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SELECTING CHEAP-TALK EQUILIBRIA

BY YING CHEN, NAVIN KARTIK, AND JOEL SOBEL1

There are typically multiple equilibrium outcomes in the Crawford–Sobel (CS)
model of strategic information transmission. This paper identifies a simple condition
on equilibrium payoffs, called NITS (no incentive to separate), that selects among CS
equilibria. Under a commonly used regularity condition, only the equilibrium with the
maximal number of induced actions satisfies NITS. We discuss various justifications for
NITS, including perturbed cheap-talk games with nonstrategic players or costly lying.
We also apply NITS to other models of cheap talk, illustrating its potential beyond the
CS framework.

KEYWORDS: Cheap talk, babbling, equilibrium selection, almost-cheap talk.

1. INTRODUCTION

IN THE STANDARD MODEL of cheap-talk communication, an informed Sender
sends a message to an uninformed Receiver. The Receiver responds to the
message by making a decision that is payoff relevant to both players. Talk is
cheap because the payoffs of the players do not depend directly on the Sender’s
message. Every cheap-talk game has a degenerate, “babbling” equilibrium out-
come in which the Sender’s message contains no information, and, on the equi-
librium path, the Receiver’s response is equal to her ex ante optimal choice.

Crawford and Sobel (1982) (hereafter CS) fully characterized the set of equi-
librium outcomes in a one-dimensional model of cheap talk with conflicts of in-
terest. CS demonstrated that there is a finite upper bound, N∗, to the number
of distinct actions that the Receiver takes with positive probability in equilib-
rium, and that for each N = 1� � � � �N∗, there is an equilibrium in which the
Receiver takes N actions. In addition, when a monotonicity condition holds,
CS demonstrated that for all N = 1� � � � �N∗, there is a unique equilibrium out-
come in which the Receiver takes N distinct actions with positive probability,
and the ex ante expected payoffs for both Sender and Receiver are strictly

1This paper supersedes portions of Chen’s (2007b) “Perturbed Communication Games with
Honest Senders and Naive Receivers” and Kartik’s (2005) “Information Transmission with
Almost-Cheap Talk.” We are grateful to Vince Crawford for encouraging us to write this pa-
per and to David Eil, Sidartha Gordon, Sjaak Hurkens, Melody Lo, John Morgan, various sem-
inar audiences, and three anonymous referees for comments. We thank Steve Matthews for
making available an old working paper of his. For advice and support related to this research,
Chen and Kartik are indebted to their respective dissertation supervisors David Pearce, Stephen
Morris, and Dino Gerardi (Chen), and Doug Bernheim and Steve Tadelis (Kartik). For finan-
cial support, Kartik and Sobel thank the National Science Foundation, and Sobel also thanks
the Guggenheim Foundation and the Secretaría de Estado de Universidades e Investigación del
Ministerio de Educación y Ciencia (Spain). For hospitality and administrative support, Kartik is
grateful to the Institute for Advanced Study at Princeton, and Sobel is grateful to the Departa-
ment d’Economia i d’Història Econòmica and Institut d’Anàlisi Econòmica of the Universitat
Autònoma de Barcelona.
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increasing in N . The equilibrium with N∗ actions is often called the most in-
formative equilibrium2 and is typically the outcome selected for analysis in ap-
plications.

Ex ante Pareto dominance is not a compelling equilibrium-selection crite-
rion, especially because it is necessarily the case in the CS model that different
Sender types have opposing preferences over equilibria.3 There has been some
interest in developing alternative selection arguments for this model. Evo-
lutionary arguments (e.g., Blume, Kim, and Sobel (1993)) have only limited
ability to select equilibria, essentially because there are conflicts of interest
between different Sender types. Standard equilibrium refinements based on
Kohlberg and Mertens’ (1986) strategic stability—even those, like Banks and
Sobel (1987) and Cho and Kreps (1987), that have been especially designed
for signaling games—have no power to refine equilibria in cheap-talk games.
Since communication is costless, one can support any equilibrium outcome
with an equilibrium in which all messages are sent on the equilibrium path,
so arguments that limit the set of out-of-equilibrium beliefs have no power to
refine. Farrell (1993) developed a variation of belief-based refinements that
does select equilibria in cheap-talk games. Farrell assumed that there are al-
ways unused messages and that, if certain conditions are met, these messages
must be interpreted in specific ways. His notion of neologism-proof equilib-
ria does refine the set of equilibria in CS’s games. Unfortunately, neologism-
proof equilibria do not generally exist and no outcome satisfies the criterion in
the leading (quadratic preferences, uniform prior) CS example when there are
multiple equilibrium outcomes.4

This paper identifies a novel criterion to select equilibria in CS (and related)
cheap-talk games. The criterion we pose is called NITS, for no incentive to sep-
arate, and is formally defined in Section 3. An equilibrium satisfies NITS if the
Sender of the lowest type weakly prefers the equilibrium outcome to credibly
revealing his type (if he somehow could). This has the effect of imposing a
constraint on the payoff to the lowest type of Sender, in addition to the usual
incentive constraints for equilibrium. We show that equilibria satisfying NITS
always exist in CS games and the criterion is selective; in particular, if the CS
monotonicity condition holds, only the most informative equilibrium outcome
survives.

In Section 4, we discuss the appeal of NITS. After some intuitive arguments,
we provide formal justifications by considering perturbed versions of the CS

2This terminology is misleading because adding actions typically does not lead to a refinement
in the Receiver’s information partition.

3If there are multiple equilibrium outcomes, one type always receives his most preferred action
in the babbling equilibrium.

4The related proposal of announcement-proofness by Matthews, Okuno-Fujiwara, and Postle-
waite (1991) also eliminates all of the equilibria in CS’s leading example when there are multiple
equilibrium outcomes, whereas Rabin’s (1990) concept of credible rationalizability eliminates
none of them.
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model. We study two perturbations: one where both the Sender and Receiver
may be “nonstrategic,” in which case they tell the truth and believe the mes-
sage is truthful, respectively; the other where the Sender incurs a “lying cost”
of misreporting his type. In each case, we examine pure-strategy equilibria
of perturbed games that satisfy an appropriate monotonicity condition. We
prove that as the perturbation goes to zero these equilibria must converge to
cheap-talk equilibria that satisfy NITS. If one believes that cheap-talk equi-
libria should be robust to such kinds of perturbations (and accepts the other
conditions), then this provides a distinct argument from ex ante Pareto domi-
nance for selecting the most informative equilibrium in common applications.

Section 5 concludes by applying NITS to some other models of cheap talk.

