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1 Introduction

A fundamental role of voting is to aggregate private information. The “Jury Theorem”

first proposed by Condorcet (1785) illustrates this idea. Consider a society which needs

to select one of two mutually exclusive alternatives. All members of the society share the

same preferences, but have different information regarding which of the two alternatives

is better. The Jury Theorem states that under majority rule, groups of voters are more

likely to take the correct decision than any single individual; moreover, as the number of

voters grows, the probability of the collective decision being correct approaches one.

In its original statistical formulation, this result and subsequent extensions (e.g. Berg

1993; Ladha, 1992) implicitly rely on one important behavioral assumption: voters will

mechanically reveal their private information through their vote. This has come to be

known as informative voting. More recently, starting with the seminal work of Austen-

Smith and Banks (1996), Feddersen and Pesendorfer, (1996), and Myerson (1998), schol-

ars have argued that such behavior may be inconsistent with Nash Equilibrium behavior,

or strategic voting. In particular, a rational voter should condition on being pivotal, i.e.

vote under the presumption that her vote actually matters in deciding the outcome of

the election, taking into full account any information that this hypothesis reveals. Un-

der general conditions, mechanically revealing one’s information—informative voting—is

inconsistent with pivotal or strategic voting.

This suggests that different assumptions on voting behavior can lead to very differ-

ent conclusions. Indeed, Feddersen and Pesendorfer (1998) show how strategic voting

may have surprising implications. In the context of jury procedures, the authors find

that, contrary to the standard intuition, unanimity rule for conviction may not be the

optimal way of protecting the innocent. They prove the following result: when vot-

ers behave strategically and use symmetric strategies, if a jury is large enough, then a

unanimous verdict requirement will be worse than some other voting rules with regards

to both the probability of acquitting a guilty defendant and convicting an innocent one.

Therefore, the authors suggest that in order to avoid “the terrible consequences of con-

victing an innocent [...], it would be better to combine a supermajority rule with a larger

jury”(Feddersen and Pesendorfer, 1998, p. 31).

The main objective of our paper is to offer a new perspective on the previous results.

Following the above literature, we focus on situations where all voters have homogeneous

preferences under complete information; hence, the only role of voting is to aggregate

information. Our point of departure is to assume that prior to the voting game, a

fictitious social planner or mechanism designer has to select an aggregation rule for a
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given group of voters. The designer’s goal is to maximize the expected welfare of the

voters, or more generally, society. The question we are interested in is: would different

voting rules be chosen depending on the (ex-ante) beliefs about how voters would behave

under each rule? In other words, do different assumptions about voters’ behavior imply

different optimal voting rules?

We address this question in a framework that generalizes the canonical model of the

literature. Specifically, while we maintain a simple structure with a binary state of the

world (Guilt or Innocence in the jury context) and binary private signals, we permit

signals to be conditionally correlated across voters, and for voters to be informationally

asymmetric in the sense that some voters could have more precise information than oth-

ers.1 In this setting, we show that for a variety of assumptions regarding how voters

behave—including the aforementioned polar cases where either all voters vote strategi-

cally or all voters vote informatively—a benevolent mechanism designer would (uniquely)

choose the same voting rule. In particular, this demonstrates that even though strategic

voting can dramatically affect voters’ behavior under an arbitrarily chosen voting rule, it

does not generate different implications for institutional design relative to the traditional

presumption of informative voting.

The logic behind our result is simple. It is well-known that there are no direct

incentive conflicts in a setting with homogeneous preferences (McLennan, 1998). Thus,

if voting informatively under some voting rule achieves full information aggregation—i.e.

for every profile of private information, the outcome is the same as what would be optimal

under complete information—it is an equilibrium for all voters to vote informatively in

a voting game where all voters are fully strategic and the designer has chosen the above

voting rule (Austen-Smith and Banks, 1996).

