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Abstract

This note considers (complete information) Nash-implementation when mixed strategies are properly

accounted for and the outcome space is infinite. We first construct an example in which preferences

over lotteries fail the Archemedian axiom and show that, even under the classical sufficient conditions for

implementation, the canonical mechanism for implementation fails: there exists a mixed-Nash equilibrium

in which the outcome is undesirable with probability one. We then prove that the canonical mechanism

works if Bernoulli utilities are bounded.

1 Setup

Our setup and notation are standard in implementation theory; the reader is referred to Maskin (1999) or

Maskin and Sjostrom (2002, MS hereafter) for details. The environment is a tuple (A,N,Θ), where A is a set

of outcomes, N := {1, . . . , n} is a finite set of agents/players, and Θ is a set of possible states of the world.

A and Θ are arbitrary topological spaces. Throughout, we treat any topological space, X, as a measurable

space with its Borel sigma-field and restrict our attention to the set of Borel probability measures, denoted

∆(X). Product spaces are endowed with the product topology while the space of Reals is endowed with its

usual topology. All functions are assumed to be measurable.

Each agent i has a von Neumann-Morgenstern (vNM) utility function, ui : A × Θ → R. Agent i’s

lower contour set at (a, θ) ∈ A × Θ is Li(a, θ) := {b ∈ A |ui(b, θ) ≤ ui(a, θ)}. A social choice rule (SCR) is

a function F : Θ → 2A\{∅}, i.e. a non-empty-valued correspondence. A social choice function (SCF) is a

single-valued SCR, i.e. a function f : Θ→ A. A SCR F is (Maskin) monotonic if for all (a, θ, θ′) ∈ A×Θ×Θ

the following is true: if a ∈ F (θ) and Li(a, θ) ⊆ Li(a, θ
′) for all i ∈ N , then a ∈ F (θ′). A SCR F satisfies

no veto power (NVP) if for all (a, j, θ) ∈ A × N × Θ: if ui(a, θ) ≥ ui(b, θ) for all b ∈ A and all i 6= j, then

a ∈ F (θ).

A mechanism (or game form) is a pair Γ = (M, g) where M = ×i∈NMi and each Mi is the message

space for player i and g : ×i∈NMi → A is an outcome function. We denote a message of player i by mi and

a profile of messages by m. We assume that each player i’s preferences over lotteries are represented by a

utility function Ui : ∆(A)→ R,1 such that for any probability measure, P ∈ ∆(A), Ui(P ) =
∫
A
ui(a)dP (a).

Pure- and mixed-strategy Nash equilibria are defined in the usual way.

∗This paper grew out of our research on implementation with evidence (Kartik and Tercieux, 2011). In a 2008 version of
this paper, we developed a mechanism that we have since replaced with Maskin and Sjostrom’s (2002) mechanism. We thank
Eric Maskin for pointing us to Maskin and Sjostrom (2002).
†Columbia University, Department of Economics. Email: nkartik@gmail.com.
‡Paris School of Economics and CNRS. Email: tercieux@pse.ens.fr.
1R ≡ R ∪ {−∞,+∞} is the affinely-extended Reals.
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A mechanism Γ implements a SCR F in mixed-strategy Nash equilibrium, or simply MSNE-implements

F , if at each state θ the game induced by Γ satisfies: (1) for all a ∈ F (θ), there exists a pure Nash

equilibrium m∗ such that g(m∗) = a, and (2) in any mixed-Nash equilibrium µ ≡ (µi)i∈N ∈ ×i∈N∆(Mi),

µ(m) > 0 =⇒ g(m) ∈ F (θ). A SCR F is MSNE-implementable if there exists a mechanism which MSNE-

implements F . Note that we use a slightly less demanding notion than that of Maskin 1999 (p. 25): instead

of condition (2) in Maskin, we only require that g(m) ∈ F (θ) for all m such that µ(m) > 0. In other words,

we ignore outcomes that are undesirable but occur with 0 probability. This will make no difference if A is

countable.

2 A counter-example to MSNE implementation

The classic result (Maskin, 1999) on Nash implementation says that a monotonic SCR is implementable if it

satisfies NVP and there are three or more players. The mechanism in Maskin 1999 works insofar as one con-

siders pure-strategy implementation. MS provide a canonical mechanism to obtain MSNE-implementation.