2. THE MODEL

We follow the development of Crawford and Sobel (1982), but modify their
notation. There are two players: a Sender (S) and a Receiver (R); only S
has private information. The Sender’s private information or type, t, is drawn
from a differentiable probability distribution function, F(·), with density f (·),
supported on [0�1]. S has a twice continuously differentiable von Neumann–
Morgenstern utility function US(a� t),5 where a ∈ R is the action taken by R
upon receiving S’s signal. The Receiver’s twice continuously differentiable von
Neumann–Morgenstern utility function is denoted by UR(a� t). All aspects of
the game except t are common knowledge.

We assume that for each t and for i = R�S, denoting partial derivatives by
subscripts in the usual way, Ui

1(a� t) = 0 for some a and Ui
11(·) < 0, so that

Ui has a unique maximum in a for each t, and that Ui
12(·) > 0. For each t

and i = R�S, ai(t) denotes the unique solution to maxa Ui(a� t). Assume that
aS(t) > aR(t) for all t. For 0 ≤ t ′ < t ′′ ≤ 1, let ā(t ′� t ′′) be the unique solution to
maxa

∫ t′′
t′ UR(a� t)dF(t). By convention, ā(t� t)= aR(t).

The game proceeds as follows. S observes his type, t, and then sends a mes-
sage m ∈ M to R, where M is any infinite set. R observes the message and then
chooses an action, which determines players’ payoffs. A pure-strategy (perfect
Bayesian) equilibrium consists of a message strategy µ : [0�1] → M for S, an
action strategy α :M → R for R, and an updating rule β(t |m) such that

for each t ∈ [0�1]� µ(t) solves max
m

US(α(m)� t)�(1)

for each m ∈ M� α(m) solves max
a

∫ 1

0
UR(a� t)β(t |m)dt�(2)

5In CS, US(·) also depends on a bias parameter which measures the differences in the pref-
erences of R and S. We suppress this parameter because we are not primarily interested in how
changing preferences influences equilibria.
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and β(t | m) is derived from µ and F from Bayes’ rule whenever possible.
The restriction to pure-strategy equilibria is without loss of generality for our
purposes.6 We say that an equilibrium with strategies (µ∗�α∗) induces action a
if {t :α∗(µ∗(t))= a} has positive prior probability.

CS demonstrated that there exists a positive integer N∗ such that for every
integer N with 1 ≤ N ≤ N∗, there exists at least one equilibrium in which
the set of induced actions has cardinality N and, moreover, there is no equi-
librium that induces more than N∗ actions. An equilibrium can be charac-
terized by a partition of the set of types, t(N) = (t0(N)� � � � � tN(N)) with
0 = t0(N) < t1(N) < · · · < tN(N) = 1 and signals mi, i = 1� � � � �N , such that
for all i = 1� � � � �N − 1,

US(ā(ti� ti+1)� ti)−US(ā(ti−1� ti)� ti)= 0�(3)

µ(t) =mi for t ∈ (ti−1� ti]�(4)

and

α(mi)= ā(ti−1� ti)�(5)

Furthermore, all equilibrium outcomes can be described in this way.7 In an
equilibrium, adjacent types pool together and send a common message. Con-
dition 3 states that Sender types on the boundary of a partition element are in-
different between pooling with types immediately below or immediately above.
Condition 4 states that types in a common element of the partition send the
same message. Condition 5 states that R best responds to the information in
S’s message.

CS made another assumption that permits them to strengthen this result.
For ti−1 ≤ ti ≤ ti+1, let

V (ti−1� ti� ti+1)≡US(ā(ti� ti+1)� ti)−US(ā(ti−1� ti)� ti)�

A (forward) solution to (3) of length k is a sequence {t0� � � � � tk} such that
V (ti−1� ti� ti+1)= 0 for 0 < i < k and t0 < t1.

DEFINITION 1: The monotonicity (M) condition is satisfied if for any two
solutions to (3), t̂ and t̃ with t̂0 = t̃0 and t̂1 > t̃1, we have t̂i > t̃i for all i ≥ 2.

6Our assumptions guarantee that R’s best responses will be unique, so R will not randomize in
equilibrium. The results of CS (specifically, their Theorem 1) demonstrate that S can be assumed
to use a pure strategy and, moreover, only a finite number of messages are needed.

7One caveat is in order. There can be an equilibrium where type 0 reveals himself and is just
indifferent between doing this and sending a signal that he is in the adjacent step. We ignore this
equilibrium, since the set of actions it induces is identical to those in another equilibrium where
type 0 instead pools with the adjacent step. This is why equilibria can be characterized by a strictly
increasing sequence that solves (3) and the boundary conditions.
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Condition (M) is satisfied by the leading “uniform-quadratic” example in
CS, which has been the focus of many applications. CS proved that if condition
(M) is satisfied, then there is exactly one equilibrium partition for each N =
1� � � � �N∗, and the ex ante equilibrium expected utilities for both S and R are
increasing in N .

3. THE NITS CONDITION

We are now ready to define the condition that plays the central role in this
paper.

DEFINITION 2: An equilibrium (µ∗�α∗) satisfies the no incentive to separate
(NITS) Condition if US(α∗(µ∗(0))�0)≥US(aR(0)�0).

NITS states that the lowest type of Sender prefers his equilibrium payoff to
the payoff he would receive if the Receiver knew his type (and responded op-
timally). We postpone a discussion of NITS to the next section. In this section
we show that the condition has the power to select among CS equilibria.

We present three results, ordered in decreasing level of generality. The first
result shows that the equilibria with the maximum number of induced actions
satisfy NITS. It also shows that if the babbling equilibrium survives NITS, then
all equilibria do. The second result refines this insight under the assumption
that there is exactly one equilibrium partition with N induced actions for each
N between 1 and N∗. Under this assumption, there exists an N̂ such that the
equilibria that satisfy NITS are precisely those with at least N̂ actions induced.
The final proposition makes the stronger assumption that condition (M) is sat-
isfied; in this case, only the (unique) equilibrium outcome with N∗ induced
actions survives NITS. Combined, the results demonstrate that imposing NITS
is compatible with the existence of equilibrium and that NITS selects equilibria
that are commonly studied in applications.

PROPOSITION 1: If an N-step equilibrium fails to satisfy NITS, then there exists
an (N + 1)-step equilibrium. Moreover, if an equilibrium satisfies NITS, then so
will any equilibrium with a shorter first segment.

Consequently, every equilibrium with N∗ induced actions satisfies NITS and
there is at least one equilibrium that satisfies NITS.