We build on this insight by making three observations. First, full information ag-

gregation is feasible in the environments usually considered.2 Second, while previous

authors have focussed on the cases where either all voters are naive or there is common

knowledge of strategic voting, these polar cases are unnecessarily restrictive. In particu-

lar, we allow for a range of uncertainty, both on the part of the mechanism designer and

the voters themselves, about whether any voter is non-strategic or strategic, and also

consider the possibility of bounded-rationality in the form of level-k thinkers of hetero-

geneous sophistication (Stahl and Wilson, 1995; Nagel, 1995). Finally, we show that in

1Other extensions, such as relaxing the binary structure of private information (even to a continuum,
as in Duggan and Martinelli, 2001), also are possible; we discuss these in the conclusion.

2In general, what this requires is that the vote space for each voter be at least as large as her signal
space; as already noted, the focus of literature is on a binary signal and vote space.
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our informational environment, the only way full information aggregation is achieved is if

the designer chooses a unique voting rule and all voters vote informatively—without one

or the other, full information aggregation fails. Our results directly follow from these

observations.

To sum up, the purely theoretical aspect of our contribution is mild: it consists

of recognizing that in a two-signal, two-option environment, there is a unique way to

obtain full information aggregation under quite general conditions. Yet, we believe

that taking a mechanism design approach offers a new and interesting perspective on

existing results in the Condorcet literature. Within the canonical environment considered

here, a policymaker’s choice of an optimal voting rule is completely unaffected by her

knowledge or ignorance of game-theoretic insights, so long as she shares the preferences

of the homogeneous electorate. In our view, this illustrates how strong the assumption

of commonly known homogeneous preferences is. For game-theoretic insights to have

interesting implications for the design of optimal voting rules, heterogeneous and/or

uncertain preferences are key (e.g., Chwe, 1999; Gerardi, 2001).

2 Theoretical Framework

For expositional purposes, we maintain the terminology of jury decision making, although

it should be clear that the model has applications to various committees, boards, and

other group decision problems where voting is the means of aggregating private informa-

tion.

Voting Environment. There is a set N = {1, . . . , N} of N ≥ 1 jurors who must

decide to either acquit or convict a defendant. The defendant is either guilty (G) or

innocent (I). Jurors are unsure whether the defendant is guilty or not: the true state

of the world ω ∈ {G, I} is unobservable. There is a common prior over the states.

Each juror gets a private signal that may reveal some information about the true state.

Specifically, a juror j gets a binary signal, sj ∈ {i, g}, where i indicates a signal for

innocence and g indicates a signal for guilty. Denote the profile of signals for all jurors

by s = (sj)
n
j=1; as usual, we use s−j to denote the profile of signals for all voters except

j. We assume that the distribution of signals has full support, i.e. there is positive

probability that each signal profile is realized.

After privately observing her signal, each juror casts a vote to either acquit or convict

the defendant. The profile of N votes determines a collective outcome of either conviction

(C) or acquittal (A), via a voting or aggregation rule. We describe a voting rule, V ,
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as a collection of distinct subsets of N , such that the collective outcome is C if and

only if the set of voters who vote to convict is some X ∈ V .3 We restrict attention to

monotonic voting rules, where if ∅ 6= X ∈ V and X ⊆ Y , then Y ∈ V . Note that a

voting rule, V , need not treat all jurors symmetrically or anonymously. For example,

juror 1 is a dictator if V = {X : 1 ∈ X}. The simple anonymous majority rule is the

case of V = {X : |X| > N
2
}; unanimity rule for conviction is the case of V = {N}; V = ∅

means that regardless of the vote profile, the outcome is acquittal; and so forth.

