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“The credulity of dupes is as inexhaustible as the invention of knaves.” — Edmund Burke

1 Introduction

Conflicts of interest plague communication in many situations, often resulting in language inflation

and deception. For example, there is empirical evidence that financial analysts provide overoptimistic

recommendations that deceive some investors.1 In addition, there appear to be systematic differences

across investors in their responses to the same recommendation.2 These findings suggest that some

investors might be credulous and naively believe what they hear.

Building on Crawford and Sobel’s [9] (hereafter, CS) “cheap talk” model, this paper formulates a

model that encompasses situations in which investors naively believe in the analyst’s recommendation.

We show that the credulity of the investor turns cheap talk into “costly talk”, naturally resulting in

language inflation and deception. In addition to financial advice, our model can be applied to various

other situations, such as advertising and academic evaluation. Advertisers typically aim at persuading

their audience to purchase more by overemphasizing the qualities of the products they promote.

Similarly, academic advisers tend to assign inflated grades and write overly positive recommendation

letters to help their students get jobs that are better than truly deserved (Rosovsky and Hartley [24]).

It is difficult to reconcile language inflation and deception with the theoretical predictions of the

baseline equilibrium model of cheap talk.3 In CS’s model, a privately informed sender (e.g., the

analyst) sends a message (e.g., a recommendation) to a receiver (e.g., the investor) with misaligned

preferences. The receiver then takes an action (e.g., purchase of a stock), which could depend on the

particular message sent. A key feature of cheap talk is that the message affects the players’ payoffs

only indirectly, through the inference made by the receiver about the sender’s private information.

Being rational and aware of the conflict of interests, the receiver takes an equilibrium action that

is unbiased, conditional on the information transmitted. In equilibrium, the sender’s bias and the
1See Michaely and Womack [20], who attribute the overoptimism in the recommendations to conflicts of interest

between analysts and investors. The finance literature has identified at least three sources of these conflicts of interest.
First, conflicts are possibly created by the analysts’ incentives to generate investment-banking business (Michaely and
Womack [20]). Second, analysts might want to increase the brokerage commissions for the trading arms of their financial
firms (Jackson [14]). Third, analysts might tend to release favorable reports that please management in order to gain
access to internal information from the firms they cover (Lim [16]).

2As argued by Malmendier and Shanthikumar [18], these differences seem to indicate heterogeneity in the level of
strategic sophistication among investors. In controlled laboratory experiments, Dickhaut et al. [10] and Cai and Wang
[5] document heterogeneous strategic sophistication in the responses to the same message.

3In this context, we view deception as the act of inducing false beliefs by means of communication, and exploiting
them to one’s own advantage. Such false beliefs are clearly incompatible with traditional equilibrium analysis. Deception
in this interpretation is distinct from the notion that a player may choose not to disclose private information in order to
exploit the imprecise—but not incorrect—belief induced in a counterpart (e.g., bluffing in poker).
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associated incentive to deceive the receiver are, in fact, self-defeating. In the context of financial

advice, this implies that, on average, no investor should be deceived. Moreover, the language used in

equilibrium is arbitrary, since cheap talk messages are fully interchangeable.

In contrast, the costly signaling model of strategic communication developed in this paper naturally

leads to language inflation. In our costly talk model, the message sent affects the sender’s payoff, not

only indirectly through a rational receiver’s inference, as in a cheap talk model, but also directly. This

direct dependence is our key departure from CS’s cheap talk model and can stem from various sources.

For applications, we focus on two interpretations. First, following Kartik [15], the sender may suffer a

disutility from misreporting or lying about her private information. This could be due to fabrication

costs, legal penalties, or moral constraints. Plainly, the presence of such costs transforms the game

from one of cheap talk to costly signaling.

Second, the direct dependence of the sender’s utility on messages can stem from the receiver(s)

being, at least partially, non-strategic. Instead of acting on the basis of equilibrium beliefs, such

receivers are somewhat credulous: either they naively believe that the sender’s message represents the

truth and take their preferred action accordingly, or, more generally, they use some non-equilibrium-

based rule to map messages into actions.4 We say that a receiver is credulous or naive because she

is unable to anticipate the equilibrium interpretation of the communication language. Instead, her

interpretation of the language is exogenous, perhaps based on some general social principles, such as

truth-telling, or some boundedly rational computation that results in a cautious interpretation of the

sender’s report. The sender, being sophisticated, understands the mapping from messages to actions

that are used by these naive receivers, and exploits their credulity in order to deceive them.5 The

mechanical response to messages by such receivers induces a direct dependence of the sender’s payoff

on his recommendation, thereby resulting in a game of costly signaling.

At a technical level, we also depart from CS by making different assumptions about the domain

of a sender’s private information. CS assume that the set of sender types (i.e., the state space) is

bounded both above and below. Adopting the common convention that the sender is biased upwards,

this paper instead considers settings in which the state space is unbounded above (and either bounded
4In studying lying costs or naive receivers, it is implicit that messages have an exogenous natural meaning. We

suppose that the message space is identical to the space of the sender’s private information, so that a message can be
interpreted as a literal statement about the sender’s type. The concept of natural meaning has been introduced in a
different context by Farrell [12].

5We view the asymmetry of the sender being sophisticated while some receivers being naive or credulous as appropriate
for many applications, such as the ones discussed earlier that involve financial analysts and advertisers communicating
to a market.
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or unbounded below). We believe that this is a sensible assumption in a number of applications, for

example when modeling a financial analyst’s prediction of a stock price or an adviser’s evaluation of

student ability.

Our main contribution in this setting is to show that, under broad conditions, there exist sep-

arating equilibria which feature inflated communication.6 In a separating equilibrium, the sender’s

message completely reveals her private information. In the equilibria we identify, the message sent

by the sender has a literal meaning that is inflated, i.e., a literal meaning higher than the true state

of the world. Nevertheless, a sophisticated receiver correctly infers the true state by inverting the

observed message according to the equilibrium language. A credulous receiver, instead, interprets the

equilibrium messages with some non-equilibrium-based rule and is accordingly deceived, taking biased

actions. These findings provide a striking contrast to CS’s key results that, in a fully-strategic and

pure cheap talk setting with a conflict of interests, every equilibrium is partitional, some information

must be lost, and the receiver’s actions are unbiased in expectation.7

The intuition behind our results can be illustrated as follows. Suppose first that the sender has

lying costs that are increasing and convex in the magnitude of the lie. An inflated communication

separating equilibrium exists, because even though the sender can induce the (sophisticated) receiver

to take a more favorable action by deviating to a higher message, this gain can be exactly offset by

the marginal increase in the lying cost when the equilibrium message is already sufficiently inflated.

On the other hand, suppose instead that there are no lying costs but that some receivers are wholly

credulous, simply believing the literal message they receive. In the separating equilibrium, for any

given state the message is so inflated that the credulous receivers are deceived to take an action that is

even higher than the one that is ideal for the sender. Sophisticated receivers decode the message and

take their most-preferred action, which is lower than the sender’s ideal action. Thus, by deviating to a

higher (lower) message, the sender gains through the induced response from sophisticated (credulous)

receivers, but is hurt by the undesirable response from credulous (sophisticated) receivers. By exactly

offsetting these gains and losses, a separating equilibrium is sustained.

Our formal results are derived in a quite general setting with broad and abstract conditions that

are best discussed only after introducing the model in Section 2. In the remainder of this introduction,

we describe each of our three results on the existence of separating equilibria, focusing on particular
6As explained in Sections 3 and 5, our results hinge critically on the assumption that the state space is unbounded

above. When the state space is bounded above, there is an equilibrium that is fully revealing only up to a threshold
smaller than the upper bound of the state space (see Kartik [15] or Ottaviani and Squintani [23]).

7Although the state space is bounded in the original CS model, the aforementioned results extend straightforwardly
to an unbounded state space.
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applications that are covered by the assumptions in each case.

Theorem 1 applies to settings in which the sender is interested in the average response of a pop-

ulation of receivers characterized by heterogeneous strategic sophistication. As previously noted, a

prime application is a financial analyst communicating to a market of investors. We demonstrate that

in such cases there is a unique non-decreasing, differentiable separating equilibrium. This equilibrium

has the following important property: in every state of the world, the sender induces a belief in the

naive receivers such that the average population response is in fact his bliss point. That is, the sender

can achieve his first-best outcome in such a setting, even though the sophisticated receivers correctly

infer the state of the world in equilibrium and there is a conflict of interest.

Theorems 2 and 3 apply to communication games where the sender communicates to a single

receiver, but either bears a cost from misrepresenting her type, or the receiver is possibly naive and

credulous. For technical reasons explained in Section 3, we need to further distinguish between cases

where the state space is bounded below and cases where it is unbounded below. These two cases

are relevant for different applications. For example, when thinking about a real estate agent making

forecasts about the future price of a property to a potential buyer, there is a natural lower bound

of zero on the state space (but no natural upper bound). In contrast, if an expert is reporting to

a decision-maker on the one-dimensional ideological position of a terrorist group, there is no natural

lower or upper bound. When the state space is bounded below, Theorem 2 shows that there is a unique

differentiable separating equilibrium that satisfies the standard Riley condition.8 On the other hand,

when the state space is unbounded below, there is no such “initial condition”, and some restrictions

are needed to guarantee the existence of separating equilibria. Theorem 3 derives existence for a class

of widely-used sender preferences, viz. those that can be represented as loss functions which depend

on the distance between the receiver’s action and the sender’s state-dependent bliss point.