PROOF OF PROPOSITION 1: We first prove that if an equilibrium does not
satisfy NITS, then there exists an equilibrium with more induced actions. Sup-
pose that t̃ = (t̃0� � � � � t̃N) is an equilibrium partition. We claim that if the equi-
librium does not satisfy NITS, then for all n = 1� � � � �N , there exists a solution
to (3), tn, that satisfies tn0 = 0, tnn > t̃n−1, and tnn+1 = t̃n. The proposition follows
from the claim applied to n =N . We prove the claim by induction on n.
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Since the partition t̃ does not satisfy NITS, it follows that V (0�0� t̃1) < 0.
On the other hand, V (0� t̃1� t̃1) > 0, because ā(0� t̃1) < aR(t̃1) < aS(t̃1). Con-
tinuity implies that there exists x1 ∈ (0� t̃1) such that V (0�x1� t̃1) = 0� Setting
t1
0 = 0� t1

1 = x1, and t1
2 = t̃1 proves the claim for n = 1.

Suppose the claim holds for all positive integers up to some k, where k<N .
We must show that it holds for k+ 1. Since t̃ is a solution to (3) and k <N , it
follows that

V (t̃k−1� t̃k� t̃k+1)= US(ā(t̃k� t̃k+1)� t̃k)−US(ā(t̃k−1� t̃k)� t̃k)= 0�(6)

Using (6), US
11 < 0, and

ā(t̃k−1� t̃k) < aR(t̃k) < aS(t̃k)�(7)

we see that ā(t̃k� t̃k+1) > aS(t̃k)� By the induction hypothesis, tkk > t̃k−1 and
tkk+1 = t̃k. Therefore, ā(tkk � t

k
k+1) ∈ (ā(t̃k−1� t

k
k+1)�a

R(tkk+1)). It follows from (7)
that

US(ā(t̃k−1� t̃k)� t̃k) < US(ā(tkk � t
k
k+1)� t

k
k+1)�(8)

From (6) and (8) it follows that V (tkk� t̃k� t̃k+1) < 0. Since V (tkk� t̃k� t
k
k+1) > 0, we

conclude that there is a unique xk+1 ∈ (tkk+1� t̃k+1) such that V (tkk� t
k
k+1�xk+1) =

0. That is, it is possible to find a solution to (3) in which the (k+ 1)st step ends
at tkk+1 and the (k+ 2)nd step ends at xk+1 < t̃k+1. By continuity, we can find a
solution to (3) whose (k+ 1)st step ends at any t ∈ (tkk+1�1). For one such t the
(k+ 2)nd step will end at t̃k+1. This proves the claim.

To prove the second part of the proposition, suppose that an equilibrium
with initial segment [0� t1] satisfies NITS. Consequently, Sender type 0 weakly
prefers ā(0� t1) to aR(0). Since US(·) is single peaked, ā(0� t) is increasing in t,
and ā(0�0) = aR(0), it follows that Sender type 0 will weakly prefer ā(0� t) to
aR(0) for all t ∈ [0� t1]. Q.E.D.

PROPOSITION 2: If there is only one equilibrium partition with N induced ac-
tions for any N ∈ {1� � � � �N∗}, then there exists N̂ ∈ {1� � � � �N∗} such that an equi-
librium with N actions satisfies NITS if and only if N ≥ N̂ .

This means that under the assumption, a set of low-step equilibria does not
satisfy NITS and the complementary set of high-step equilibria does.

PROOF OF PROPOSITION 2: Consider a family of solutions t(x) = (t0(x)�
t1(x)� � � � � tK(x)(x)) to (3) that satisfy t0(x) = 0 and t1(x)= x and such that there
exists no t ∈ [tK(x)�1] such that V (tK(x)−1� tK(x)� t) = 0. It can be verified that
K(·) has range {1� � � � �N∗}, changes by at most one at any discontinuity, and
if x is a discontinuity point of K(·), tK(x)(x) = 1, so that x is the first segment
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boundary of a (K(x))-step equilibrium partition. Since K(1) = 1, it follows
that if K(t) = N , then for each N ′ ∈ {1� � � � �N}, there is at least one equilib-
rium of size N ′ with first segment boundary weakly larger than t. This implies
that under the assumption of the proposition, if t is a first segment boundary
of an N-step equilibrium partition, no t ′ > t can be the first segment bound-
ary of a (N + 1)-step equilibrium. Consequently, an (N + 1)-step equilibrium
has a shorter first segment than an N-step equilibrium. The desired conclusion
follows from Proposition 1. Q.E.D.

PROPOSITION 3: If condition (M) is satisfied, only the unique equilibrium par-
tition with the maximum number of induced actions satisfies NITS.

PROOF: We show that if the equilibrium partition with N steps satisfies
NITS, then there is no equilibrium with N + 1 steps. Suppose that t̃ = (t̃0 =
0� � � � � t̃N = 1) is an equilibrium partition. It follows that t̃ satisfies (3). If the
equilibrium satisfies NITS, V (0�0� t̃1) = US(ā(0� t̃1)�0) − US(aR(0)�0) ≥ 0.
This implies that a vector t̂ that solves (3) with t̂0 = t̂1 = 0 must satisfy t̂2 ≥ t̃1
and, by (M), t̂n ≥ t̃n−1 for all n ≥ 1. Thus, t̂ can have no more than N + 1 steps.
Using (M) again, any vector t that solves (3) with t0 = 0 < t1 satisfies tn > t̂n
for all n > 0. Consequently, no such vector t can satisfy tN+1 = 1, which is the
desired result. Q.E.D.

The above results demonstrate that while NITS is most powerful when Con-
dition (M) is satisfied, the criterion may reduce the set of equilibrium out-
comes even when (M) fails, although not necessarily to a singleton. We illus-
trate this point in a discrete version of the model. Suppose that preferences are
Ui(a� t) = −(a − t − bi)2, where bR = 0 and bS ∈ (0�1/4), and the prior prob-
ability of types 0, 1/2, and 1 is 1/3 each. There are at least three equilibrium
outcomes: a babbling outcome in which R takes the action 1/2; a semipooling
outcome in which t = 0 reveals itself and induces action 0, while the other types
pool together and induce action 3/4; and a fully revealing outcome. Both the
semipooling and fully revealing outcomes satisfy NITS, whereas the babbling
outcome does not.8

4. DISCUSSION AND JUSTIFICATIONS

The previous section demonstrated that imposing NITS selects among
cheap-talk equilibria. A basic intuition for NITS comes from standard sig-
naling models. Consider signaling models, like game-theoretic versions of the

8For completeness, we note that when bS < 1/8, there is also a semipooling equilibrium in
which t = 1 reveals itself and induces action 1, while the other types pool together and induce
action 1/4. This equilibrium fails NITS. Moreover, because this is a discrete example, there are
also equilibria in which one or more of the two lower Sender types induce multiple actions with
positive probability.
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canonical Spence (1973) model, in which signals are costly, S’s preferences are
monotonic in R’s optimal actions, and R’s action is monotonically increasing in
S’s type. It is natural to think of the lowest type (t = 0) of S as the worst type: no
other type would want to be thought of as the lowest type and the lowest type
would prefer to be thought of as any other type over itself. In this situation,
interpreting an unsent message as coming from t = 0 is the least restrictive
off-the-path belief. Any equilibrium outcome will remain an equilibrium out-
come if one interprets unsent messages as coming from the lowest type. For
this reason, NITS is always satisfied in Spencian models.