In this section, we construct an example in which MSNE-implementation cannot be achieved by the

mechanism proposed by MS. The reason we focus on the MS mechanism is because we are not aware of

any other canonical mechanism in the literature that achieves MSNE-implementation when the MS mech-

anism cannot.2 The key feature of our example is a failure of continuity of preferences over lotteries; more

precisely, the Archemedian axiom is violated. We suspect, but have not proved, that in our example MSNE-

implementation is impossible.

The MS mechanism is as follows (readers should consult MS for details). For each player i,

Mi = A×Θ× {αi | αi : A×Θ→ A and αi(a, θ) ∈ Li(a, θ) for all (a, θ)} × N.

There are three Rules governing outcomes:

Rule (i): If there is j ∈ N s.t. mi = (a, θ, ·, 1) for all i 6= j, a ∈ F (θ) and nj = 1, take g(m) = a.3

Rule (ii): If there is j ∈ N s.t. mi = (a, θ, ·, 1) for all i 6= j, a ∈ F (θ) and nj > 1 take g(m) = αj(a, θ).

Rule (iii): If neither (i) nor (ii) applies, then g(m) = ai∗ ,where i∗ = max
{
i | ni = maxj n

j
}

and mi∗ =

(ai∗ , ·, ·, ·)

MS assert that, with three or more players, the above mechanism MSNE-implements any monotonic SCR

satisfying NVP. MS only provide a formal argument for mixed-Nash equilbria with finite support. We will

show through a counter-example that implementation fails when one considers all mixed-Nash equilibria,

including those with infinite support. In fact, in our counter-example the MSNE is “bad” in a strong sense

because all points in the support yield undesirable outcomes.

2Maskin (1999) offers a different mechanism whose goal was to achieve MSNE-implementation under the same conditions as
MS. This mechanism also fails to work in our example.

3To be precise, we have modified Rule (i) from MS. MS’s Rule (i) is written as follows: If there is j ∈ N s.t. mi = (a, θ, ·, 1)
for all i 6= j, and zj = 1, take g(m) = a. However, the mechanism defined in this way does not work. Here is a counter-example:
Θ = {θ, θ′}, A = {a, b} and n = 3. At each state, each agent strictly prefers a b. The SCF f is a constant, f(·) = a. Plainly,
f is monotonic and satisfies NVP. But at each state, there is an undesirable (pure-strategy) equilibrium where mi = (b, θ, α, 1)
for all i (i.e. where we fall into Rule (i) a defined above). This is an equilibrium because if some player i deviates, we would
fall into Rule (ii) where the outcome can only be in Li(b, θ) = {b}, and hence no deviation would be profitable.
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The counter-example is as follows. Assume three players i = 1, 2, 3. The set of outcomes is A =

N∗ ∪ {a} ∪ {b}. There are two states of the world, Θ = {θ, θ′}. The SCF is defined by f(θ) = a and

f(θ′) = b. Fix any probability distribution µ ∈ ∆(N∗) such that µ(k) > 0 for all k ∈ N∗. We now

stipulate some conditions on preferences over lotteries. We do this in terms of the Bernoulli utility functions

ui : A → R; recall that preferences over lotteries are represented by Ui(·) such that for any P ∈ ∆(A),

Ui(P ) =
∑
x∈A

P (x)ui(x). Our first requirement is that at state θ:

(a1) ∀k ∈ N∗ : u1(k, θ) = u2(k, θ) = − k
µ(k) .

(a2) ∀k ∈ N∗ : u3(k, θ) = u3(a, θ) = u3(b, θ).

(a3) u1(b, θ) < u1(1, θ).

The second requirement is that at state θ′:

(b1) ∀k ∈ N∗ : u3(k, θ′) > u3(b, θ′) = u3(a, θ′)

(b2) u1(1, θ′) ≤ u1(b, θ′).

The third requirement is that

arg max
x∈A

u1(x, θ) = arg max
x∈A

u2(x, θ) = {a} and arg max
x∈A

u1(x, θ′) = arg max
x∈A

u2(x, θ′) = {b}.

This condition ensures that f satisfies NVP. Note that the f is Maskin-monotonic because of the following

two observations:

• u3(k, θ) = u3(a, θ) and u3(k, θ′) > u3(a, θ′);

• u1(1, θ′) ≤ u1(b, θ′) and u1(b, θ) < u1(1, θ).

