Opinions as Incentives

Yeon-Koo Che Columbia Navin Kartik Columbia and UCSD

UC Berkeley, April 13, 2009

Opinions as Incentives

Introduction: Motivation

- DMs often need advice from others
- A key issue is whom to seek advice from
- Often perceived as beneficial to gather a different opinion
 - Irving Janis (1972) and "groupthink"
 - Competing hypotheses: research, policy debates, ...
 - More broadly: different views generate new insights

- We develop a model to address (some) costs and benefits of difference of opinion
 - abstract from any direct productive benefits

Introduction: Basic Ideas

- What are differences of opinion?
 - Disagreements about how to achieve common goals
 - Common knowledge of heterogeneous beliefs
- DM must take an action: payoff depends upon unknown state
- Adviser is useful because he can learn something about state
- ▶ DM can choose adviser of any opinion (prior), incl. her own
- What kind of adviser will she choose?

Introduction: Basic Ideas

- ► Difference of opinion ⇒ interim conflicts of interest
- Strategic disclosure of information
- Information revelation maximized by a like-minded adviser
 - cost of difference of opinion

- Information must be endogenously acquired
 - costly effort increases chances of observing signal about state
- Differences of opinion provide incentives to acquire information
- More effort from adviser with greater difference of opinion

 DM's choice of adviser must balance the tradeoff: information acquisition vs. disclosure

We show that it is not optimal to have a like-minded adviser

Related Literature

- Strategic disclosure
 - Grossman (1981), Milgrom (1981)
 - Shin (1994, 1998)
- Endogenous info. acq. and disclosure
 - Matthews and Postlewaite (1985), Shavell (1994)
- Benefits of "bias"
 - Calvert (1985)
 - Dewatripont and Tirole (1999)
 - ► Van Den Steen (2004), Gerardi and Yariv (2008)
- ► Gilligan and Krehbiel (1990)

Plan

Model

Disclosure Sub-game

Information Acquisition

Optimality of Difference of Opinion

Discussion

Opinions as Incentives

Model: Basics

- A DM must take a decision, $a \in \mathbb{R}$
- Payoff depends upon unknown state, $\omega \in \mathbb{R}$
- Individual *i*'s prior is that $\omega \sim N(\mu_i, \sigma_0^2)$; wlog $\mu_{DM} = 0$
- μ_i is person *i*'s opinion, common knowledge
- All players have identical vN-M payoffs:

$$u_i(a,\omega) := -(a-\omega)^2$$

 \implies no fundamental preference conflict

Interpretations...

Model: Information

- \blacktriangleright DM can choose a single adviser to advise about ω
- ▶ Pool of potential advisers, with every $\mu \in [\mu, \overline{\mu}] \supsetneq \{0\}$
- \blacktriangleright Chosen adviser exerts costly effort to acquire signal about ω
 - chooses a probability $p \in [0, \bar{p}]$, $\bar{p} < 1$, at cost c(p)
 - $c(\cdot)$ increasing, convex, Inada conditions
 - with prob *p*, observes a signal $s \sim N(\omega, \sigma_1^2)$
 - with prob 1-p, gets no signal, denoted \emptyset
- Effort choice & outcome of 'experiment' unobserved by DM

Model: Advice

- Adviser strategically discloses information to DM
 - signal is verifiable ("hard information")
 - if *s* is observed, only choice is whether to disclose or not
 - if no signal obtained, has no choice to make
- Interpretations...

Model: Timing

Game form:

- 1. DM chooses adviser of type μ
- 2. Adviser chooses p and observes s or \emptyset
- 3. Choice of disclosure
- 4. DM takes action a
- Everything except adviser's effort and information is CK
- Solution concept: (pure) perfect Bayesian Equilibrium

Interim Bias

• B/c quadratic utility, preferred action for player i is

$$\alpha(\boldsymbol{s}|\mu_i) := \mathbb{E}[\omega|\boldsymbol{s},\mu_i] = \rho \boldsymbol{s} + (1-\rho)\mu_i$$

where $\rho := \frac{\sigma_0^2}{\sigma_0^2 + \sigma_1^2}$.