NITS would also hold in any equilibrium of a cheap-talk game in which S’s
preferences are strictly increasing in R’s action, because in this case aR(0) is the
type 0 Sender’s least-preferred action. These games are not interesting, how-
ever, because the only equilibrium outcome is uninformative. Yet even when
one assumes only that aS(t) > aR(t) for all t (as in CS), S always prefers to
reveal her type rather than be treated like the lowest type. Therefore, inter-
preting out-of-equilibrium messages as coming from the lowest type imposes
what appears to be a weak restriction on the Receiver’s behavior.

The first subsection below discusses the implications of NITS for out-of-
equilibrium actions, and relates NITS to Farrell’s (1993) notion of neologism-
proofness. The second subsection points out that NITS will be satisfied if one
endows the Sender with seemingly innocuous verifiable signals. The next two
subsections study perturbations of the cheap-talk game and show that NITS
holds in these perturbed games within a class of equilibria, and that it is inher-
ited in the limit as the perturbations vanish. The final subsection discusses how
NITS may also be obtained by placing restrictions on feasible strategies, as in
Lo (2006).

4.1. Novel Messages and Actions

Belief-based refinements of cheap-talk games require that the Sender can
induce some novel actions by using novel messages. That is, these refinements
assume that it is possible to induce actions that are not taken in equilibrium
by using messages not sent in equilibrium. Every equilibrium outcome in CS
that satisfies NITS can be supported by an equilibrium in which almost all
types have a unique best response. In these equilibria, the Receiver responds
to novel messages with an action in a (possibly degenerate) interval of aR(0).
On the other hand, in an equilibrium that violates NITS, any rationalizable Re-
ceiver action that is not induced in equilibrium is strictly preferred by a positive
measure of types to the action they induce in equilibrium. This implies that
a CS outcome that violates NITS can only be generated by equilibria where
the range of R’s equilibrium strategy function is the set of induced actions.
Hence, in non-NITS equilibria, novel messages cannot trigger novel actions.
Intuitively, it is possible to have flexible interpretations of messages only when
NITS holds.
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Perhaps the best known belief-based refinement for cheap-talk games is Far-
rell’s (1993) notion of neologism-proofness. Unfortunately, existence is not
guaranteed by this criterion, which makes it problematic. Nevertheless, it is
easily shown that CS equilibria which do not satisfy NITS are not neologism-
proof.

PROPOSITION 4: An equilibrium that fails NITS is not neologism-proof.

The proof in the Appendix shows that if an equilibrium does not satisfy
NITS, there is some t ′ > 0 such that [0� t ′] is a self-signaling set, that is, if R
interprets the message “my type is in [0� t ′]” literally and best responds to it,
then it is precisely the types in [0� t ′] that gain by sending the message relative
to the equilibrium. It is on this basis that Farrell would reject an equilibrium
that fails NITS. We note, however, that since Farrell rejects equilibria that con-
tain any self-signaling sets, he also often rejects equilibria that do satisfy NITS,
because one can also typically find self-signaling sets of the form [t�1].

4.2. Verifiable Information

Consider augmenting the CS game with a set of verifiable messages. In gen-
eral, verifiable information could drastically affect the set of equilibrium out-
comes. However, given that the basic incentive conflict in the game is that S
desires to convince R that his type is higher than it actually is, it would seem
innocuous to allow S to prove that his type is no greater than his true type.
Specifically, suppose that in the message space M there exist subsets of mes-
sages Mt such that only S types with t ′ ≤ t can send messages in Mt . One can
imagine that the sets Mt are strictly decreasing, so that there are simply more
things that low types can say.9 In this environment, type t = 0 can reveal his
identity by sending a message that is in M0 but not in Mt for any t > 0. Type
t = 0 would use such a message to destabilize any equilibrium that fails NITS.
However, an equilibrium that survives NITS would survive the existence of this
type of verifiable message. R could, for example, interpret any verifiable mes-
sage as coming from t = 0.

Allowing “downward verifiability” therefore has the effect of imposing
NITS, because it adds no new equilibrium outcomes and eliminates all equilib-
ria that do not satisfy NITS. Given this effect, it is natural to ask what happens
when, instead, the Sender can prove that his type is no lower than it really is.
In this case, every cheap-talk equilibrium unravels. The t = 1 Sender would

9It is not difficult to find applications that fit this framework. For example, a committee (the
Sender) that deliberates behind closed doors may always want the public (the Receiver) to believe
that it deliberated somewhat longer than it actually does. Since it can stay in its chambers for as
long as it likes, even after completing deliberations, it is impossible for it to prove that it actually
did deliberate for the entire period up to the moment it announces its decision. Nevertheless, the
announcement of its decision puts an upper bound on how long it deliberated.
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prove his type and improve his payoff (because aS(1) > aR(1) > a for all ac-
tions a induced in equilibrium) and by induction, all types would reveal them-
selves in equilibrium. This is the standard intuition from disclosure models
(e.g., Grossman (1981), Milgrom (1981)).

The reason for the asymmetry is clear. When aS > aR it is (locally) more
desirable for S to try to inflate his type. Augmenting the message space with
verifiable messages that are available only to higher types substantially changes
the game because these extra messages make it impossible for S to exaggerate.
On the other hand, given the direction of incentives to mimic, it is unexpected
that S can gain from convincing R that his type is lower than it really is—but
this is, in fact, the case in equilibria that violate NITS. Put differently, the fact
that NITS has power to refine equilibria demonstrates that, in fact, sometimes
S would like R to believe that his type is lower than she thinks it is in equilib-
rium. This happens when the lowest type of Sender is pooling with a large set
of higher types.