In addition to their theoretical interest, our results have positive and normative implications. For

example, it is unclear why a mandated policy of so-called “Chinese walls” would be necessary in the

benchmark model of information transmission between a financial corporation and an investor. Since

in CS’s setting the bias only reduces the amount of information that can be credibly transmitted,

without systematically biasing final outcomes, it would be in the firm’s own interest to minimize the

conflict of interest by separating its research and investment-banking divisions into different corpo-

rations. Instead, our model suggests a possible rationale for policy intervention. In the presence of

naive receivers, the firm is able to systematically deceive a fraction of the investors, and may not
8The Riley condition requires that the lowest type of sender not engage in any (Pareto) inefficient signaling.

4



spontaneously adopt this policy. Mandated Chinese walls would then protect naive investors, without

affecting sophisticated investors who are able to decode the firm’s communication in any case.

In the literature, Crawford [8] is the first paper to analyze the impact of bounded rationality on

communication outcomes. While Crawford [8] focuses on the representation of intentions (about future

actions) in an asymmetric matching-pennies game, we consider the transmission of private information.

Both Crawford [8] and our paper obtain deception somewhat directly from the introduction of non-

equilibrium players, but are interested in the implications for the behavior of fully rational players.9

We defer to Section 4 the discussion of other related literature, in particular the connection with some

communication models that allow for additional layers of uncertainty.

2 Model and applications

We develop a general model of communication between an informed agent and one or more uninformed

agents. After introducing our setting, we illustrate how it subsumes several natural variations of an

unbounded state space version of CS’s classic model of cheap talk.

A sender (S) is privately informed about a state of the world, x ∈ X ⊆ R, distributed according

to the full support cumulative distribution function F . We sometimes refer to x as the sender’s type.

After observing the state, the sender chooses a message, m ∈ M , to communicate to one or more

receivers (R). We assume that the message and state space are the same, so that the message sent can

be thought of as a literal statement or a submitted report about the state of the world. The state (and

message) space is unbounded above, and may be either bounded or unbounded below. We denote by

〈a,∞) the open interval (a,∞) if a = −∞, or the semi-closed interval [a,∞) if a > −∞. The state

and message space are X = M = 〈x,∞), where x ≥ −∞.

A (pure) strategy for the sender is a mapping µ : X → M . Our interest is in equilibria where the

sender plays a one-to-one strategy, thereby completely revealing her private information through the

message sent. Such a strategy for the sender is a separating strategy, sometimes referred to in the

literature as “fully separating” or “fully revealing”. To describe such equilibria, it suffices to focus on

a reduced form payoff function for the sender, U(x, x̂,m), rather than making explicit assumptions

about the preferences or play of the receivers. This function denotes the sender’s payoff when the

state of the world is x ∈ X, he sends message m ∈ M , and the (strategic) receivers believe the state
9Ettinger and Jehiel [11] develop a theory of deception, based on the idea that some players may only be able to

understand strategies “coarsely”, although the interpretation is always, at least partially, equilibrium based.
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of the world to be x̂ ∈ X. We maintain throughout our analysis the following regularity conditions on

U (as usual, subscripts on functions denote derivatives).

Condition A. The function U satisfies:

(A.1) U(x, x̂, m) is C2 on X ×X ×M .10

(A.2) For all x, U3(x, x, m) = 0 has a unique solution in m, denoted m∗(x), which maximizes U(x, x, m),

and U33(x, x, m∗(x)) < 0.

(A.3) limx→+∞m∗ (x) = ∞. When x = −∞, limx→−∞m∗ (x) = −∞. When x > −∞, U (x, x, m) ≤
U (x, x, m∗ (x)) for all x and m < m∗ (x).

(A.4) For all (x, x̂, m), U12(x, x̂,m) > 0.

(A.5) For all (x, x̂, m), U13(x, x̂,m) > 0.

(A.1) is a smoothness assumption. (A.2) says that for each state x, there is a unique utility-

maximizing message m∗(x) when the inference is correctly made that the state is x. That is, m∗(x)

is the message the sender would choose under complete information. Since U is twice continuously

differentiable, m∗ is a continuously differentiable function, and it follows that U3(x, x, m) < 0 for

m > m∗(x), whereas U3(x, x, m) > 0 when m < m∗(x). We note that (A.2) is weaker than concavity

of U(x, x, m) in m for all x. It is important to emphasize that (A.2) implies that messages are payoff

relevant, and not cheap talk. In a pure cheap talk model, U3 = 0.

Condition (A.3) allows us to deal with the possibility of messages off the equilibrium path. When

the state space is unbounded below, the assumption that m∗ is unbounded above and below allows us

to focus on increasing equilibrium strategies µ that are onto (and hence use all available messages).

When the state space has the lower bound x > −∞, we will study increasing strategies µ such that

µ(x) = m∗(x). Because m∗ is unbounded above as x → ∞, all messages above m∗(x) are used in

equilibrium. The payoff condition in (A.3) ensures that if no type of sender has an incentive to mimic

the lowest type, then there will not be an incentive to send a message lower than m∗(x), if such

messages are met with the inference of coming from the lowest type. Note that given (A.2), this part

of (A.3) is automatically satisfied if m∗(x) is strictly increasing, and, moreover, U (x, x̂,m) is separable

in m and x̂.
10That is, there exists an open set containing T ×T ×M and a twice continuously differentiable function on this open

set that equals U on T × T ×M .
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Conditions (A.4) and (A.5) are Spence-Mirrlees single-crossing conditions. (A.4) says that the

sender’s marginal gain from inducing a higher belief about the state is higher when the true state is

higher. (A.5) requires that the sender’s marginal gain from sending a higher message is higher when

the true state is higher.

In addition to Condition (A), which we always maintain, two mutually exclusive sets of conditions—

(B) and (C)—will allow us to find separating equilibria.

Condition B. The function U satisfies:

(B.1) For all (x,m), sign [U2(x, x, m)] = sign [U3(x, x,m)].

(B.2) For all x, m∗ ′ (x) > 0.

(B.1) requires that when the state is correctly inferred as x, inflating the message m or inducing a

belief that the state is higher than x affects the sender’s utility in the same direction. Note that in the

presence of (A.2), this implies that U2(x, x, ·) is single peaked around m∗(x). It is worth contrasting

this with most signaling and cheap talk models, where the assumptions imply that the sender would

always like to induce a belief that the state is higher than the true state, regardless of the message

used (see condition (C.1), below). (B.2) says that the optimal message m∗(x) is strictly increasing in

the state x. This will be used to ensure that the communication strategy of µ = m∗ is a separating

and increasing strategy.

Condition C. The function U satisfies:

(C.1) For all (x,m), U2(x, x,m) > 0.

(C.2) For all x, there are c2, c3 > 0 such that for all m: (i) U2(x, x, m) < c2 and (ii) U33(x, x, m) ≥ 0 =⇒
|U3(x, x,m)| > c3.

(C.1) is a generalization of a standard assumption of traditional Spencian signaling models. There,

the sender’s payoff is assumed to be strictly increasing in her perceived type, i.e. U2(x, x̂,m) > 0 for all

x, x̂,m. Here, we only require it locally around x = x̂. As already noted, (C.1) and (B.1) are mutually

exclusive under (A.2). (C.2) is a technical condition on the boundedness of derivatives.
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Conditions (A) and (C) bear many similarities with Mailath [17], who studies a bounded type

space. In particular, he also employs (A.1), (A.2), (A.5), and (C.2).11 On the other hand, the set of

payoff conditions (B) that we have introduced is novel.

2.1 Applications of costly talk

Consider an unbounded state space version of the fully-strategic, pure cheap talk model of CS. Messages

are payoff irrelevant to the sender, i.e. U3(x, x̂,m) = 0, for any x, x̂,m. (Hence, our condition (A.2) is

not satisfied.) The state space is either X = (−∞,∞) or X = [x,∞). There is one receiver, who takes

an action y ∈ R after receiving the sender’s message. The receiver’s utility is denoted by UR(y, x),

and the sender’s utility is expressed as US(y, x, b), with b ∈ R being a bias parameter that is common

knowledge among the players. Both UR and US are twice continuously differentiable. For each i =

S,R, player i’s utility satisfies U i
11 < 0 as well as the single-crossing condition U i

12 > 0. Moreover, there

exist bliss-point functions yR (x) and yS (x, b) such that UR
1 (yR (x) , x) = 0 and US

1 (yS (x, b) , x, b) = 0.

Note that the assumptions on UR and US imply that yS
1 (x, b) > 0 and yR ′ (x) > 0.

Translated into our formulation, CS sender’s payoff can be written as U(x, x̂,m) ≡ US
(
yR (x̂) , x, b

)
,

since messages are payoff irrelevant, and the receiver takes action yR (x̂) when she believes the state

to be x̂. When the state space is bounded, a key result of CS is that if the players’ bliss points never

coincide, i.e. yS(x, b) 6= yR(x) for all x, then any equilibrium outcome mapping from states to receiver

actions is a step function, and hence every equilibrium is partitional. Essentially, this fundamental

result extends to the unbounded state space case, where every equilibrium is partitional if there is a

uniform bound ψ > 0 such that
∣∣yS(x, b)− yR(x)

∣∣ ≥ ψ for all x.12 This condition requires that the

sender be biased either upwards or downwards for all states of the world. We shall henceforth assume

that he is biased upwards, i.e., yS(x, b)− yR(x) ≥ η > 0 for all x, and assume that US
13 (y, x, b) > 0.