- Difference of opinion creates conflicts
- Define interim bias, $B(\mu) := (1 \rho)\mu$

$$\implies \alpha(s|\mu) = \rho s + B(\mu) = \alpha(s|0) + B(\mu)$$

• Ex-ante bias is just μ

▶ If
$$\mu \neq 0$$
, $sign(B(\mu)) = sign(\mu)$ but $|B(\mu)| < |\mu|$

 \implies disagreement persists, but is mitigated by information

Opinions as Incentives

Introduction

Model

Disclosure Sub-game

Information Acquisition

Optimality of Difference of Opinion

Discussion

Opinions as Incentives

Disclosure Sub-game

- ▶ Disclosure game behavior depends only on (*B*, *p*)
 - only DM's belief about effort matters, not true effort
- We need to characterize the non-disclosure action, a_{\emptyset}
 - if s is disclosed, DM plays $\alpha(s|0) = \rho s$
 - a_{\emptyset} will determine the set of signals withheld by adviser

Disclosure Sub-game: Adviser's BR

Given any non-disc. action, a, BR is to withhold an interval $[\underline{s}, \overline{s}]$:

Disclosure Sub-game: DM's BR

Given a (measurable) non-disclosure region, S, DM's BR is her posterior expectation of ω:

$$a_{N}(p, S) = \rho \mathbb{E}[s | \text{non-disc}]$$
$$= \frac{p\rho \int_{S} s\gamma(s; 0) ds}{p \int_{S} \gamma(s; 0) ds + 1 - p},$$

where $\gamma(s;\mu)$ is density of $N(\mu,\sigma_0^2+\sigma_1^2)$

Note:

- DM uses her opinion about signal, $\mu = 0$
- only DM's belief about p matters
- a_N is increasing in strong set order (when p > 0)

Disclosure Sub-game: Equilibrium

Must have a fixed point of the two BR's

PROPOSITION.

Consider any (B, p) with $p \in (0, \overline{p})$.

- 1. There is a unique equilibrium in the disclosure "sub-game."
- 2. The nondisclosure action $a_{\emptyset}(B, p)$ is zero if and only if B = 0, and is strictly decreasing in B.

 \implies Interim bias leads to strategic witholding

 \implies "Prejudicial effect" (recall: $B(\mu) > 0 \iff \mu > 0$)

Introduction

Model

Disclosure Sub-game

Information Acquisition

Optimality of Difference of Opinion

Discussion

Opinions as Incentives

Information Acquisition: Benchmark

PROPOSITION.

If the probability of acquiring a signal is given exogenously by some fixed p > 0, the DM's utility is strictly decreasing in $|\mu_A|$. In particular, the uniquely optimal type of adviser for the DM is like-minded, i.e. an adviser with $\mu_A = 0$.

Information Acquisition: Equilibrium

Suppose DM expects effort p^e . The MB of exerting effort is

$$\Delta(B(\mu), \mu, p^{e}) := \int_{s \notin S(\cdot)} \left[\underbrace{\left(a_{\emptyset}\left(\cdot\right) - \left(\rho s + B\right)\right)^{2}}_{\text{not observing } s} - \underbrace{B^{2}}_{\text{disclosing } s} \right] \gamma(s; \mu) \, ds$$

Equilibrium requires that MB=MC and belief be correct, so

$$\Delta(B(\mu),\mu,p) = c'(p) \tag{1}$$

LEMMA.

For any μ , p is an equilibrium effort choice if and only if $p \in (0,1)$ and satisfies (1). For any μ , a solution to (1) exists.

REMARK.

Don't rule out multiple equilibrium efforts for given μ ; focus on highest one, denoted $p(\mu)$. Unique solution to (1) for $|\mu|$ small.

Opinions as Incentives

Information Acquisition: Incentivizing Effect

PROPOSITION.

An adviser with a greater difference of opinion acquires a signal with higher probability: $p(\mu') > p(\mu)$ if $|\mu'| > |\mu|$.

INTUITION.