4.3. Nonstrategic Players

Assume that the message space is M = [0�1], so that a message m may be
interpreted as being a statement that the Sender’s type is t = m. We introduce
the possibility that players may be nonstrategic: with independent probabilities,
θ > 0 and λ > 0, respectively, the Sender is an honest type who always tells
the truth, that is, sends m = t, and the Receiver is a nonstrategic type who
responds to a message as if it were truthful, that is, plays a= aR(m). Otherwise
the players act fully strategically and are called the dishonest Sender and the
strategic Receiver. This structure is common knowledge.

This perturbation induces a signaling game between the dishonest Sender
and the strategic Receiver, where messages are not cheap talk. We refer the
interested reader to Chen (2007b) for a detailed analysis of this model in the
leading example of CS with uniform prior and quadratic preferences. She tack-
led existence and characterization of “message-monotone” equilibria—pure
strategy (perfect Bayesian) equilibria where the dishonest Sender’s strategy is
weakly increasing in his type—for arbitrary θ > 0 and λ > 0.10 Our interest
here concerns the limit of any such sequence of equilibria as the perturbations
vanish.

PROPOSITION 5: As θ�λ → 0, the limit of any convergent sequence of message-
monotone equilibria of the game with nonstrategic players satisfies NITS.

The proof is in the Appendix. It shows that NITS holds in any message-
monotone equilibrium when θ > 0 and λ > 0; consequently, the property holds

10She showed that even when the dishonest Sender uses a weakly increasing strategy, the exis-
tence of the honest Sender creates nonmonotonicities in the strategic Receiver’s strategy.
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in any limit of these equilibria. We note that some monotonicity restriction on
equilibrium strategies in the perturbed game is necessary for this result.11 In
particular, consider a version of the CS game in which the type, message, and
action spaces are all finite and preferences are quadratic loss functions. One
can show that any equilibrium of the unperturbed game is the limit of equilib-
ria (violating message monotonicity) in the perturbed game. More generally,
any equilibrium outcome in this case is an element of a strategically stable
component in the sense of Kohlberg and Mertens (1986).

4.4. Costly Lying

We now consider a direct payoff perturbation to CS, motivated by the notion
that the Sender may have a preference for honesty. As before, assume the
message space is M = [0�1]. The game is identical to CS, except for Sender
payoffs, which are given by US(a� t) − kC(m� t), with k > 0. The function C
is continuous, and for all t, C(m� t) is strictly decreasing in its first argument
at m< t and strictly increasing in its first argument at m> t. This is naturally
interpreted as a cost of lying for the Sender, minimized by telling the truth
(e.g., C(m� t) = |m − t|). Plainly, when k = 0, the game is one of cheap talk,
but not so for any k> 0.

In such a model, with some more assumptions on the lying cost struc-
ture, Kartik (2007) studied the existence and characterization of “monotone
equilibria,” which are pure strategy (perfect Bayesian) equilibria where the
Sender’s strategy is weakly increasing in type—message monotonicity—and
the Receiver’s strategy is weakly increasing in the observed message—action
monotonicity.12 While he studies arbitrary k > 0, we are interested here in the
limit as lying costs vanish.

PROPOSITION 6: As k → 0, the limit of any convergent sequence of monotone
equilibria of the game with costly lying satisfies NITS.

The proof is in the Appendix. It shows that when k is sufficiently small, any
monotone equilibrium must satisfy NITS; consequently, NITS is inherited in
any limit of these equilibria. The restriction to monotone strategies plays an
significant role in our proof of the proposition. In general, we do not know
whether NITS can be violated in the limit of some sequence of nonmonotone
equilibria as k→ 0.

11Conversely, monotonicity of strategies alone is not sufficient to make a selection; some per-
turbation is also needed. In particular, in CS, one can generate all equilibrium outcomes with
equilibria where both Sender and Receiver use monotone strategies.

12Message monotonicity implies action monotonicity on the equilibrium path. Monotone equi-
libria also feature action monotonicity off the equilibrium path. Kartik (2005) showed that the
ensuing proposition only requires message monotonicity and a weak form of action monotonicity
off the equilibrium path. His analysis also showed that under some assumptions on the lying cost
function, action monotonicity implies message monotonicity in equilibrium.
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4.5. Restrictions on Strategies

In deriving NITS from the above perturbations, monotonicity of strate-
gies is an equilibrium refinement. In contrast, Lo (2006) imposed stronger
monotonicity restrictions directly on strategies in a variation of the CS cheap-
talk game and showed that these restrictions also yield NITS under iterated
admissibility. The restrictions that Lo placed are meant to describe limitations
imposed by the use of a “natural language.” She assumed that the message
space is equal to the action space, which we assume are both [aR(0)�aR(1)].13

This does not restrict the set of equilibrium outcomes, but does makes it possi-
ble to associate messages with their recommendations about Receiver actions,
that is, a message m is interpreted as a recommendation to take action a = m.
Lo made two restrictions on the strategies available to the Receiver. The first is
that if a Receiver’s strategy α(·) ever induces the action a, then R interprets the
message a literally (i.e., if there exists m such that α(m) = a, then α(a) = a).
This restriction is considerably stronger than the monotonicity assumptions we
use in the perturbations considered earlier, and indeed this property is not sat-
isfied in the equilibria studied by Chen (2007b) and Kartik (2007). The second
restriction is that the set of messages that induce a particular action is convex.
These restrictions imply action monotonicity: α(·) is weakly increasing. In turn,
this implies that S also uses a message-monotone strategy: µ(·) is weakly in-
creasing. Lo’s assumptions further guarantee an “absolute meaning” property:
if two messages induce different actions, then the action induced by the higher
(resp. lower) message is larger (resp. smaller) than the literal interpretation
of the lower (resp. larger) message. Formally, if m1 <m2 and α(m1) �= α(m2),
then α(m2) >m1 and α(m1) <m2.

In this framework, Lo demonstrated that under condition (M), iterative
deletion of weakly dominated strategies implies that any remaining strategy
profile induces at least N∗ actions from the Receiver (recall that N∗ is the size
of the maximal-step CS partition, which is the only CS outcome that satisfies
NITS under (M)).

The key observation is that in Lo’s model, because of message monotonicity,
weak dominance rules out any strategy for the Sender in which types close to 1
do not play the highest message m = aR(1).14 Now suppose babbling does not
satisfy NITS (in which case N∗ > 1, by Proposition 1). Then because of action
monotonicity and the absolute meaning property, sending messages ā(0�1)
weakly dominates sending any m> ā(0�1) for all types close to 0.15 It is then it-
eratively dominated for the Receiver to respond to messages ā(0�1) and aR(1)

13Formally, Lo analyzed a discretized model, but this is not essential to the ensuing discussion.
14Similarly, types close to 1 send the highest available message in Chen (2007b) and Kartik

(2007).
15This is true because absolute meaning says that if the Receiver plays a strategy that takes

different actions for messages m1 = ā(0�1) and m2 > ā(0�1), then α(m2) > ā(0�1). By action
monotonicity, α(m1) < α(m2). Since babbling violates NITS, type 0 and close enough types
strictly prefer action α(m1) to action α(m2).