Preferences. Our focus is on situations where jurors have homogeneous preferences

over the collective outcome and the true state of the world, in the sense that were

all information about the state public, there would be no disagreement among voters

about the optimal decision. Specifically, we assume there exists a parameter q ∈ (0, 1)

such that every voter’s preferences can be represented by the following utility function:

u(A, I) = u(C, G) = 0; u(C, I) = −q; and u(A, G) = −(1 − q).4 Thus, if a guilty

defendant is convicted or an innocent defendant is acquitted, the payoff to any voter is

0. The payoffs to the two possible erroneous decisions are −q and −(1− q) respectively.

The parameter q can be interpreted as a threshold of reasonable doubt: society wants

to convict (resp. acquit) the defendant if the probability of guilt is greater (resp. lower)

than q.5

Information. To describe the information structure, some notation is helpful. Let

β (X) be the posterior on ω = G when the set X ⊆ N of voters receive guilty signals,

and all voters in N \X receive innocent signals. Given a profile of signals, s, let Γ (s)

denote the set of voters who have guilty signals in s. Let D (s) denote a socially optimal

decision if the signal profile is s, i.e. D (s) = C if β (Γ (s)) > q and D (s) = A if

β (Γ (s)) < q. We make the following minimal assumptions.

A1. [Monotonicity ] if X ⊆ Y then β (X) ≤ β (Y ).

3This precludes aggregation rules that involve randomness given a profile of votes. However, as will
be clear from the subsequent analysis, our conclusions would not change even if we permitted such rules,
because an optimal voting rule will never involve randomness in our setting.

4While we assume it for simplicity, it is not important for our results that that the parameter q be
identical across all votes. We could permit an idiosyncratic qj for each voter j, so long as all qj ’s are
“sufficiently close”.

5If the probability of guilt is p, the expected utility from conviction is −q(1−p), whereas the expected
utility from acquittal is −(1 − q)p. Conviction is strictly preferred if −q(1 − p) > −(1 − q)p, which is
equivalent to p > q.
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A2. [Non-Degeneracy ] β (N ) > q > β (∅).

A3. [Genericity ] For every X ⊆ N , β (X) 6= q.

A4. [Relevance] For every j ∈ N , there exists some s−j such that D (g, s−j) = C whereas

D (i, s−j) = A.

(A1) embodies a natural monotonicity condition: holding all other signals constant,

if a juror receives a guilty signal rather than an innocent signal, the (common) posterior

on the defendant’s guilt should not decrease. (A2) simply rules out situations where

jurors prefer to always acquit or always convict, regardless of the profile of signals; in

such cases there is no information aggregation problem. (A3) is a genericity assumption:

it says that regardless of the profile of signals, the posterior is never exactly q. Since

there are only a finite number of signal profiles, it is clear that this must hold for almost

all prior/signal distribution combinations. Lastly, (A4) requires that each juror be

informationally relevant in the sense that for some profile of signals of the other jurors,

the collective preference for conviction or acquittal (under complete information) should

be responsive to her signal. We find this reasonable because a juror who is not relevant

in this sense can simply be dropped from the jury altogether.

All of these assumptions are satisfied by Austen-Smith and Banks (1996), Feddersen

and Pesendorfer (1998), and other papers in the jury literature: typically, jurors are

ex-ante symmetric and receive signals that are independent conditional on the state of

the world. In contrast, we permit conditional correlation of signals. This is appealing

because it is often reasonable that jurors form their individual opinions having observed

at least some of the same information. Moreover, our assumptions allow voters to be

asymmetric with regards to the precision of their signals: it could be that whenever voter

1 receives a guilty signal, society’s preferred decision no longer depends on the signals

of all the remaining N − 1 voters. Such asymmetries apply to many committee con-

texts where, while all members have useful information, some members have far greater

expertise than others, reflected by the precision of their private information.

Behavior. The traditional, non-game-theoretic approach is to assume that a voter

simply votes informatively, i.e. votes to convict if she observes sj = g and votes to acquit

if she observes sj = i.6 The standard game-theoretic alternative is to assume common

knowledge of fully strategic behavior. We define a game that spans these polar cases.