- Suppose information is public: $S(\cdot) = \emptyset$ and $a_{\emptyset}(\cdot) = 0$
- Adviser's expected utility without signal: −Var[ω|∅] − μ²; with signal: −Var[ω|s] − (B(μ))²

Hence, MB of effort is

$$\Delta^{pub}(\mu) = \underbrace{\sigma_0^2 - \tilde{\sigma}^2}_{uncertainty reduction} + \underbrace{\mu^2 - (B(\mu))^2}_{persuasion}$$

• Incentive to persuade increasing in $|\mu|$ (: $B(\mu) = (1 - \rho)\mu$)

Information Acquisition: Incentivizing Effect INTUITION. (CONT'D)

- Now consider covert info acq
- Without signal, expected utility $-Var[\omega|\emptyset] \mu^2 (a_{\emptyset})^2 + 2a_{\emptyset}\mu$
- Adviser always has the choice to disclose any signal, so

$$\Delta(B(\mu), \mu, p^{e}) \geq \Delta^{pri}(\mu, a_{\emptyset}(B(\mu), p^{e}))$$

$$= \underbrace{\sigma_{0}^{2} - \tilde{\sigma}^{2}}_{uncertainty reduction} + \underbrace{\mu^{2} - B^{2}}_{persuasion} + \underbrace{(a_{\emptyset})^{2} - 2a_{\emptyset}\mu}_{avoiding prejudice}$$

- Because of prejudicial effect, $(a_{\emptyset})^2 > 0$, $2a_{\emptyset}\mu < 0$ if $|\mu| > 0$
- Even bigger incentive to acquire information than when public
- Note: when $\mu = 0$ only incentive is uncertainty reduction

Resolving the Tradeoff

PROPOSITION.

There exists some $\mu_A \neq 0$ such that it is strictly better for the DM to appoint an adviser of type μ_A over a like-minded adviser.

INTUITION.

Persuasion effect dominates strategic disclosure locally

If ρ = 1, then for all μ, B(μ) = 0, so full disclosure in communication stage; hence

$$U_{DM}^{\rho=1}(\mu) = -\sigma_0^2(1-p(\mu))$$

Since $p(\cdot)$ strictly incr., $U_{DM}^{\rho=1}(\mu) > U_{DM}^{\rho=1}(0)$

• By continuity, type μ is better for DM than type 0 orall
ho pprox 1

Opinions as Incentives

Numerical Illustration $c(p) = \frac{p^4}{(1-p)^2}, \sigma_0^2 = 15, \sigma_1^2 = 2$

Figure: effort as a function of adviser type

Numerical Illustration $c(p) = \frac{p^4}{(1-p)^2}, \sigma_0^2 = 15, \sigma_1^2 = 2$

Figure: a_{\emptyset} as a function of adviser type

Opinions as Incentives

Figure: DM's ex-ante utility as a function of adviser type

Opinions as Incentives

Numerical Illustration: Comparative Statics $c(p) = \frac{p^4}{(1-p)^2}; \ \rho = \frac{7}{8}, \frac{8}{9}, \frac{9}{10}$

Figure: Comp stats of DM's ex-ante utility as a function of adviser type

Opinions as Incentives

Introduction

Model

Disclosure Sub-game

Information Acquisition

Optimality of Difference of Opinion

Discussion

Delegation Opinions vs. Preferences Other Issues

Delegation

- ► Aghion and Tirole (1997): "initiative" vs. "loss of control"
- Similar logic in Gilligan and Krehbiel's (1987) rationale for closed rules (for extreme but not too extreme committees)
- Our model suggests that delegation can lead to a decrease in initiative

Delegation

- Suppose DM can choose to delegate or communicate with adviser
- Key observation: under delegation, not only is there a loss of control,

but adviser with $\mu \neq 0$ has no incentive to persuade or to avoid prejudice.

PROPOSITION.

Under delegation, it is uniquely optimal for the DM to choose a like-minded adviser. However such an arrangement is strictly worse for the DM than retaining authority and choosing an appropriate adviser with a difference of opinion.

