sign (f(¢)).




Directional Single Crossing (1)
Convex choice can be viewed as single crossing
Definition

f : © — R is directionally single crossing if 3o € R™\ {0} s.t. V6,6 € ©,
(0—0) -a>0 = sign(f(0)) > sign (f(¢)).




Directional Single Crossing (1)

Convex choice can be viewed as single crossing

Definition
f : © — R is directionally single crossing if 3o € R™\ {0} s.t. V6,6 € ©,
(0—0") a>0 = sign(f(#)) > sign (f(G’)) .

f() <0 f() =0

f()>0



Directional Single Crossing (2)

Convex choice can be viewed as single crossing

Definition
u: A X © — R has directionally single-crossing differences if Va,a’ € A,

u(a, ) — u(a’,0) is directionally single crossing.

m Va,da', strict preference sets are parallel half-spaces, either open or closed

m Direction of defining hyperplanes can vary across action pairs



Directional Single Crossing (2)

Convex choice can be viewed as single crossing
Definition
u: A X © — R has directionally single-crossing differences if Va,a’ € A,

u(a, ) — u(a’,0) is directionally single crossing.
Leading example families, when A C R™:
© weighted Euclidean: any | fn of (a — 0)W(a — 0)T, with W sym pos def

® CES: A,0 C R and u(a,8) = (3°1 ;(a;)"0;)° with r € R and s > 0

For these families, adding a type-independent function preserves DSCD, so, e.g.,
u(a,d) =a- 6+ w(a) has DSCD



Directional Single Crossing (3)

Convex choice can be viewed as single crossing
Proposition

If w has DSCD, then u has convex choice.

If u “strictly violates” DSCD, then u does not have convex choice.

m 1st statement straightforward from geometry

m 2nd follows from a sep hyp thm

m Closely related to Grandmont 1978; his form is more restrictive (e.g., continuity)



Convex Environments



Convex Environments (1)

Choice among lotteries with EU: A = AX and u(a,0) = >, a(x)u(z,0)
m stochastic or multiple-agent mechanisms

m cheap talk where sender is uncertain about receiver prefs

More generally, convex environment: {u(a,-) : © — R},c4 is convex
m rank-dependent EU / prob distortion, where distortion function has convex image

m choice over T-period consumption streams:

A = [a,a]” and u(a,0) =Y, v(ar)p(t; 0), with v(-) continuous



Convex Environments (2)

Proposition
Assume © = R", u(a, 0) is differentiable in 6, and no type is totally indifferent.

Convex environment and DSCD = wu is 1-dimensional or has affine representation.

m 1-dimensional if 3a € R"\ {0} and 4 : A x R — R s.t.
t(a,« - 0) represents the same prefs for every

m Affine representation if 3v: A > R" and w: A — R s.t.
v(a) - 8 + w(a) represents the same prefs for every 6



Convex Environments (2)

Proposition
Assume © = R", u(a, 0) is differentiable in 6, and no type is totally indifferent.

Convex environment and DSCD = wu is 1-dimensional or has affine representation.

m Consider CES prefs: X,0 C R} and
u(z,0) = (z;;l(xi)rei)s + w(x) with 7 € R and s > 0.

m Although % satisfies DSCD, does the induced EU over A = AX?

m If n =1, yes. But when n > 1, if and only if s = 1.



Convex Environments (2)

Proposition
Assume © = R", u(a, 0) is differentiable in 6, and no type is totally indifferent.

Convex environment and DSCD = wu is 1-dimensional or has affine representation.

Conclusion also holds under alternate assumptions

m Prop 5: quasi-linear, differentiable in type, and minimally rich (drop © = R")

Interpretation:
m In rich environments, genuinely multi-dim prefs are unwieldy unless affine

m New perspective on why multi-dim mech design has emphasized affine form

Our exercise only allows changing representation; not redefining types



Conclusion

Convex choice is a valuable property

m characterizes sufficiency of local IC (on all line segments)

other applications: implementability; cheap talk

essentially equiv to a form of single crossing with simple geometric interpretation

® in convex envs with some regularity, “one-dimensional or affine representation”

Another interesting notion: connected choice
m also relevant for sufficiency of local IC (on full type space)

B we view convex choice as more appealing



Thank you!



On Local IC Definition

Definition
Mechanism m : © — A is locally IC if VO € ©, ANy C O s.t.

Vo' € Ny : u(m(0),0) > u(m(6'),0) and u(m(6'),0") > u(m(0),0).

Example

Mechanism [------ @f ====="= N ----- a’------ ]

Our defn is weaker than: 3¢ > 0 s.t. V0 € ©, 3B; s.t.
Vo' € BN O : u(m(h),0) > ulm(d),0).



Implementability

A=Y xR; assume Y finite. Quasilinear prefs: u((y,t),0) = u(y,0) —t
Allocation rule v : © — Y is implementable if 3 7: 0 — R s.t. (v,7) is IC
Which allocation rules are implementable?

Necessary condition is weak (or 2-cycle) monotonicity:

V60,0 : a(v(8),0) — a(v(8),0) > a(v(8),0') — a(v(d),8')

Saks & Yu 2005: weak mon is suff if © convex, Y C R", and u(y,0) =y -0

Proposition

Assume u has convex choice and is continuous in 6. Proof uses result from

Every weakly monotone allocation rule is implementable. Berger, Miieller, Naeemi 2017