6 Throughout, our focus is on comparing strategic voting with informative voting, which we refer to
as naive behavior. A different kind of naivety would be to always vote sincerely, where a juror votes for
the best alternative conditioning only on her own signal and the prior. It is common to assume that
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After the state of the world ω and private signals sj have been determined, Nature

draws a type for each voter, tj ∈ T ≡ {naive, strategic}, resulting in a profile t = (tj)
n
j=1.

While strategic voters aim to maximize their utility taking as given the strategy of the

other players, naive voters simply vote informatively, as assumed in the early Condorcet

literature; We assume a common prior, τ , of an arbitrary probability distribution over

the set of profiles, TN .7 Each voter j only observes his type tj.

In this Bayesian game, a (possibly mixed) strategy for a voter j can be represented by

a pair of mappings from signals to probability of convicting, one for the case her type is

tj = naive and one for the case her type is tj = strategic. Because of our interpretation

of tj = naive, we can simplify matters and represent a strategy for voter j as a single

mapping σj : {i, g} → [0, 1], which maps her signal into a probability of voting to convict

when tj = strategic. When tj = naive, we require the voter to vote informatively, i.e.

use the mapping σinf where σinf (i) = 0 and σinf (g) = 1. Accordingly, when referring to

a voter’s strategy hereafter, we refer to her play when strategic. A profile of strategies

is denoted by σ = (σj)
N
j=1. An equilibrium refers to a Bayesian Nash equilibrium (BNE)

of this game. As is common in voting games, there will often by multiple equilibria;

we will assume below that the best possible BNE (maximizing the utility of all players)

is played.8 Pareto dominance seems a reasonable selection criterion, particularly since

preferences are homogeneous.

3 Optimal Voting Rules

Suppose that a fictitious mechanism designer is considering the choice of a voting rule to

maximize ex-ante expected utility (since agents have common preferences, the problem

is unambiguous). The question she must consider is how the jurors will behave given

a chosen voting rule. We can capture this in our framework through the probability

distribution τ on the set TN . For example, if the mechanism designer believes that all

voters are strategic, then he believes that voters will play a game where τ puts all mass

on the profile t = {strategic, . . . , strategic}. Similarly, if he believes that all voters are

naive, this is the case of τ being degenerate on t = {naive, . . . , naive}. More generally,

sincere and informative voting coincide, i.e. if there were only one juror, then she should convict if she
receives a guilty signal, and acquit if she receives an acquit signal. With this assumption, all references
to informative voting in what follows can be replaced with sincere voting.

7As will be clear from the analysis, this can also be weakened quite a bit, because beliefs and higher
order beliefs about t will play no role in our conclusions.

8We use the terminology “the best possible” somewhat loosely: if there is more than one BNE that
maximizes utility, any of them can be considered.
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the framework allows for each voter to be naive with some independent probability, or

even for there to be some correlation in the strategic sophistication of (an arbitrary subset

of) voters, etc.9

The question we are interested in is: does it matter what beliefs the designer has

about voters’ behavior? Formally, we formulate the question as follows. For any type

distribution τ and any aggregation rule, V , let U(V, τ) denoted the ex-ante expected

utility in the game defined by V and τ when voters play an optimal BNE of this game.

That is,

U(V, τ) = max
σ

EU(V, σ; τ) subject to σ being a BNE given V and τ ,

where EU(V, σ; τ) is the ex-ante expected utility when the voting rule is V , the type

distribution is τ , and voters play the profile σ (recall, this means that voter j plays σj if

strategic, and votes informatively if not). Given his belief, τ , the mechanism designer’s

problem is to choose an aggregation rule, V , to solve

max
V

U(V, τ). (1)

Among others, Austen-Smith and Banks (1996) and Feddersen and Pesendorfer (1998)

have shown that for arbitrary voting rules, strategic jurors’ behavior at an (optimal)

BNE may be quite different from the behavior anticipated by a designer who believes

that they are all naive. In our language, their point is that if τ 6= τ ′, then for arbitrarily

chosen V , U(V, τ) 6= U(V, τ ′). Accordingly, the maximization program in (1) certainly

changes as τ is varied. However, this does not imply that designers with different views

about τ would select distinct voting rules, as we now demonstrate.