We now argue that natural modifications of CS’s assumptions transform their cheap talk game,

in which U3(x, x̂,m) = 0 for all x, x̂, m, into a costly signaling (or “costly talk”) game, in which our

condition (A.2) applies instead. In particular, we introduce three variations of the unbounded state

space CS model that satisfy our payoff conditions (A) as well as either (B) or (C).
11Our condition (C.1) is weaker than his “belief monotonicity” condition. (A.3) has no analog in his analysis; (A.4)

substitutes for the role of his “single-crossing” condition in x̂ and m.
12The proof of this result is omitted as it is an immediate extension of Lemma 1 in CS. The notion of equilibrium

referred to here is Bayesian Nash or any stronger concept. Note that the uniform bound condition is trivially satisfied
when the state space is bounded.
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2.1.1 Application of conditions (A) and (B)

Application 1. (Communication to a pool of receivers, some of whom are naive)

In several economic applications of the CS game, the sender makes a recommendation to a pool of

receivers and cares about the average aggregate response of the receivers. For example, in the context

of stock recommendations, the analyst often announces her forecast to the entire market and cares

about the market’s aggregate response following the announcement. This scenario can be equivalently

represented as a CS communication game with only one receiver if all the receivers are fully strategic

and their strategy depends only on the message received. But, as we will later show, these two models

are substantially different when the market is composed of agents with heterogeneous sophistication.

To account for heterogeneous sophistication, suppose that a fraction α of receivers is either partially

or fully naive, whereas a fraction 1− α is strategic. Fully naive receivers blindly believe the sender’s

report. Upon hearing message m, they believe that x = m. Partially naive receivers are aware of the

possibility of being cheated, but are still unable to formulate equilibrium beliefs. Upon receiving any

message, m, they formulate a dis-equilibrium estimate χ(m) of the true state of the world such that

χ(m) ∈ 〈x,m]. We assume that χ is strictly increasing, continuously differentiable, unbounded above,

and also unbounded below if x = −∞.13 If strategic receivers believe that the state is x̂, the utility of

the sender of type x who sends message m is:

U(x, x̂,m) ≡ US
(
(1− α) yR(x̂) + αyR(χ(m)), x, b

)
. (1)

Fixing α > 0 and b > 0, we develop the application under the restriction on the players’ utilities that

the functions yR (x) and yS (x, b) − (1− α) yR (x) are strictly increasing in x and unbounded. For

example, this is the case when yS
1 (x, b) ≥ yR ′ (x) > η for some uniform bound η > 0: the sender’s

bliss point is at least as sensitive to a change in the state as the receivers’ bliss points.14 As a technical

condition on derivatives, we also assume that yR ′ and χ′ are bounded away from ∞. (This would be

automatically satisfied were the state space bounded.)

The following Lemma shows that the presence of naive agents in the pool of receivers turns the

cheap talk CS game into a game of costly signaling that satisfies our conditions (A) and (B).

13Monotonicity of χ is natural: it says that a naive receiver believes the state is higher when the message she receives
is higher. If χ were to be bounded, say above, there would be a state x̄ such that a naive receiver would never believe
that the state x is larger than x̄, regardless of the message received. This is equivalent to working with a bounded type
space (see Kartik [15] or Ottaviani and Squintani [23]).

14Note that this holds for any class of CS preferences where yR(x) = x and yS(x) = x + b, such as the commonly used
“quadratic loss” formulation where UR(y, x) = −(y − x)2 and US(y, x, b) = −(y − x− b)2.
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Lemma 1. The game between a sender who can lie costlessly and a pool of partly naive receivers

satisfies conditions (A.1)–(A.5) and (B.1)–(B.2) under the stated assumptions. Moreover, for all x,

m∗(x) > x.

That m∗(x) > x is intuitive: if the strategic receivers know the true state and play yR (x), then the

sender inflates her message to make the naive receivers’ response larger than their bliss points yR (x) ,

so that the average receivers’ response equals yS (x, b) > yR (x).

2.1.2 Applications of conditions (A) and (C)

We will discuss two simple and intuitive modifications of the CS game that are subsumed under the

following separable utility specification:

U (x, x̂,m) ≡ (1− α) US
(
yR(x̂), x, b

)
+ (α + k)G (g(m), x, b) , (2)

where α, k ≥ 0 with at least one strictly positive. US is the CS utility function for the sender, and

G and g are functions that will capture the modification to the game that transforms it from one of

cheap talk to costly signaling.

Some reasonable assumptions are needed to ensure that the above specification (2) satisfies con-

ditions (A) and (C). First, supx US
2 (yR(x), x, b) yR ′ (x) < ∞. The function g : R → R is assumed

to be C2, strictly increasing and onto, with derivative bounded away from 0 and ∞: there exist con-

stants γ1 and γ2 such that 0 < γ1 < g′ < γ2 < ∞. The function G has the same properties as US

in the CS game: G is C2, G12 > 0, G13 ≥ 0, and G11 < 0. For each x, there is y∗ (x, b) such that

G1 (y∗ (x, b) , x, b) = 0, and there is γ3 such that 0 < γ3 < y∗1.

Lemma 2. Under the stated assumptions, the representation (2) satisfies conditions (A.1)–(A.5) and

(C.1)–(C.2).

The use of Lemma 2 is illustrated in the following applications. We wish to emphasize that since

conditions (B.1) and (C.1) are mutually exclusive under condition (A), the ensuing applications are

substantially different from Application 1.

Application 2. (Communication to a single receiver who may be naive) Consider a

standard CS game, but assume that the receiver is naive with probability α ∈ (0, 1) and is strategic

with probability 1 − α.15 As in Application 1, a naive receiver formulates an estimate χ(m) of the
15In fact, it is not necessary that the receiver actually be truly naive with positive probability. It is enough that the

sender believes (perhaps wrongly) that the receiver could be naive.
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true state such that χ(m) ∈ 〈x,m], and we maintain our previous assumptions on χ. If the true state

is x, the strategic receiver believes that the state is x̂, and message m is sent, the sender’s payoff is

U(x, x̂, m) ≡ (1− α) US
(
yR(x̂), x, b

)
+ αUS

(
yR(χ(m)), x, b

)
.

We assume the technical conditions that yR ′ and χ′ are each bounded away from 0 and ∞, and

that US
2 (yR(x), x, b) yR ′ (x) is bounded away from ∞. (All these conditions would automatically hold

when the state space is bounded.)

It is evident that this application satisfies utility specification (2) and the assumptions for Lemma

2 by setting k = 0, G (y, x, b) = US (y, x, b), and g (m) = yR (χ (m)). Note that in this application,

m∗(x) > x. If the receiver knows the state of the world when strategic, then she plays yR (x) regardless

of the sender’s message. The sender would then optimally send an inflated message to induce a naive

receiver to take the sender’s preferred action yS(x, b).

Application 3. (Communication by a sender with misreporting costs) Suppose that

the sender communicates to one or many receivers who are fully strategic with probability one, but

the sender suffers a cost of lying or misreporting. For example, the sender may have a preference for

honesty, or may face technological or verifiability constraints in forging a mendacious report. Following

Kartik [15], we let the lying costs be kC (m,x) where C(·, x) is a loss function corresponding to the

state x, and k > 0 parameterizes the intensity of the lying cost. Assume that C11 > 0 > C12, and that

for any x, C1(x, x) = 0. Hence, lying costs are convex around the truth. In this setting, we can write

the sender’s utility as

U(x, x̂,m) ≡ US(yR(x̂), x, b)− kC(m,x).

As before, we assume the technical condition that supx US
2 (yR(x), x, b) yR ′ (x) < ∞. It is clear

that this application satisfies utility specification (2) and the assumptions for Lemma 2 by setting

α = 0, G (m,x, b) = −C (m,x), and g (m) = m. Note that here, m∗(x) = x: if the receiver knows the

state, then the sender chooses to report the truth, as there is no possible benefit from lying.

3 Separating equilibria

The solution concept to apply in signaling games is perfect Bayesian equilibrium (Fudenberg and Tirole

[13]). This requires the usual conditions of belief consistency via Bayes rule, and incentive compatibility

of strategies given beliefs and opponents’ play. Our interest concerns separating perfect Bayesian
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equilibria, which are equilibria where the sender’s strategy µ is one-to-one and hence fully reveals her

type. Denote the receivers’ beliefs by β : M → ∆(X), where ∆(X) is the set of probability distributions

on X.16 Letting µ(X) ≡ ⋃
x∈X µ(x), Bayes rule requires that for all m ∈ µ(X), β(m) = µ−1(m). For

any m ∈ X \µ(X), any beliefs are permissible, but we will demonstrate that we can restrict attention

to point mass beliefs (β : M → X) without loss of generality for the purpose of our results. These

considerations lead to the following definition.

Definition 1. A separating equilibrium is one-to-one strategy, µ : X → M , and beliefs, β : M → X,

such that:

1. (Belief consistency) for any m ∈ µ (X), β (m) = µ−1 (m).

2. (Incentive compatibility) for any x ∈ X, µ(x) ∈ arg maxm∈M U(x, β(m),m).

It should be noted that our results will concern differentiable and strictly increasing separating

equilibria.17 Differentiability is natural. The reason we look for increasing equilibria is that in appli-

cations, including those outlined in Section 2, it is typically the case that higher sender types prefer

higher messages, and, moreover, the sender would like to be perceived as a higher type than he truly

is. In such cases, decreasing equilibrium strategies seem relatively implausible.

We should be clear about what it means for language to be inflated. An equilibrium with sender’s

strategy µ displays inflated communication if µ (x) > x for all x (with the possible exception of the

finite lower bound x if it exists). This definition is natural in our context where messages represent

literal statements or reports about the state of the world.