SELECTING CHEAP-TALK EQUILIBRIA 129

with the same action, which proves that any undeleted strategy for the Re-
ceiver must play at least two actions. Lo refined this argument to show that the
Receiver must play at least N∗ actions. Since her solution concept is iterated
admissability rather than equilibrium, the Receiver may play even more than
N∗ actions.

5. APPLICATIONS

We have formally defined the NITS condition only for the class of cheap-talk
games that satisfy the assumptions of CS. To extend the definition, one needs a
general notion of lowest type. In some applications, the identity of the lowest
type is not clear.16 Formulating NITS for such models is left to future research.
Instead, in this section we describe two examples where the definition of the
lowest type is clear and NITS can select equilibria as it does in the CS model.17

5.1. Veto Threats

Matthews (1989) developed a cheap-talk model of veto threats. This model
frequently has two distinct equilibrium outcomes—one uninformative and one
informative—and, we will show that under certain conditions, the natural
adaptation of NITS selects the informative outcome.

There are two players in Matthews’ model: a Chooser (C) and a Proposer
(P). The players have preferences that are represented by single-peaked util-
ity functions which we take to be of the form −(a − bi)2, where a ∈ R is the
outcome of the game and bi ∈ R is an ideal point for player i = P�C. The Pro-
poser’s ideal point bP = 0 is common knowledge. The Chooser’s ideal point
is bC = t, where t is his private information, drawn from a prior distribution
that has a smooth positive density on a compact interval, [t� t̄]. The game form
is simple: the Chooser learns his type, then sends a cheap-talk signal to the
Proposer, who responds with a proposal, followed by which the Chooser either
accepts or rejects the proposal. Accepted proposals become the outcome of
the game. If the Chooser rejects the proposal, then the outcome is the status
quo point s = 1.18 When all Chooser types are at least 1, the game is trivial (the

16For example, Gordon (2007) studied a variation of the CS model in which he permits aS(t)=
aR(t) for some t. This model allows the possibility of “inward bias” where aS(0) > aR(0) and
aS(1) < aR(1), so that there are two candidates for the type that no other type wishes to imitate.

17The examples that follow have one-sided private information, as in CS. In a model with two-
sided private information, Chen (2007a) showed that informative equilibria satisfy NITS and that
the babbling equilibrium satisfies NITS only if it is the unique equilibrium outcome.

18In the final stage of the game, the Chooser decides to accept or reject a proposal under com-
plete information. By replacing this decision by the optimal choice, one can reduce Matthews
model to a simple Sender–Receiver game, where the Chooser plays the role of Sender and the
Proposer that of Receiver. This game does not satisfy the assumptions of Crawford and Sobel’s
(1982) model, however. In particular, the Proposer’s preferences are not continuous in the Pro-
poser’s strategy.
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status quo will be the final outcome). When all Chooser types prefer 0 to s, the
game is trivial (the final outcome will be 0). We rule out these trivial cases by
assuming that t < 1 and t̄ > 1

2 . Matthews allowed more general preferences and
prior distributions. Only the uniqueness result below depends on the quadratic
specification of preferences. Matthews also used a different normalization of
bP and s that has no substantive effect on the analysis.

As usual in cheap-talk games, this game has a babbling outcome in which
the Chooser’s message contains no information and the Proposer makes a sin-
gle, take-it-or-leave-it offer that is accepted with probability strictly between 0
and 1. Matthews showed there may be equilibria in which two outcomes are
induced with positive probability (size-two equilibria), but size n > 2 (perfect
Bayesian) equilibria never exist. In a size-two equilibrium, P offers her ideal
outcome to those types of C whose message indicates that their ideal point is
low; this offer is always accepted in equilibrium. If C indicated that his ideal
point is high, P makes a compromise offer that is sometimes accepted and
sometimes rejected. Size-two equilibria only exist if t prefers bP = 0 to s = 1,
that is, t < 1

2 .
The NITS condition requires that one type of informed player do at least

as well in equilibrium as it could if it could fully reveal its type. In CS, we
imposed the condition on the lowest type, t = 0. It makes sense to apply the
condition on the lowest type in Matthews’ model as well. Intuitively, this is
because higher types have more credible veto threats since the status quo is
higher than the Proposer’s ideal point and higher types like higher outcomes.
Formally, let aP(t) be the action that the Proposer would take if the Chooser’s
type were known to be t.19 In CS, when t ′ > t, Sender t ′ strictly prefers aR(t ′)
to aR(t); when t ′ < t, Sender t ′ may or may not prefer aR(t) to aR(t ′), but there
always exists a t ′ < t with such preferences. In Matthews, when t ′ > t, Chooser
t ′ weakly prefers aP(t ′) to aP(t). The preference is strict if t ′ > 0. When t ′ < t,
Chooser t ′ may or may not prefer aP(t) to aP(t ′), but if t ′ ∈ (0�1), there always
is such a type t. Hence in both models there is a natural ordering of types
in which there is greater incentive to imitate higher types than lower types.
In such an environment, there are few strategic reasons to prevent the lowest
type from revealing itself, so the NITS condition is weakest when applied to
the lowest type.

Consequently, we say that an equilibrium in Matthews’ model satisfies NITS
if the lowest type of Chooser, type t, does at least as well as he would if he
could reveal his type. Note that if the type-t Chooser reveals his type, then
he will receive a payoff that is the maximum generated from the status quo
option, s = 1, and the Proposer’s favorite outcome, bP = 0. Thus, if a size-two
equilibrium exists, it will satisfy NITS, because, as we observed earlier, in such

19The Proposer will offer her favorite outcome if the Chooser prefers this to the status quo,
and offer something that leaves the Chooser indifferent to accepting the offer or the status quo
otherwise.
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an equilibrium type t will implement 0, whereas he can always implement 1.
(This is an analog of our result that CS equilibria with the maximal number of
actions will satisfy NITS.)