Theorem 1. There exists V ∗ such that, for any τ , the unique solution to maximization

problem (1) is V ∗.

The intuition is simple. First, by choosing the voting rule appropriately, full infor-

mation aggregation can be achieved when all voters vote informatively: this defines V ∗.

Second, if the designer chooses V ∗, then because naive voters are voting informatively, the

unique optimal BNE consists of all strategic voters voting informatively as well. Third,

for any τ , no other voting rule can achieve full information aggregation, regardless of how

voters behavior.

Formally, Theorem 1 is proved by the following three Lemmas.

9For example, perhaps there is some identifiable characteristic that determines strategic sophistica-
tion, such as education.
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Lemma 1. There exists a unique voting rule, V ∗, such that if all signals were public, the

socially optimal decision is to convict if and only if Γ (s) ∈ V ∗. Moreover, ∅ /∈ V ∗ and

N ∈ V ∗.

Proof. Immediate consequence of Assumptions (A1)–(A3).

Lemma 2. For any τ , if the voting rule is V ∗, it is a BNE for all jurors to vote infor-

matively, achieving the first-best outcome for every signal profile realization.

Proof. By the definition of V ∗, if all jurors vote informatively under V ∗, first-best out-

comes are achieved for every signal profile realization. Since jurors have homogeneous

preferences, no juror has a profitable deviation given this strategy profile.

Lemma 3. Suppose V 6= V ∗. Then, regardless of the strategy profile played, there exists

a profile of signals that occurs with positive probability for which the socially optimal

outcome is not attained with positive probability.

Proof. Fix a V 6= V ∗, and consider any strategy profile, σ. It suffices to show that there

is a signal profile for which the socially optimal outcome is not attained with positive

probability, since all signals profiles have positive probability of being realized. There

are two cases:

1. Every strategic voter votes informatively. Then all voters are voting informatively.

There are two possibilities: either there exists an X ∈ V such that X /∈ V ∗, or

there exists an X ∈ V ∗ such that X /∈ V . In either case, the signal profile s where

Γ(s) = X results in an outcome—conviction in the first case and acquittal in the

second—that is not socially optimal given s.

2. Not every strategic voter votes informatively. Let n be a voter who is not voting

informatively (when strategic). Let s−n be a profile such that D (g, s−n) = C and

D (i, s−n) = A; this exists by Assumption (A4). If V and σ−n are such that given

s−n, there is positive probability that the outcome is independent of n’s vote, then

since the socially optimal decision given s−n depends non-trivially on sn, there is

positive probability that the socially optimal decision is not achieved for the profile

s = (sn, s−n), for any sn ∈ {i, g}. So suppose that V and σ−n are such that

given s−n, the outcome is determined by n’s vote with probability 1. Since the

voting mechanism, V , is monotonic, a vote by n to convict (resp. acquit) must

lead to the outcome of conviction (resp. acquittal), holding fixed s−n and σ−n.

But because n is not voting informatively, either σn(i) > 0 or σn(g) < 1. In the
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first (resp. second) case, there is positive probability of not achieving the socially

optimal outcome when the signal profile is s = (i, s−n) (resp. s = (g, s−n)).

Let us relate Theorem 1 to the previous literature. Both Austen-Smith and Banks

(1996) and Mclennan (1998) have noted that a population of fully strategic voters have

no incentive to deviate from a strategy profile that attains the first best. (In our

notation, this is the case of the distribution τ putting point mass on the type profile

t = {strategic, . . . , strategic}.) Lemma 2 extends this logic to arbitrary τ ’s. In addition,

Lemma 3 shows that full information aggregation cannot be achieved unless voters reveal

their information and the voting rule efficiently aggregates their reports, a combination

that only be attained under a unique voting rule, regardless of τ .