3.1 Communication to a pool of receivers

Recall that condition (B) was shown to apply when the sender communicates to a pool of receivers with

heterogeneous strategic sophistication. Our first main result is that in this case, there exists a unique

non-decreasing differentiable separating equilibrium. In any differentiable, separating equilibrium, the

necessary first-order condition for optimality is

U2(x, µ−1(m),m)
(
µ−1(m)

)′ + U3(x, µ−1(m),m) = 0. (3)

16Throughout, when referring to receivers’ beliefs and actions, we implicitly restrict attention to the strategic receivers.
Also, as is standard, if there are multiple strategic receivers, we require them to hold the same beliefs upon observing
any message.

17Such properties refer to properties of the sender’s strategy in equilibrium. Similarly, all claims to uniqueness of
equilibria within some class refer to uniqueness of sender strategies (and not out-of-equilibrium beliefs, in particular).
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Substituting µ−1(m) = x and
(
µ−1(m)

)′ = 1/µ′(x), and rearranging, we obtain

U3(x, x, µ (x))µ′ (x) + U2(x, x, µ (x)) = 0. (FOC)

In light of assumptions (A.2) and (B.1), there is a unique solution to this equation such that µ′ (x) > 0:

the function µ such that U2(x, x, µ (x)) = U3(x, x, µ (x)) = 0. By definition, such a sender’s strategy

µ coincides with m∗. Verifying incentive compatibility of the solution obtained with the first-order

approach leads us to the following result.

Theorem 1. Under conditions (A) and (B), there is a unique non-decreasing differentiable separating

equilibrium. It is given by µ (x) = m∗ (x), and is therefore strictly increasing.

To see the intuition behind the result, consider the case where the sender can lie costlessly, but

faces a pool of receivers some of whom are fully naive (Application 1). Suppose there is an equilibrium

where µ is invertible, non-decreasing, and, for simplicity, onto. In equilibrium, the strategic receivers

correctly invert the message, determine the state x = µ−1 (µ (x)), and play yR(x), whereas the naive

receivers believe the message µ (x) and play yR(µ (x)). The key point is that the sender only cares

about the average receiver response (1− α) yR(x) + αyR(µ (x)). For any α > 0, because the message

space M coincides with the unbounded-above state space X, it is possible to find µ (x) large enough so

that the average receiver response exactly equals the sender’s bliss point yS(x, b), and hence the sender

has no incentive to deviate from equilibrium.18 Such µ (x) must be m∗ (x) by the definition of m∗.

This is indeed invertible—specifically, strictly increasing—by condition (B.2). Hence, communication

is inflated, as m∗(x) > x for all x, by Lemma 1. Perhaps surprisingly, the sender achieves her bliss

point in equilibrium for any state of the world, x, regardless of the fraction of naive receivers, α.

This is a consequence of two properties: first, the sender only cares about the average response of the

receivers; second, due to the unboundedness of the state space, the sender can deceive naive receivers

as much as necessary to attain her bliss point.

To substantiate Theorem 1 and the above discussion, we explicitly compute a simple example with

the widely used quadratic utility formulation.

Example 1. Suppose that naive receivers are fully naive, i.e., χ (m) = m for every m, and that the

receivers’ and sender’s utilities are quadratic loss functions with bliss points x and x + b, respectively.
18In the general setup, this is guaranteed by (A.2) and (B.1) for deviation to messages used on the equilibrium path.

When X = (−∞, +∞) , all messages are on path by (A.3). When X = [x, +∞), with x > −∞, we assign beliefs
β (m) = x to all off-path messages m ∈ [x, m∗ (x)] , if there are any. (A.3) assures that there is no sender type who
strictly benefits by playing such a message over his equilibrium message.

13



That is, UR (y, x) = − (y − x)2 and US (y, x, b) = − (y − (x + b))2 . Suppose that in equilibrium, the

sender adopts a differentiable invertible function µ as her communication strategy. When a message

m is sent, a strategic receiver believes that the state is µ−1 (m) and a naive receiver plays the action

yR (m) = m. Hence the sender will not deviate from the strategy µ only if for any x, µ (x) ∈
arg maxm−

(
(1− α) µ−1 (m) + αm− (x + b)

)2. The first-order condition is

−2
(
(1− α) µ−1 (m) + αm− (x + b)

) (
(1− α)

(
µ−1 (m)

)′ + α
)

= 0.

By substituting µ−1 (m) with x and m with µ (x) we obtain the differential equation

−2(α (µ− x)− b)((1− α)
1
µ′

+ α) = 0.

It is easy to see that the unique non-decreasing solution µ is

µ (x) = m∗ (x) = x +
b

α
,

and this is the strategy in the unique differentiable, non-decreasing, separating equilibrium.19

This strategy may be interpreted as revealing the actual state of the world and inflating the com-

munication by an amount b/α. The factor by which communication is inflated is inversely proportional

to the fraction of naive receivers in the population. It immediately follows that µ (x) increases in b and

decreases in α. When α shrinks to 0, µ (x) diverges to infinity pointwise, and the naive receivers’ utility

diverges to minus infinity. Because the average receiver response is α (x + b/α) + (1− α) x = x + b,

the sender achieves her bliss point for all x independent of the parameter α. ¤

3.2 Communication to a single receiver: lower bounded state space

We now turn to showing the existence of a separating equilibrium under the set of conditions (C),

assuming that there is a lower bound on the state space, x > −∞. As in the previous sub-section,

any differentiable, separating equilibrium sender’s strategy µ must satisfy the necessary first-order

condition for optimality (FOC). But unlike when (B.1) holds, under (C.1) there is no such m such

that U2(x, x, m) = 0. Hence (FOC) cannot be satisfied with U3(x, x, µ (x)) = 0. We can thus rearrange

the expression and obtain the following differential equation in µ

µ′ (x) = −U2(x, x, µ (x))
U3(x, x, µ (x))

, (DE)

where U3(x, x, µ (x)) = 0 describes the singularity in the field.
19When the state space is unbounded below, all messages are on the equilibrium path; when it has a lower bound

x > −∞, we complete the equilibrium by assigning the off-path beliefs β (m) = x for all m < µ (x) = m∗ (x).
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Theorem 2. Suppose that x > −∞. Under conditions (A) and (C) and the initial value condition

µ(x) = m∗ (x), there is a unique differentiable separating equilibrium. In this equilibrium, µ solves

(DE), is strictly increasing, and µ (x) > m∗ (x) for all x > x.

Remark 1. Throughout, when the type space is bounded below, we focus on the initial condition

of µ(x) = m∗(x). There may be separating (and differentiable) equilibrium strategies where µ(x) 6=
m∗(x),20 but in signaling games with multiple separating equilibria, it is common to focus on the one

where the lowest type sends the same signal as it would under complete information. This is often

referred to as the Riley outcome. In the current setting, this requires that µ(x) = m∗(x).

The main part of the proof of Theorem 2 extends the analysis of Mailath [17] to an unbounded state

space.21 By studying the inverse differential equation of (DE), we first show that there exists a unique

increasing local solution to (DE) under the initial condition µ(x) = m∗ (x).22 We then prove that under

condition (C.2), this local solution can be uniquely extended to the whole domain X = [x,∞). This

solution lies strictly above m∗(x) for all x sufficiently close to x, since (DE) requires that µ′(x) →∞ as

x → x, by (A.2), (C.1), and (C.2). But then, it must be that µ(x) > m∗(x) for all x > x; otherwise, by

continuity, µ must cross m∗ at some point x̂, which it cannot do because (DE) requires that µ′(x) →∞
as x → x̂. By inspection of (DE), the strategy µ is strictly increasing, because of (C.1), (A.2), and

µ(x) > m∗(x) for all x > x. Since the only off-the-equilibrium-path messages (if any) are those below

m∗ (x), the treatment of off-the-equilibrium-path beliefs are analogous to Theorem 1: we assign the

belief that the sender is of the lowest type when observing any such message. Incentive compatibility

of this equilibrium is verified using conditions (A.3), (A.4), and (A.5).

Theorem 2 yields a corollary that there is a fully-revealing equilibrium in the modifications of the

CS game where lying entails a cost of sensitivity k for the sender, or a single receiver is naive with

probability α, for any k > 0 or α > 0. Here is the intuition for why a sender, although upward biased,

would not want to deviate from the separating equilibrium strategy µ. Suppose first that lying is

costly (and the receiver is strategic). Since in equilibrium, the receiver inverts message m and believes

that the state is in fact x = µ−1 (m), this gives the sender of type x an incentive to send a message

m > µ (x). But as long as µ (x) ≥ x, this entails an increment in the cost for lying C (m,x) . For any
20Simple modifications of our arguments can be used to show that for any m0 > m∗(x), there is an increasing,

differentiable separating equilibrium with µ(x) = m0. If m0 < m∗(x), existence cannot be guaranteed without further
assumptions, and, moreover, the equilibrium would be decreasing, which we find somewhat implausible when m∗ is
increasing.

21There are differences beyond just the state space, however. For example, his single-crossing condition in x̂ and m is
not satisfied in our setting. This makes our proofs of incentive compatibility distinct.

22While the differential equation (DE) is not Lipschitz around (x, m∗(x)), the inverse differential equation is.
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k > 0, since the costs for lying are strictly convex in m, it is possible to find µ (x) large enough that

the increment in the lying cost makes up for the gain from cheating the receiver.

When lying is costless, but the receiver is naive with probability α, the cost of inflating the

equilibrium message µ (x) is induced by the response of the naive receiver. She will be persuaded, at

least partially, by any message m above µ (x) and end up damaging the sender, as long as yR(µ (χ(x)))

is larger than yS(x, b). For any α > 0, since the sender’s utility is strictly concave in y, it is possible

to find µ (x) sufficiently large that the gain for cheating the strategic receiver is counteracted by the

loss induced by the naive receiver.