Furthermore, if a size-one equilibrium fails to satisfy NITS, then a size-
two equilibrium must exist. (This is analogous to Proposition 1 for the CS
model.) To see this, note that any Chooser can guarantee the status quo out-
come in equilibrium. Therefore, if a size-one equilibrium fails to satisfy NITS,
the Chooser t must strictly prefer 0 to the offer made by the Proposer in
the size-one equilibrium. Now for each t consider the preferences of a type-
t Chooser who must select either 0 or the Proposer’s optimal offer given that
the Chooser’s type is at least t. By assumption, when t = t, this Chooser prefers
0. On the other hand, the proposal is preferable when t = t̄. (If t̄ < 1, then this
proposal is in (0� t̄); if t̄ ≥ 1, then this proposal can be taken to be 1.) Let ã(t ′)
be a proposal that is optimal for the Proposer given that t ∈ [t ′� t̄]. Continuity
implies that there exists a t̃ such that t̃ is indifferent between 0 and the pro-
posal given t ∈ [t̃� t̄]. Hence there exists a size-two equilibrium in which types
below t̃ send a message that induces the proposal 0.

Finally, under some conditions, the size-one equilibrium only satisfies NITS
when no size-two equilibrium exists. (This is analogous to Proposition 3 for
the CS model.) It is straightforward to check that a size-one equilibrium never
satisfies NITS if t ≤ 0. If t prefers 1 to 0, then no size-two equilibrium exists.
The interesting case is when t > 0 prefers 0 to 1 and prefers the outcome in a
size-one equilibrium to 0. A size-two equilibrium will fail to exist under these
conditions if

t prefers aP(t) to 0 implies t ′ > t prefers aP(t ′) to 0�(9)

This property need not hold without making further assumptions on prefer-
ences and the prior distribution, but it appears to be a monotonicity condition
similar to condition (M) from CS. While it is possible to derive a sufficient
condition for (9), it is not especially instructive. Instead, we simply assert that
it holds when preferences are quadratic and the prior is uniform.20

Finally, we note that neologism-proof outcomes (Farrell (1993)) often fail
to exist in Matthews’ model.21 We omit the straightforward, but tedious, con-
struction of the required self-signaling sets; the interested reader may refer to
Matthews (1987). Lack of existence of neologism-proof equilibria in the model
of veto threats parallels the lack of existence of neologism-proof outcomes in
the CS model.

20In this case aP(t) = (2t − 1 + √
(2t − 1)2 + 3)/3 since it is the solution to max−(t̄ − c) −

a2(c − t) subject to c − a = 1 − c. One can check that aP(t) > t. Hence aP(t) is preferred to 0 if
2t > aP(t) and condition (9) holds because 2t − aP(t) is increasing.

21For Matthews’ model, we say that an equilibrium outcome is neologism-proof if there is no
set of types T with the property that T is the set of types that strictly prefer the Proposer’s optimal
proposal when she knows that the Chooser’s type lies in T to the equilibrium payoffs.
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5.2. Signaling among Relatives

John Maynard Smith introduced the Sir Philip Sidney game to study sig-
naling between related animals. The basic game is a two-player game with
two-sided incomplete information and allows the possibility of costly com-
munication. We describe how NITS can select a communicative outcome in
a cheap-talk, one-sided incomplete information version of the model, based
on Bergstrom and Lachmann (1998).

The Sender’s type t is his fitness, which is private information to the Sender
and is drawn from a density f (·) supported on [0�1]. After observing his
type, the Sender sends a message m to the Receiver. The Receiver must then
decide whether to transfer a resource to the Sender. If the Receiver trans-
fers the resource, the Sender’s direct benefit is 1, while the Receiver’s di-
rect benefit is y ∈ (0�1). If the Receiver does not transfer the resource, the
Sender’s direct benefit is t, while the Receiver’s direct benefit is 1. Total fit-
ness is the weighted sum of a player’s direct benefit and the benefit of the
other, weighted by k ∈ (0�1].22 Consequently, if a transfer is made with prob-
ability 1 − a, then US(a� t) = (1 − a)(1 + ky) + a(t + k), while UR(a� t) =
a(1 + kt) + (1 − a)(y + k). All aspects of the model except t are common
knowledge.

This model does not satisfy the strict concavity assumption of CS, but
otherwise is analogous, and it shares the property that optimal complete-
information actions are (weakly) increasing in t. Provided that y+k> 1, which
we assume to avoid triviality, both players benefit from (resp. are hurt by)
transfers when t is low (resp. high), but the Sender prefers transfers for more
values of t than the Receiver. Hence, in contrast to CS, the Sender likes weakly
lower values of a than the Receiver for all t; accordingly, it is appropriate to
apply NITS at t = 1. Since R prefers not to have a transfer of the resource
when t = 1, an equilibrium satisfies NITS if and only if it induces a = 1 when
t = 1.

By the linearity of preferences, there can be at most two actions induced in
equilibrium. Define

τ∗ := y

k
+ 1 − 1

k
�(10)

The Receiver finds it uniquely optimal to set a = 0 if E[t|m] < τ∗, uniquely
optimal to set a= 1 if E[t|m]> τ∗, and is indifferent over all a otherwise.

As usual, a babbling equilibrium always exists. The babbling equilibrium sat-
isfies NITS if and only if E[t] ≥ τ∗. If an equilibrium with two induced actions
exists, there must be a cutoff type, t1 ∈ (0�1), such that t1 is indifferent be-
tween receiving or not receiving the transfer, which defines t1 = 1 − k(1 − y).

22In the biological context, k is the degree to which the players are related. In an economic
context, k could be viewed as an altruism parameter.
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Further, optimality of the Receiver’s play requires that E[t|t < t1] ≤ τ∗ and
E[t|t > t1] ≥ τ∗. The latter inequality necessarily holds, since by simple alge-
bra, t1 ≥ τ∗. Hence a two-step equilibrium exists if and only if

E[t|t < 1 − k(1 − y)] ≤ τ∗�(11)

By the optimality of Receiver’s play, if a two-step equilibrium exists, it satisfies
NITS. Plainly, if the one-step equilibrium fails NITS, then a two-step equilib-
rium exists. If the one-step equilibrium satisfies NITS, a two-step equilibrium
may or may not exist, depending on the prior density f (·). This conclusion is
analogous to Proposition 1.23
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APPENDIX

PROOF OF PROPOSITION 4: We need to show that an equilibrium fail-
ing NITS has a self-signaling set. Suppose that NITS fails at the equilib-
rium (µ∗�α∗) whose partition has first segment [0� t1]. Then US(aR(0)�0) >
US(α∗(µ∗(0))�0), which implies that α∗(µ∗(0)) > aS(0). Since α∗(µ∗(0)) <
aS(t1), continuity implies that there is a t̃ ∈ (0� t1) such that aS(t̃) = α∗(µ∗(0)).
Thus, US(ā(0� t̃)� t̃) < US(α∗(µ∗(0))� t̃) and, by continuity, there exists t ′ ∈
(0� t̃) such that

US(ā(0� t ′)� t ′)= US
(
α∗(µ∗(0))� t ′

)
�(12)

Since t ′ < t̃ and aS(t̃)= α∗(µ∗(0)), US
12 > 0 and (12) imply that

US(ā(0� t ′)� t) > US
(
α∗(µ∗(0))� t

)
for all t ∈ [0� t ′)�(13)

<US
(
α∗(µ∗(0))� t

)
for all t ∈ (t ′�1]�(14)

It follows from (13) and (14) that [0� t ′] is a self-signaling set. Q.E.D.