Communication. At this point, it is appropriate to discuss the role of communication—

or lack thereof—in our model. In many contexts, such as large elections, communication

between all voters may simply be infeasible; similarly, communication can be quite costly

even in small group settings. Nevertheless, some institutions, such as juries, do combine

communication and voting. Coughlan (2000) points out that under homogeneous pref-

erences, a round of cheap talk prior to voting can insure efficient information aggregation

under any voting rule, so long as voters are strategic. This can be interpreted as a re-

sult about the “irrelevance of voting rules” under strategic voting and communication.10

Theorem 1 says quite the opposite: without communication, it establishes uniqueness of

optimal voting rule, for a variety of possible voting behavior. One may therefore wonder

whether the result unravels once communication is introduced.

While there is a conceptual question of what it means for voter to behave naively in

the presence of communication, a natural benchmark is to suppose that she continues to

vote informatively at the voting stage. Then, it is not hard to see that the irrelevance

of voting rules result is knife-edged because it relies on the parameter x in our model

being exactly equal to 0. Formally, regardless of the assumptions made on behavior in

the communication stage, Theorem 1 extends for any x ∈ (0, 1]. The reason is that the

mere possibility of even one voter voting naively suffices for the logic behind Theorem

1 (in particular, Lemma 3) to have force, regardless of how much information sharing

voters engage in during communication.

Boundedly Rational Voters. A burgeoning recent literature on strategic but non-

equilibrium behavior, step-level reasoning or level-k models (e.g., Stahl and Wilson, 1995;

10Gerardi and Yariv (2006) prove a rather general result along these lines.
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Nagel, 1995; Crawford, 2003), explores the idea that players in games belong to one of

a hierarchy of decision-rules or types. These types are distinguished by the level of

sophistication they embody: type Lk for k > 0 anchors its beliefs in a non-strategic L0

type and adjusts them via thought-experiments with iterated best responses: L1 best

responds to L0, L2 to L1 and so forth. L1 and all higher types are rational in the sense

that they best respond to their beliefs: the departure from equilibrium is that rather

than having accurate beliefs about the decision-rules of all other players, a Lk type (for

k > 0) simply behaves as would be optimal when all other players are L(k − 1) types.

In our context, it is natural to specify the anchoring type, L0, as informative voting.11

Let the vector {p0, p1, . . . , } denote (a designer’s beliefs about) the distribution of Lk

types in the population, i.e. pk represents the probability of type Lk.

Theorem 2. For any Lk type distribution, {p0, p1, . . .}, the unique voting rule that max-

imizes ex-ante expected utility is V ∗.

Proof. Fix any {p0, p1, . . .}. Observe that under V ∗, type L1 plays informatively, since if

all other voters are voting informatively, it is a unique best response to vote informatively

under V ∗. By induction, all types vote informatively. Thus, V ∗ achieves full information

aggregation, and is an optimal voting rule. That V ∗ is uniquely optimal follows from

the same argument as that of uniqueness in Lemma 3.

The proof of the Theorem makes it clear that this result would hold under numerous

variations. For example, the same argument works if there are Lk types who do not

simply best respond to a belief that all others are of type L(k − 1), but rather, best

respond to an arbitrary conjecture distribution over all L0, ..., L(k − 1) types in the

population. This implies that Theorem 2 also holds when agents belong to a cognitive

hierarchy (Camerer, Ho, and Chung, 2004). Similarly, a “sophisticated” type who best

responds to the true population distribution of Lk types can also be accommodated.