As an illustration of both Theorem 2 and the above discussion, the following example analytically

computes the Riley outcome for a quadratic-loss communication model with lying costs.23

Example 2. Suppose that the state space is X = [0,∞), lying is costly, and the receiver is fully

strategic. Starting from the quadratic CS specification UR (y, x) = − (y − x)2 and US (y, x, b) =

− (y − (x + b))2, we add to the sender’s payoff a lying cost of magnitude −k (m− x)2 when message

m is sent and the true state is x. Hence, the sender’s utility is U (x, x̂,m) = − (x̂− x− b)2−k (m− x)2

when he sends message m and the receiver believes that the state is x̂. A differentiable onto strategy

µ is a separating equilibrium if and only if µ (x) ∈ maxmU
(
x, µ−1 (m) ,m

)
. By taking a first-order

condition and substituting µ−1 (m) with x, and
(
µ−1 (m)

)′ with µ′ (x) , we obtain the differential

equation

b− µ′ (x) k (µ (x)− x) = 0, (4)

with the initial condition for the Riley outcome being µ (0) = m∗(0) = 0. Letting v (x) = µ (x) − x

and c = b/k, so that v′ (x) = µ′ (x)− 1, a rearranging of (4) yields

dv

dx
=

c− v

v
. (5)

Eq. (5) can be solved by integrating the further rearranged form, [ν/ (c− v)] dv = dx, to obtain the

expression −v−c ln (c− v) = x+K, where K is a constant to be determined. Substituting in v = µ−x

gives the expression: − (µ (x)− x) − c ln (c− (µ (x)− x)) = x + K. The initial condition µ (0) = 0

implies that K = −c ln c, and replacing c with b/k, we obtain the solution

− (µ (x)− x)− b

k
ln

(
b

k
− (µ (x)− x)

)
= x− b

k
ln

b

k
. (6)

It is straightforward to verify that µ defined by (6) satisfies µ(x) ∈ (x, x+ b
k ) for all x (hence the loga-

rithm in (6) is well-defined). Note that as x →∞, µ(x) → x+ b
k . Thus, the strategy is approximately

23The calculations of the Riley outcome for the quadratic loss model of communication with a possibly naive receiver
are very similar.
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linear for most of the state space. In this example, there are no off-the-equilibrium path messages

because m∗(0) = 0. ¤

3.3 Communication to a single receiver: lower unbounded state space

We now consider the case where the state space is unbounded below, i.e. x = −∞ and X = (−∞,∞).

The analysis builds on the results derived in Theorem 2. However, unlike when x > ∞, one cannot

pin down an initial condition such as µ(x) = m∗(x) for the solution to (DE). Hence, there is an

added complication of making sure that any local solution to (DE) can be extended leftward to −∞.

Intuitively, the difficulty is that while extending a local solution to the left, the solution might hit m∗,

whereafter no further extension is possible since −U2
U3

(the right hand side of (DE)) is undefined at

such a point. For instance, if it is the case that the slope of any increasing separating function, as

given by (DE), is always larger and bounded away from the slope of the m∗ function, then extension

to −∞ is impossible.24 To surmount this problem, we need to impose more structure on the sender’s

utility.

For expositional clarity, we focus directly on a restricted class of problems that nevertheless capture

a range of economic applications. Recalling the separable representation (2) of the sender’s utility, we

impose that the two components US (y, x, b) and G (m,x, b) always have the same shape regardless of

the state of the world.

Definition 2. The utility functions US (y, x, b) and G (y, x, b) are shape invariant if they can be

represented as US (y, x, b) = L
(
y − yS (x, b)

)
and G (y, x, b) = l (y − y∗(x, b)) , where the loss functions

L and l are C2, L′′ < 0, l′′ < 0, L′ (0) = 0, and l′ (0) = 0. The function l(·) is assumed to have

unbounded derivatives, and it is assumed that there exist constants θ1 and θ2 such that for all x,

yR ′ (x) < θ1 < ∞ and 0 < yS (x, b)− yR (x) < θ2.

While this class of utility functions is restricted within our general setting, it allows for asymmetric

losses around the sender’s bliss point, it is flexible with respect to risk aversion, and it allows the

magnitude of the sender’s bias to change with the state of the world. In particular, it accommodates

our Applications 2 and 3 with a wide range of CS utility functions US and UR, including the commonly

used specifications in the literature.

The following theorem says that within the shape invariant class, there exists a separating equi-

librium even when the state space is unbounded below.
24Proposition 1 in the Appendix of the working paper version of this article formally proves this.
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Theorem 3. Suppose the state space is (−∞, +∞) and U (x, x̂,m) can be represented as in (2), with

the functions US (y, x, b) and G (y, x, b) being shape invariant. Then there exists a strictly increasing

differentiable separating equilibrium where µ solves (DE), is onto, and µ(x) > m∗(x) for all x.

We conclude this section by reporting an example of information transmission to a single receiver

who may be fully naive, with the state space being unbounded both above and below.

Example 3. Suppose that the state space is X = (−∞,∞), lying is costless but the receiver may

be fully naive with probability α > 0, and utilities are CS quadratic loss functions. Specifically,

UR (y, x) = − (y − x)2 and US (y, x, b) = − (y − (x + b))2. Suppose that in equilibrium, the sender

adopts a differentiable invertible function µ as her communication strategy. When message m is sent,

a strategic receiver correctly infers the state µ−1 (m) and a naive receiver plays the action yR (m) = m.

The sender’s expected utility from sending message m is thus

U
(
x, µ−1 (m) ,m

)
= − (1− α)

(
µ−1 (m)− x− b

)2 − α (m− x− b)2 .

By taking the first-order condition and substituting µ−1 (m) with x, and
(
µ−1 (m)

)′ with µ′ (x), we

obtain the necessary condition

(1− α) b− α (µ (x)− x− b) µ′ (x) = 0. (7)

This differential equation has a linear solution

µ (x) = x +
b

α
,

which defines a differentiable separating equilibrium where the sender’s strategy is onto.

Although this is the same equilibrium strategy that we identified in Example 1, an important

difference is that in the current setting, m∗ (x) = b < µ (x). Consequently, while it is also true

here that in this equilibrium, µ (x) increases pointwise in b and decreases pointwise in α, and that

µ (x) → ∞ pointwise as α → 0, the welfare implications for the sender are quite different. Recall

that in Example 1, describing an instance of communication to a pool of receivers, the sender’s utility

did not change with α, because in equilibrium, the average action elicited was always her bliss point,

yS (x, b). On the other hand, the sender’s utility in the current equilibrium is given by

U (x, x, µ (x)) = − (1− α) b2 − α

(
b

α
− b

)2

= −b2

(
1
α
− 1

)
.

Hence the sender achieves her bliss point only when α = 1, her utility strictly increases in α, and

diverges to minus infinity as α → 0.25 ¤
25In general, there will also exist partial-pooling equilibria which may give the sender higher expected utility but the

strategic receiver a lower level of expected utility than the separating equilibrium here; see Ottaviani and Squintani [23].
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4 Related literature

It is worth comparing our findings with those obtained by Morgan and Stocken [21] in a model of

cheap talk where the sender has private information not only about the state (with bounded support,

as in CS) but also about his bias, which can be either a positive, state-independent constant or zero.26

When the possible bias is low, their game admits a partially separating equilibrium in which low states

are fully revealed, while high states are partitioned in bunches.27 But unlike in our model, there is no

fully-separating equilibrium in the unbounded state space version of their model. Even though average

recommendations are always unbiased in equilibrium by the law of iterated expectation, Morgan and

Stocken [21] show that in a partitional equilibrium with two messages, the recommendations given

by the biased sender are (stochastically) higher than those of the unbiased sender. Hence, both their

model and ours can explain why biased analysts tend to be more optimistic than unbiased analysts.

Our model can explain also why average recommendations are overly optimistic.

Our work is most closely related to Kartik [15], Chen [6], and Blanes [4]. Kartik [15] studies the

general bounded state space CS setting, but with messages that entail some cost of misreporting for

the sender. He shows that any sequence of monotone equilibria of his model can only converge to the

most-informative equilibrium of CS, under a standard regularity condition on preferences. Moreover, in

the cheap talk extension (Manelli [19])—when both costless and costly messages are available—Kartik

[15] proves existence in, and fully characterizes a class of, forward-induction equilibria, demonstrating

that they feature inflated communication. Chen [6] also studies the bounded support case of CS, but

restricts attention to the uniform prior with quadratic loss functions setup, adding a fraction of honest

senders who are always truthful and a fraction of naive receivers who always blindly believe the sender.

Chen [6] proves existence and uniqueness of monotonic equilibrium in the cheap talk extension of her

game, and shows that the equilibrium converges to the most-informative CS equilibrium as the fraction

of naive players becomes small. The most important difference between our work and that of Chen [6]
26Sobel [25] formulates the first fully-fledged dynamic model of communication by a sender with unknown motives:

the receiver does not know whether the sender has identical or opposed preferences. In the early periods, the sender
with opposed preferences builds credibility by reporting the state of the world truthfully, only to exploit this reputation
in the late periods. In Benabou and Laroque’s [1] model, the sender may be honest and truthfully reveal her noisy
signal with positive probability. Consequently, dishonest senders are able to manipulate receivers through misleading
announcements. Olszewski [22] studies a communication model in which players are fully strategic, but the sender is
motivated by both the receiver’s action and her own reputation as an honest (i.e., truthtelling) sender. When the latter
component sufficiently dominates the former, he shows that truthful communication is the unique equilibrium so long as
the receiver observes a signal that is informative about the sender’s signal.