Opinions vs. Preferences

Opinions and Preferences are not isomorphic

 Consider differences in fundamental preferences: type b has vN-M utility

$$u(a,\omega,b) = -(a-\omega-b)^2$$

- ► Conditional on a signal, opinion type µ is identical to a preference type b = B(µ)
 - so prejudicial effect goes through
- But they differ at ex-ante stage

Opinions vs. Preferences: Public Information

- Let adviser type be $(b, \mu) \in \mathbb{R}^2$; normalize DM to (0, 0)
- Ex-ante bias is $b + \mu$; interim bias is $B(b, \mu) = (1 \rho)\mu + b$
- ► For adviser, w/o signal utility is $-\sigma_0^2 (b + \mu)^2$; with signal, $-\tilde{\sigma}^2 (B(b,\mu))^2$

Remark.

If information were public, and advisers only differ in preferences, any adviser exerts the same amount of effort, thus there is no gain to appointing an adviser with a different preference from the DM.

► Under preference bias alone, ex-ante and interim bias are identical ⇒ no persuasion motive Opinions vs. Preferences: Public Information

 But *interacting* opinion and preference is useful when there is some difference of opinion or preference

$$MB = \underbrace{\sigma_0^2 - \tilde{\sigma}^2}_{\text{uncertainty reduction}} + \underbrace{\left(2\rho - \rho^2\right)\mu^2}_{\text{persuasion}} + \underbrace{\left(1 + \rho\right)b\mu}_{\text{reinforcement}}.$$

- ▶ Reinforcement \implies if b > 0, appoint someone with $\mu > 0$ (zealot) rather than $\mu < 0$ (skeptic)
- Intuition
 - concavity
 - should expect to move DM towards $b + \mu$

Opinions vs. Preferences: Private Information

- Because of the prejudicial effect under strategic disclosure, preference bias nevertheless has an incentivizing effect when info acq is covert (Proposition 5 in paper)
- Incentivizing effect and strategic disclosure loss are of same order of magnitude around 0: locally, bias may or may not be beneficial
- But globally, bias can be beneficial

Opinions vs. Preferences: Private Information $c(p) = \frac{p^2}{1-p}, \sigma_1^2 = 1, \sigma_0^2 = 0.5$

Figure: DM's ex-ante utility as a function of adviser's preference bias

Opinions as Incentives

Other Issues

- Richer models of information acquisition and communication
 - Precision enhancing effort + manipulation
 - Confirmatory bias
 - Uncertain quality of signal
- Selecting a "biased" DM
- Monetary payment
- Soft information
- Multiple advisers

Thank you!

Confidence

- Suppose all advisers have µ_A = 0 but now vary in beliefs about signal precision
- ▶ The DM has $\rho_{DM} \in (0,1)$, can choose an adviser with any $\rho_A \in [0,1]$
- $\rho_A > \rho_{DM}$ is overconfidence; $\rho_A < \rho_{DM}$ is underconfidence
- ▶ Here no ex-ante bias; but still interim bias when $\rho_A \neq \rho_{DM}$
 - given signal s, adviser wants action ρ_As, whereas the DM would take action ρ_{DM}s
- What type of adviser would DM choose? Note: no persuasion motive

Confidence

PROPOSITION.

If advisers are distinguished only by confidence, ρ_A , the DM uniquely prefers to appoint a maximally overconfident adviser, i.e. one with $\rho_A = 1$ who believes that his signal is perfectly informative.

INTUITION.

- Consider $\rho_A \ge \rho_{DM}$: there is a full disclosure eqm independent of effort
 - if DM plays a_∅ = 0, optimal for adviser to fully disclose, because he weights signal higher than DM
 - if adviser fully discloses, optimal for DM to play $a_{\emptyset} = 0$

Confidence

PROPOSITION.

If advisers are distinguished only by confidence, ρ_A , the DM uniquely prefers to appoint a maximally overconfident adviser, i.e. one with $\rho_A = 1$ who believes that his signal is perfectly informative.

INTUITION.

- Consider $\rho_A \ge \rho_{DM}$: there is a full disclosure eqm independent of effort
 - if DM plays a_∅ = 0, optimal for adviser to fully disclose, because he weights signal higher than DM
 - if adviser fully discloses, optimal for DM to play $a_{\emptyset} = 0$
- So only motivation is uncertainty reduction: but this is increasing in overconfidence