PROOF OF PROPOSITION 5: Let µh(·) denote the honest Sender’s strategy
and let αn(·) denote the nonstrategic Receiver’s strategy. Then µh(t) = t and

23Unlike with Matthews’ (1989) model, we do not have an analog here of Proposition 3.
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αn(m) = aR(m). The dishonest Sender’s payoff if he sends m and induces
action a from the strategic Receiver is US

d (a�m� t) = λUS(aR(m)� t) + (1 −
λ)US(a� t). It suffices to show that NITS holds in a message-monotone equilib-
rium for any θ�λ > 0. Standard convergence arguments then imply that NITS
is inherited in any limit as θ, λ → 0.

Fix arbitrary θ�λ > 0. In order to reach a contradiction, suppose that NITS
does not hold in a message-monotone equilibrium. It follows from message
monotonicity that the type 0 dishonest Sender must be pooling with higher
types on message 0, since otherwise it could strictly benefit from deviating to
sending message 0 (which would induce action aR(0) from either kind of Re-
ceiver). Denote the strategies of the dishonest Sender and strategic Receiver
by (µ∗�α∗). Let t1 = sup{t :µ∗(t) = 0} > 0. Then, by message monotonicity,
µ∗(t)= 0 for all t < t1, whereas µ∗(t) > 0 for all t > t1. Failure of NITS implies
that US

d (α
∗(0)�0�0) < US

d (a
R(0)�0�0), where α∗(0) = ā(0� t1) > aR(0). Since

US
11 < 0 and aS(0) > aR(0), we have α∗(0) > aS(0).
We claim that µ∗(·) must be continuous at t1. Suppose not. Then

limt→t+1 µ∗(t) > 0. There exists an ε > 0 such that only the honest Sender
sends ε and α∗(ε) = aR(ε) ∈ (aR(0)�aS(0)). It follows that US

d (α
∗(ε)�ε�0) >

US
d (a

R(0)�0�0) > US
d (α

∗(0)�0�0) and the type 0 dishonest Sender strictly ben-
efits from sending ε, a contradiction. A similar argument also establishes that
t1 < 1.

The continuity of µ∗(·) at t1 implies that there exists t2 > t1 such that µ∗(·)
is strictly increasing and continuous on (t1� t2) and aR(µ∗(t)) < aS(t) for all
t ∈ (t1� t2). Since α∗(µ∗(t)) is a weighted average of aR(µ∗(t)) and aR(t) for
t ∈ (t1� t2), α∗(µ∗(t)) < aS(t) as well. Moreover, α∗(·) must be continuous and
decreasing on (µ∗(t1)�µ∗(t2)): continuous because both µ∗ and µh are con-
tinuous on the relevant domain, and decreasing to offset type t1’s incentive
to deceive the nonstrategic Receiver by sending some small message ε > 0. It
follows that there exists an m ∈ (0�µ∗(t2)) such that aR(0) < aR(m) < aS(0)
and aR(0) < α∗(m) < α∗(0). Therefore, US

d (α
∗(m)�m�0) > US

d (α
∗(0)�0�0)

and the type 0 dishonest Sender strictly benefits from sending m, a contra-
diction. Q.E.D.

PROOF OF PROPOSITION 6: We will prove that when k is sufficiently small,
any monotone equilibrium must satisfy NITS. Standard convergence argu-
ments then imply that NITS must hold in the limit of any convergent sequence
of monotone equilibria as k → 0.

A basic implication of message monotonicity is that the set of types sending
any given message is convex. Let t∗ denote the type such that US(ā(0� t∗)�0)=
US(aR(0)�0) if it exists or t∗ = 1 otherwise. It is straightforward to show that
NITS is satisfied if and only if the highest type pooling with type 0 is no greater
than t∗. Moreover, because of action monotonicity, NITS can only be vio-
lated if the lowest pool of types uses message 0. To see this, observe that if
a monotone equilibrium violates NITS but does not have a pool of types using
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message 0, then by deviating to message 0, type 0 will elicit a weakly preferred
response from the Receiver and will strictly save on lying cost, contradicting
equilibrium.

Therefore, it suffices to show that the highest type using message 0 is no
greater than t∗ (if any) for small k. This is trivially true if t∗ = 1, so assume
henceforth t∗ < 1. In order to reach a contradiction, suppose that for arbi-
trarily small k, there is a monotone equilibrium where the supremum of types
pooling on message 0 is some tk1 > t∗. We must have tk1 < 1, for otherwise type
1 can profitably deviate up to message 1, because by action monotonicity, it will
elicit a weakly higher response and strictly save on the cost of lying. Note also
that by considering k small enough, the difference in cost between sending any
two messages for any type can be made arbitrarily small. Thus, for tk1 to be in-
different between pooling on message 0 and mimicking a slightly higher type,
there must be an interval of types, (tk1 � t

k
2 ), that are pooling on some message

m2 > 0, with US(ā(0� tk1 )� t
k
1 ) ≈ US(ā(tk1 � t

k
2 )� t

k
1 ).

24 Just as in CS, this requires
that ā(0� tk1 ) < aS(tk1 ) < ā(tk1 � t

k
2 ), but now, since by message monotonicity there

are unused messages in (0�m2) and by action monotonicity these messages
elicit actions that tk1 weakly prefers to both ā(0� tk1 ) and ā(tk1 � t

k
2 ), we must have

m2 ≤ tk1 : if not, type tk1 can deviate to one of the unused messages, strictly save
on message cost, and elicit a weakly preferred action. Note also that there is a
positive lower bound on how small tk2 − tk1 can be, by the CS assumptions on
US and UR.

If tk2 < 1, then by repeating the above logic inductively, we conclude that
there must be a finite N such that the Nth pool of types, 〈tkN−1�1], uses message
mN ≤ tkN−1 < 1. But then, type 1 can profitably deviate to message 1, eliciting a
weakly preferred action (by action monotonicity) and saving on lying cost: this
is a contradiction with equilibrium. Q.E.D.
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