27Intuitively, the unbiased sender can credibly convey unfavorable information, because the biased sender has no
interest in admitting that the state is low. The equilibrium must be partitional when the state is sufficiently high relative
to the bias, since otherwise a biased sender who observes a low state would have an incentive to pretend that the state
is high.
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and Kartik [15] is that we assume an unbounded state space; consequently, separating equilibria exist

in our model but not in theirs; moreover, we are able to work with a more general payoff specification.

Blanes [4] studies communication from a possibly truthful sender to a fully strategic receiver when the

state is normally distributed. Following a higher message, the receiver then believes that the sender

is less likely to be truthful. The resulting equilibrium characterized by Blanes [4] is invertible only for

states below a certain threshold.

On the technical side, parts of our analysis owe much to the techniques introduced by Mailath

[17] to study separation in signaling games with a continuum of types. Indeed, Theorem 2 in this

paper can be considered an extension of his analysis from a bounded type space to a type space that is

unbounded above, albeit with some differences in assumptions. However, there is no analog in Mailath

[17] for our Theorem 1, which covers communication to a pool of partially naive receivers, nor for our

Theorem 3, which identifies a condition to extend Mailath’s results to lower unbounded type spaces.

5 Conclusion

Our costly talk model subsumes at least three modifications of the classic cheap talk model of CS:

communication may be to a pool of receivers, some of whom are partially naive; a single receiver

may be either fully strategic or partially naive; or, misreporting may be costly to the sender due

to inherent psychological costs, technological constraints, or auditing penalties. In these cases, we

show that equilibrium communication may be inflated but still reveal precise information to strategic

receivers, while deceiving naive receivers.

Certainly, the existence of separating equilibria at our full level of generality relies on the assump-

tion that the message and state space for the sender are unbounded either above, or both above and

below. We believe that this may be a reasonable assumption in many applications, as discussed in

the introduction. On the other hand, in some applications it is natural to assume that the state space

is bounded: for example, when a military expert reports on how to allocate a fixed sum of available

funds between the air force and the army. We refer to Kartik [15] and Ottaviani and Squintani [23]

for analyses of costly talk in a bounded state space. In these models, separating equilibria can fail to

exist because the messages required to support separation are inflated (as in our analysis here), and

the upper bound on the message space becomes a binding constraint. Thus, there is an interval of the

highest types that must pool in equilibrium. Nevertheless, as the size of the state space increases, the

size of the interval of types that pool vanishes relative to the size of the state space. To this extent,
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the underlying theme of our analysis carries over.

Throughout the paper, we have restricted our attention to separating equilibria. While it is

intractable to solve for all (perfect Bayesian) equilibria, we are aware that non-separating equilibria

can exist, at least in some special cases.28 For example, Ottaviani and Squintani [23] show that

“partitional” outcomes à la CS can survive when the fraction of naive receivers is sufficiently small,

but that such equilibria are not completely satisfying because they rely on somewhat implausible out-

of-equilibrium belief assignments. Rather than formally pursuing refinements, in this paper we have

simply followed the common practice of focusing on separating equilibria in costly signaling games

when they exist. However, the arguments in Kartik [15] suggest that a refinement such as monotone

D1 equilibrium (Bernheim and Severinov [2]) will isolate separating equilibria in our model. It is also

worth noting that we have confined our attention to differentiable equilibria. Insofar as our goal was

to prove the existence of separating equilibria, this is not troubling.

We believe that the analysis of costly talk and the application to naive receivers may present

exciting avenues for future research. Welfare implications of information transmission policies in the

presence of both naive and sophisticated receivers are potentially important. Moreover, it may be

insightful to study further specialized but richer models that allow for various degrees of naivete on

the part of different receivers.
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Appendix

Proof of Lemma 1. To ease notational burden, let f(x, x̂,m) ≡ (1− α) yR(x̂) + αyR(χ(m)).

(A.1) is trivial. The solution m∗ to U3(x, x, m) = US
1 (f(x, x,m), x, b) α yR ′ (χ(m))χ′(m) = 0

is such that (1− α) yR(x) + αyR(χ(m∗ (x))) = yS (x, b). Hence, m∗ is well-defined by m∗ (x) =
χ−1

(
yR−1

(
yS(x,b)−(1−α)yR(x)

α

))
. Since US

11 < 0 and US
1 (f(x, x, m∗(x)), x, b) = 0, we have

U33(x, x, m∗(x)) = US
11 (f(x, x, m∗(x)), x, b) α

(
yR ′

(χ(m∗(x)))χ′(m∗(x))
)2

< 0,

28This discussion is implicitly restricted to the three applications of Section 2, where the sender’s utility is well defined
for any belief the receivers possess, and not just for beliefs that put mass on a single type.
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which verifies (A.2).

For (A.4), we compute U12(x, x̂,m) = US
12 (f(x, x̂,m), x, b) (1− α) yR ′ (x̂) > 0, because US

12 > 0
and yR ′

> 0. For (A.5), we compute U13(x, x̂,m) = US
12 (f(x, x̂,m), x, b) α yR ′ (χ(m))χ′(m) > 0,

because US
12 > 0, yR ′

> 0, and χ′ > 0.

The first two parts of (A.3) are satisfied because yR ′ and χ′ are bounded away from ∞, hence m∗ ′

is bounded away from 0. The last part of (A.3) follows because for any x and m < m∗ (x),

U (x, x,m∗ (x)) = US
(
yS (x, b) , x, b

)

> US
(
(1− α) yR (x) + αyR (χ(m)) , x, b

)

= U (x, x,m) ,

where the first equality is by definition of m∗ (x) and the inequality holds because US
11 < 0 and

yS (x, b) ≥ yS (x, b) > yR (x) > yR (χ(m)).

(B.2) is satisfied because yR−1 and χ−1 are strictly increasing. Finally, for (B.1), we see that for
any (x,m) , because yR ′

> 0, and χ′ > 0,

sign [U2(x, x, m)] ≡ sign
[
US

1 (f(x, x,m), x, b) (1− α) yR ′
(x)

]

= sign
[
US

1 (f(x, x, m), x, b) (1− α) α yR ′
(χ(m))χ′(m)

]
≡ sign [U3(x, x, m)] .

¤

Proof of Lemma 2. (A.1) is trivial. Observe that U3(x, x, m) = (α + k) G1 (g (m) , x, b) g′ (m); since
g′ > 0 and G1 (y∗(x), x, b) = 0, it follows that m∗ (x) = g−1 (y∗(x, b)) is well-defined. Substituting
y∗(x, b) = g (m∗ (x)), and noting that G1 (y∗(x, b), x, b) = 0, we have

U33(x, x, m∗(x)) = (α + k) G11 (y∗(x), x, b)
(
g′ (m∗(x))

)2
< 0,

because G11 < 0. This verifies (A.2).

For (A.3), note first that m∗ (x) = g−1 (y∗(x, b)) is strictly increasing because g and y∗ are strictly
increasing in x. Since utility is separable in x̂ and m, the third part of (A.3) follows. Next, we see
that m∗ ′ (x) = g−1 ′ (y∗ (x, b)) y∗1 (x, b); since y∗1 is bounded away from 0 and g′ is bounded away from
infinity, it follows that m∗ is unbounded above and also unbounded below when x = −∞.

For (A.4), we compute U12(x, x̂,m) = (1− α) US
12

(
yR(x̂), x, b

)
yR ′ (x̂) > 0 because US

12 > 0 and
yR ′

> 0. For (A.5), we compute U13(x, x̂,m) = (α + k) G12 (g (m) , x, b) g′ (m) > 0 because g′ > 0 and
G12 > 0. For (C.1), we compute U2(x, x, m) = (1− α) US

1

(
yR(x), x, b

)
yR ′ (x) > 0, because yR ′

> 0,

US
11 < 0 and yR(x) < yS(x, b).

For (C.2), first observe that U2 (x, x, m) = (1− α) US
1

(
yR(x), x, b

)
yR ′ (x) is bounded away from

∞ by assumption. For part (ii) of (C.2), fix any x. There exists ε > 0 such that U33(x, x, m) ≥ 0
only if |m−m∗(x)| > ε. So it suffices to prove that |U3(x, x,m)| is bounded away from 0 on the
domain |m−m∗(x)| > ε. By definition of m∗(x) and the assumption that G11 < 0, it follows that
|G1(g(m), x, b)| is bounded away from 0 on the domain |m−m∗(x)| > ε. Moreover, g′ is bounded
away from 0. Thus, |U3(x, x, m)| = (α + k) |G1(g(m), x, b)| g′(m) is indeed bounded away from 0 on
the relevant domain. ¤
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Proof of Theorem 1. Let µ be any differentiable separating equilibrium strategy. It is necessary (but
not sufficient) that for any x ∈ X, µ(x) ∈ arg maxm∈µ(X) U(x, µ−1(m),m). As noted in the text, the
first-order condition for optimality is (FOC). It is clear that one solution to (FOC) is µ (x) = m∗ (x),
since, in this case, U2 (x, x, µ (x)) = U3 (x, x, µ (x)) = 0. This is the unique non-decreasing solution
because for any m 6= m∗ (x), U2(x,x,m)

U3(x,x,m) is well-defined and strictly positive by conditions (A.2) and (B.1);
hence if there is some x with µ(x) 6= m∗(x), µ′(x) < 0 by (FOC). Henceforth, fix µ (x) = m∗ (x);
this is separating by (B.2) and differentiable. For any m ∈ µ(X), let the equilibrium beliefs be
β(m) = µ−1(m). If x = −∞, then µ(X) = M by (A.3). If x > −∞, then for any m < µ(x), let
β(m) = x. To prove that this construction is a separating equilibrium, it needs to be shown that
for all x, µ(x) ∈ arg maxm∈M U(x, β(m),m). Observe that when x > −∞, condition (A.3) implies
that for any x and m < µ(x), U(x, β(µ(x)), µ(x)) ≥ U(x, β(m), m)). Therefore, regardless of whether
x > −∞ or x = −∞, it suffices to show that µ(x) ∈ arg maxm∈µ(X) U(x, β(m),m). Fix any state x̃.
Let M ≡ µ (X) ∩ (−∞, µ(x̃)] and M ≡ µ (X) ∩ [µ(x̃),∞).