4 Concluding Remarks

Strategic voting may differ from informative voting in complex and surprising ways under

arbitrary voting mechanisms. However, our results demonstrate that the two notions

11An alternative specification used in experimental literature is to have the L0 types play a completely
random action. Our result does not extend to such a specification. However, the choice of how to best
specify L0 is a situation-specific matter (see the discussion in Crawford and Iriberri, 2006), and at this
point it is not clear which one of the two specifications is more appropriate in voting games.
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may not generate different implications for the design of optimal voting rules. If a

policy maker believes that the voting game satisfies the assumptions of Section 2—which

subsumes the focus of the previous literature—then her recommendation for design will

be completely unaffected by her knowledge (or ignorance) of game-theoretic insights. In

particular, if unanimity rule is the optimal voting rule from the point of view of “naive”

policy maker, who ignores strategic voting, then it is also the optimal voting rule for a

“sophisticated” designer, who believes that voters will behave strategically.

Although it may appear that this conclusion contradicts Feddersen and Pesendorfer’s

(1998, p. 31) finding that “in large juries the unanimity rule is inferior to a variety of

other rules”, this is not the case. It is crucial to recognize that because they assume

that the threshold for reasonable doubt, q, is strictly between 0 and 1, no institution

designer will find it optimal to choose unanimity rule when the jury size is large enough,

regardless of the designer’s beliefs about the fraction of naive jurors. Our result says that

for a given jury size, the choice of the optimal voting rule is invariant to beliefs about the

fraction of naive and strategic jurors. Since a naive designer will not choose unanimity

rule for large jury sizes, neither will a sophisticated designer. A useful implication of

our results is that even when solving the joint problem of choosing both an optimal jury

size and an optimal voting rule (say, when there is a fixed cost of adding an additional

juror to the jury), the designer can simply assume that jurors behave naively. Given the

mixed evidence on voters’ actual behavior (e.g. Guarnaschelli, McKelvey, and Palfrey,

2000), this is a striking and perhaps reassuring result.

Does the main result of this paper extend to more general environments? As men-

tioned in the introduction, only one feature of the model is crucial: voters have homoge-

neous preferences.12 As long as this condition holds, our basic insight is robust to various

voting environments. In particular, the naive designer still chooses a voting rule that

is also optimal for the sophisticated designer if mistrials are allowed (Coughlan, 2000),

or when voters receive more than two signals (Duggan and Martinelli, 2001).13 The

reason is that in all these cases, homogeneous preferences imply that informative voting

is a Nash equilibrium under the naive designer’s optimal voting rule. Conversely, it is

also the case that in any of these generalized settings, any optimal voting rule for the

12Recall, however, from fn. 4 that a little heterogeneity in the thresholds of reasonable doubt among
voters does nothing to upset the arguments presented here. When discussing non-homogeneous prefer-
ences, we mean “sufficiently heterogeneous” preferences.

13In this setting with more than two signals, the appropriate notion is that voters choose their vote
from a set at least as large as the signal space, and that the mechanism designer chooses amongst all
possible mappings from the profile of votes to final decisions.
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sophisticated designer induces the same mapping from signal profiles to final decisions

as the optimal rule for the naive designer does. Therefore, the main message regarding

the equivalence between the two designer’s choices continues to apply, albeit in weaker

form.

If voters have heterogeneous preferences, then the basic logic underlying the main

insight of this paper no longer holds. In such a setting, the revelation principle for

mechanism design still guarantees that there exists an optimal mechanism for the so-

phisticated designer in which all voters are asked to vote informatively—i.e. disclose

their signal truthfully—and it is a Nash equilibrium for them to do so. However, this

mechanism would in general not map the revealed signals into the ex-post optimal de-

cision for the designer. Accordingly, it will typically be the case that a naive designer

(incorrectly) expects a higher ex-ante utility under a different mechanism, viz. the one

that maps revealed signals into the ex-post optimal decisions.

We believe that our results demonstrate in a very transparent manner that impos-

ing homogeneous preferences, though a common practice in the previous literature, is

an extremely strong restriction. Once it is imposed, fundamental differences in voters’

behavior become irrelevant for the choice of optimal voting rules.
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