We first argue that µ(x̃) ∈ arg maxm∈M U(x̃, β(m),m). Suppose not, towards contradiction. Then,

since U(x̃, β(m),m) is C1 in m, there exists some m̂ ∈ M \ µ(x̃) such that dU(x̃,β(m),m)
dm

∣∣∣
m=m̂

< 0.

Letting x̂ ≡ β(m̂) < x̃, we have

U2(x̃, x̂, m̂)β′(m̂) + U3(x̃, x̂, m̂) < 0 = U2(x̂, x̂, m̂)β′(m̂) + U3(x̂, x̂, m̂). (8)

Conditions (A.4) and (A.5), together with β′ > 0, imply that U2(x, x̂, m̂)β′(m̂) + U3(x, x̂, m̂) is
strictly increasing in x, contradicting condition (8).

The argument for µ(x̃) ∈ arg maxm∈M̄ U(x̃, β(m),m) is similar. ¤

Lemma 3. If µ : X → M solves (DE), µ(x) = m∗ (x), and is incentive compatible, then µ is strictly
increasing.

Proof. The argument is that of Mailath’s [17] Theorem 2, hence the proof is omitted. Details are
available in the working paper version of this article. ¤

Lemma 4. There is a unique solution on X to the restricted initial value problem: (DE), µ(x) =
m∗(x), and dµ

dx > 0.

Proof. The proof is similar to Kartik’s [15] Lemma 5, which builds on Mailath’s [17] Proposition 5.
For convenience, denote m0 ≡ m∗(x).

Step 1: (Local uniqueness) Let m0 ≡ m∗(x). Consider the inverse initial value problem to find
τ(m) such that

τ ′ = Γ(m, τ) ≡ −U3(τ , τ ,m)
U2(τ , τ ,m)

, τ(m0) = x. (9)

By (A.1) and (C.1), Γ is continuous and Lipschitz in a neighborhood of (m0, x). Hence, standard
existence theorems (e.g., Coddington and Levinson [7], Theorem 2.3) imply that there is a unique
location solution, τ̃ , to (9) on [m0,m0 + δ), for some δ > 0; τ̃ ∈ C1([m0,m0 + δ)). Since Γ(m0, x) = 0
while m∗ −1 has strictly positive derivative, δ can be chosen small enough such that for all m ∈
(m0,m0 + δ), m > m∗(τ̃(m)) and thus τ̃ ′(m) > 0. Defining µ̃ ≡ τ̃−1 gives a solution to the restricted
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initial value problem on [x, x̃), for some x̃ > x; µ̃ ∈ C1([x, x̃)) with µ̃′ > 0. Since the inverse of any
(local) solution to the restricted initial value problem is a (local) solution to the inverse initial value
problem, we have (local) uniqueness of a solution to the restricted initial value problem.

Step 2: (Unique extension) To prove that there is a unique extension of µ̃ from [x, x̃) to [x,∞),
it is sufficient to prove the following inductive step: if δ ∈ (x,∞) and µ̃ is a solution on [x, δ) that is
C1 with dµ

dx > 0, then there is a unique extension of µ̃ to [x, δ + θ) for some θ > 0, while maintaining
dµ
dx > 0 and µ̃ ∈ C1([x, δ + θ)). (This is sufficient because if x∗ < ∞ is the supremum over all x such
that µ̃ can be extended to [x, x), then µ̃ has an extension to [x, x∗), and by the inductive step, an
extension to [x, x∗ + θ) for some θ > 0, which contradicts the definition of x∗.)

It remains to prove the inductive step. Suppose δ ∈ (x,∞) and µ̃ is a solution to (DE) on [x, δ),
with µ̃ ∈ C1([x, δ)) and µ̃′ > 0. Let mδ ≡ limx↑δ µ̃ (x).

First we show that mδ > m∗(δ). Suppose not, towards contradiction. Then mδ = m∗(δ) (because
µ̃(x) > m∗(x) for all x ∈ (x, δ)) and limx↑δ

dµ(x)
dx = ∞. Let a ≡ supx∈[x,δ] m∗ ′ (x); (A.1) implies that

a < ∞. Since µ̃ ∈ C1([x, δ)), there exists x̂ < δ such that dµ
dx (x) > a for all x ∈ [x̂, δ). Pick ω > 0 such

that µ̃(x̂) > m∗(x̂) + ω . We have

mδ = µ̃(x̂) + lim
x↑δ

∫ x

x̂

dµ

dx
(ξ)dξ

> m∗(x̂) + ω +
∫ δ

x̂

dµ

dx
(ξ)dξ

> m∗(x̂) + ω +
∫ δ

x̂
m∗ ′ (ξ)dξ

= m∗(δ) + ω,

which contradicts mδ = m∗(δ).

Next, we show that mδ < ∞. Suppose not, towards contradiction. Then limx↑δ µ̃′ (x) = ∞.
By (C.2.i), U2(x, x, m) is uniformly bounded away from ∞ on the domain {(x,m) : x ≤ δ}. Conse-
quently, limx↑δ |U3 (x, x, µ̃ (x))| = 0. Since m∗ (δ) < ∞ whereas limx↑δ µ̃ (x) = ∞, this contradicts
the implication of (C.2.ii) that for any ε > 0, |U3 (x, x, m)| is bounded away from 0 on the domain
{(x,m) : x ≤ δ and m > m∗ (x) + ε}.

Therefore, mδ ∈ (m∗(δ),∞). By (A.1) and (A.2), −U2(x,x,µ)
U3(x,x,µ) is continuous, Lipschitz, and bounded

in a neighborhood of (δ, mδ). Standard extension theorems (e.g., Coddington and Levinson [7],Theorem
4.1 and preceding discussion) imply that there is a unique extension of µ̃ to [x, δ + θ) for some θ > 0;
this extension is C1. Since dµ

dx can never hit 0 and solve (DE), dµ
dx > 0 on [x, δ + θ). ¤

Proof of Theorem 2. Lemmas 3 and 4 establish that there is a unique strategy for the sender that
is a candidate for a differentiable separating equilibrium with µ(x) = m∗ (x). For the remainder of
this proof, µ refers to this strategy. For any m ≥ m∗(x), beliefs are given by β(m) = µ−1(m). Note
that since µ is strictly increasing and solves (DE), it is immediate that µ(x) > m∗(x) for all x; since
m∗ is unbounded above (condition (A.3)), µ−1(m) is thus well-defined for all m ≥ m∗(x). For all
m < m∗(x), set beliefs to β(m) = x. Clearly, beliefs thus defined are consistent with Bayes rule. It
remains only to show incentive compatibility of µ.
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Fix any type x̃. First, we argue that µ(x̃) ∈ arg maxm∈[µ(x),µ(x̃)] U(x, β(m),m). Suppose not,
towards contradiction. Then, since U(x̃, β(m),m) is C1 in m, there exists some m̂ ∈ [µ(x), µ(x̃)) such
that dU(x̃,β(m),m)

dm

∣∣∣
m=m̂

< 0. Letting x̂ ≡ β(m̂) < x̃, we have

U2(x̃, x̂, m̂)β′(m̂) + U3(x̃, x̂, m̂) < 0 = U2(x̂, x̂, m̂)β′(m̂) + U3(x̂, x̂, m̂). (10)

Conditions (A.4) and (A.5) combined with β′ > 0 imply that U2(x, x̂, m̂)β′(m̂)+U3(x, x̂, m̂) is strictly
increasing in x, contradicting (10).

An analogous argument shows that µ(x̃) ∈ arg maxm∈[µ(x̃),∞) U(x, β(m),m). Finally, we need to
show that for all m < µ(x), U(x̃, x̃, µ(x̃)) ≥ U(x̃, β(m),m). To see this, observe that for any message
m < x,

U(x̃, x̃, µ(x̃)) ≥ U(x̃, β(µ(x)), µ (x)) = U(x̃, x,m∗ (x))

> U(x̃, x,m) = U(x̃, β (m) ,m),

where the first inequality holds because we already showed that type x̃ does not prefer to mimic type
x, the second inequality is by condition (A.3), and the two equalities follow from the construction of
µ and β. ¤

Lemma 5. Suppose U (x, x̂,m) can be represented as in (2), with the functions US (y, x, b) and
G (y, x, b) being shape invariant. For any x0, there exists m0 > m∗(x0) such that there is a solu-
tion µ on (−∞,∞) that satisfies (DE) and µ(x0) = m0.

Proof. Assume the hypothesis of the Lemma. The proof proceeds in two steps.

Step 1: We argue that there exists κ > 0 such that

g(m) ≥ g(m∗(x)) + κ =⇒
(

g′ (m)
U2(x, x, m)
|U3(x, x, m)| ≤ g′ (m∗ (x)) m∗ ′ (x)

)
. (11)

To show this, observe that in the shape invariant utility domain,

U2 (x, x̂,m) = (1− α) L′
(
yR(x̂)− yS (x)

)
yR ′

(x̂),

U3 (x, x̂,m) = (α + k)l′ (g(m)− y∗(x)) g′ (m) ,

and m∗ (x) satisfies l′ (g(m)− y∗(x)) g′ (m) = 0, i.e., g (m∗ (x)) = y∗(x), or m∗ (x) = g−1 (y∗(x)) .

Thus, it suffices to show that there is ε > 0 such that for all m,x,

g(m) ≥ g(m∗(x))+ε =⇒
(

1− α

α + k

)
L′

(
yR(x)− yS (x)

)
yR ′

(x) ≤ g′ (m∗ (x)) m∗ ′ (x)|l′ (g(m)− g (m∗ (x))) |.

As long as m > m∗ (x) , the right hand side of the above inequality is increasing in m; thus the above
inequality is satisfied if it holds for m = g−1(y∗ (x)+K), for some K > 0, so that g(m) = y∗ (x)+K =
g(m∗(x)) + K. Since m∗ ′ (x) = y∗ ′ (x)/g′ (m∗ (x)), it is sufficient that there exists a K > 0 such that
for all x, (

1− α

α + k

)
L′

(
yR(x)− yS (x)

)
yR ′

(x) ≤ y∗ ′ (x)|l′ (K) |.
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There is indeed such a K > 0 because (i) yR ′ (x) < θ1 < ∞ and γ3 < y∗ ′ (x) for all x; (ii) 0 <

yS (x) − yR(x) < θ2 for all x and hence L′
(
yR(x)− yS (x)

) ≤ L′ (−θ2) < ∞ by the properties of L;

and (iii) since l′ is unbounded below, there exists K > 0 large enough such that
(

1−α
α+k

)
L (−θ2) Mθ1 ≤

γ3|l′ (K) |.
Step 2: For any x0, pick m0 satisfying g(m0) ≥ g(m∗(x0))+κ, where κ is that identified in Step 1.

Since g is strictly increasing, m0 > m∗ (x0). Then there is a local solution to (DE) around (x0,m0)—
call it µ. Extension to +∞ follows by the same argument as in the proof of Lemma 4. It remains to
be proven that µ can be extended to −∞. Since U3(x, x, m) < 0 for all m > m∗(x), it suffices to show
that there is no x̂ ∈ (−∞, x0) such that limx↓x̂ µ(x) = m∗(x̂). For this, it is sufficient if for all x < x0,
g(µ (x)) ≥ g(m∗(x)) + κ. To verify this property, observe that for all x < x0,

g (µ (x))− g(m∗ (x)) = g(µ(x0))− g(m∗(x0))−
∫ x0

x

[
g′ (µ (y))µ′(y)− g′ (m∗ (y)) m∗ ′ (y)

]
dy

≥ κ−
∫ x0

x

[
g′ (µ (y))

U2(y, y, µ (y))
|U3(y, y, µ (y))| − g′ (m∗ (y)) m∗ ′ (y)

]
dy

≥ κ,

where the first inequality uses g(m0) ≥ g(m∗(x0)) + κ and the second inequality uses the same fact
combined with (11). ¤

Lemma 6. For any (x0,m0) with m0 > m∗ (x0), if m0 is sufficiently close to m∗ (x0), the extension
of the local solution to (DE) through (x0,m0) hits m∗ for some x < x0.

Proof. Fix an x1 < x0 and a θ > 0. We argue that by picking m0 ∈ (m∗ (x0) ,m∗ (x0) + θ) sufficiently
small, the solution through (x0,m0) will hit m∗ at some x ∈ S = [x1, x0]. Let a = maxx∈S m∗ ′ (x).
This is positive and finite by the assumptions on U . Now, for any c, there exists ε ∈ (0, θ) s.t. if x ∈ S

and m ∈ (m∗ (x) ,m∗ (x) + ε], then −U2(x,x,m)
U3(x,x,m) > c; this is by conditions (C.1) and (A.2). Consider in

particular c = max
{

θ+m∗(x0)−m∗(x1)
x0−x1

, a
}

. By construction, the extension of the local solution through
(x0,m

∗ (x0) + ε), call it µ, has µ′ (x) > a, hence µ (x) ≤ m∗ (x) + ε over the domain of maximal
extension intersecting S. Now suppose towards contradiction that µ can be extended to some x ≤ x1.
Since by construction µ′ (x) > θ+m∗(x0)−m∗(x1)

x0−x1
for all x ∈ S, we have

µ (x1) = µ (x0)−
∫ x0

x1

µ′ (x) dx

< m∗ (x0) + ε−
∫ x0

x1

θ + m∗ (x0)−m∗ (x1)
x0 − x1

dx

= ε− θ + m∗ (x1)

< m∗ (x1) ,

which implies by the intermediate value theorem that there exists some x ∈ (x1, x0) such that µ (x) =
m∗ (x), a contradiction with µ solving (DE) at x. ¤

Lemma 7. For any x0 and m0 < m̃0, the left-extension of the local solution to (DE) through (x0,m0)
lies strictly below the left-extension of the local solution to (DE) through (x0, m̃0) (over the smaller of
the two domains of possible extension).
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Proof. Let µ and µ̃ be the respective solutions for the two initial conditions. Given the continuity of
solutions, it suffices to show that there is no x < x0 such that µ (x) = µ̃ (x). Suppose such a point
exists. Let x̂ be the supremum over such points below x0; that m0 < m̃0 implies that x̂ < x0. Then
by the local uniqueness of solutions at any (x,m) such that m ≥ m∗ (x) (using the local uniqueness of
an increasing solution to the inverse differential equation of (DE) if m = m∗ (x)), µ (x̂) = µ̃ (x̂) implies
that µ (x) = µ̃ (x) for some x ∈ (x̂, x0), contradicting the definition of x̂. ¤

Proof of Theorem 3. Assume that U can be represented as in (2) and the functions US and G are
shape invariant. By Lemma 5, there is a solution to (DE) on the entire domain passing through
(x0,m0) for some m0 sufficiently large. If the solution is onto, we are done. Suppose not, so that it
has a horizontal asymptote. Let m̄0 be the infimum over m > m∗ (x0) for which (i) a solution exists
over the entire domain; and (ii) the solution is not onto. Let m0 be the supremum over m > m∗ (x0)
for which no solution exists on entire domain. Lemmas 6 and 7 imply that ∞ > m̄0 ≥ m0 > m∗ (x0).
If m̄0 > m0, then for any m0 ∈ (m0, m̄0), the local solution through (x0,m0) extends over the whole
domain and is onto by the definitions of m0 and m̄0, and we are done. So assume henceforth that
m̄0 = m0. The theorem is proved by showing that the local solution to (DE) through (x0,m0) extends
to −∞ and is onto. For any m0 > m∗ (x0), denote by µ (x,m0) the value at x of the (maximally
extended) solution to (DE) with the initial condition (x0,m0).

Step 1: The left-extension, given initial condition (x0,m0), extends to −∞. Suppose not, towards
contradiction. Then there exists some x̂ such that µ (x̂,m0) = m∗ (x̂). Let Dε,θ ≡ [x̂ + ε, x0 + θ] ×
(µ (x̂ + ε) , µ (x0 + θ)). The right hand side of the (DE) is continuous and Lipschitz on Dε,θ for small
enough ε, θ > 0 since Dε,θ is a bounded space. By Birkhoff and Rota’s [3] Theorem 2 and Corollary
from Chapter 6, the function µ (x,m0) is continuous in m0 in a neighborhood of m0. Thus, by
choosing arbitrarily small m0 > m0, µ (x̂ + ε,m0) can be made close to µ (x̂ + ε,m0), but strictly
larger by the monotonicity Claim. Now, noting that by choosing small enough ε, µ (x̂ + ε,m0) can be
made arbitrarily close to m∗ (x̂ + ε), it follows that by choosing small enough ε and small enough m0 >

m0, µ (x̂ + ε,m0) can be made arbitrarily close to m∗ (x̂ + ε). But then, by the non-existence Claim,
the solution µ (·,m0) cannot extend to −∞ because it hits m∗ for some x < x̂ + ε. This contradicts
m0 > m0 = m̄0 and the definition of m̄0.

Step 2: The left-extension, given initial condition (x0,m0), is onto. Suppose not, towards contra-
diction. Then by Step 1, µ (x,m0) has a horizontal asymptote as x → −∞—call it m̂. Since µ (x,m0)
is strictly increasing in x, µ (x,m0) > m̂ for all x. Consider some small θ > 0. There exists ε > 0
such that for all x ∈ (−∞, x0 + θ], µ (x,m0) − m∗ (x) > ε, because limx→−∞m∗ (x) = −∞. Define
Eε,θ ≡ {(x,m) : x ∈ (−∞, x0 + θ] , m > m∗ (x) + ε}. The right hand side of (DE) is continuous and
Lipschitz on Eε,θ for small enough ε, θ > 0, because of condition (C.2). Applying again Birkhoff and
Rota’s [3] Theorem 2 and Corollary from Chapter 6, the function µ (x,m0) is continuous in m0 in
a neighborhood of m0. Thus, for any x1 ∈ (−∞, x0), there exists large enough m0 < m0 such that
µ (x1,m0) is arbitrarily close to µ (x1, m0), in particular µ (x1,m0) > m̂. Recalling the constant κ iden-
tified in condition (11), it follows that because m∗ (x) is unbounded below and g is strictly increasing
with a derivative bounded away from 0, we can choose x1 such that g (m̂) > g (m∗ (x1))+κ. But then,
µ (x1,m0) extends to −∞ by the argument of Lemma 5, contradicting the definition of m0. ¤
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