Now consider MS’s mechanism and assume the true state is θ. Consider the following profile of mixed

strategies: for i = 1, 2 : µi is such that µi
((
θ′, b, αi(·, ·), 1

))
= 1, while µ3

((
θ′, bk, α3(·, ·), k

))
= µ(k) where

αi(·, ·) ∈ Li(·, ·) satisfies αi(b, θ
′
) ≡ b for all i = 1, 2, 3. In addition, b1 = b and for k > 1 : bk = k. So in this

profile, players 1 and 2 are playing pure strategies and claiming that the state is θ′, although the true state

is θ, and requesting outcome b 6= f(θ); player 3 is playing a mixed strategy where he always claims the state

is θ′, but only puts probability µ(1) on the pure strategy that 1 and 2 are playing. We will argue that this

profile is an MSNE at θ.

Obviously, player 3 has no incentive to deviate (he is indifferent between any outcome). Consider player

i = 1, 2. Note that if player i sticks to the equilibrium strategy, then with probability µ(1), we fall into Rule

(i) while with probability 1−µ(1) we fall into Rule (ii). When we fall into Rule (ii), the outcome is b because

of the specification of player 3’s proposed function α3(·, ·). Hence, i’s expected payoff is

µ(1)ui(b, θ) +

∞∑
k=2

µ(k)× ui(b, θ) = ui(b, θ).

If player i deviates to m′i = (θ̂, b̂, α̂, k̂) 6=
(
θ′, b, α, 1

)
, with probability

∑∞
k=k̂+1 µ(k) we fall into Rule (iii)

and player 3 is the “dictator” who chooses outcome bk = k. Hence i’s expected payoff from the deviation
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is bounded from above by

k̂∑
k=1

µ(k) max
c∈A

ui(c, θ) +

∞∑
k=k̂+1

µ(k)× ui(k, θ) =

k̂∑
k=1

µ(k)ui(a, θ) +

∞∑
k=k̂+1

µ(k)×
(
− k

µ(k)

)
= −∞.

So player i has no incentive to deviate, proving that the mixed strategy profile is indeed an equilibrium.

Note in addition that m ∈ Supp(µ) ⇒ g(m) = b 6= a = f(θ), hence any point in the support of µ yields

an undesirable outcome at θ.

Remark 1. The example uses quite crucially a representation of preferences where the Bernoulli utility

function ui for i = 1, 2 is unbounded below (at state θ). Thus, these agents’ preferences over lotteries do

not satisfy the Archimedean Axiom. Note that this is generally the case in implementation theory when

the outcome space is augmented with transfers that are unbounded and agents have quasi-linear utilities

in the transfers. As we will show below, unboundedness of the Bernoulli utilities is necessary for failure of

MSNE-implementation.4

3 Bounded utilities are sufficient for MSNE implementation

In this section, we prove that if the Bernoulli utilities are bounded, then the MS mechanisms achieves MSNE

implementation.

Assumption 1. For any i and any θ, there exists M ≥ 0 such that M ≥ ui(·, θ) ≥ −M .

Note that this Assumption was violated by the counter-example above.

Remark 2. The assumption is trivially satisfied if the outcome space is finite. The assumption is also

satisfied if one requires that preferences over lotteries satisfy the Archimedean Axiom (and don’t restrict the

space of lotteries), given the vNM representation.

Theorem 1. Assume n ≥ 3. Under Assumption 1, any monotonic SCR satisfying NVP is MSNE-

implementable.

The rest of the section is devoted to the proof of this Theorem. It is easy to see, as usual, that “truthful

messages” form a desirable pure Nash equilibrium, so we will only prove that there are no undesirable mixed

equilibria. Let µ ≡ (µi)i∈N be a (mixed) Nash equilibrium when the true state is θ′, and fix any realization

m∗ ≡ (m∗i )i∈N such that µ(m∗) > 0. We must show that g(m∗) ∈ F (θ′).

Suppose first that m∗ is a realization such that there is j for which

for all i 6= j : m∗i = (a, θ, ·, 1), a ∈ F (θ) while nj = 1

but that the profile θ differs from the true profile that is θ′. From Rule (i), the equilibrium outcome is

a ∈ F (θ). For any player i, consider a sequence of {bki }∞k=1 such that limk→∞ ui(b
k
i , θ
′) = sup

x∈A
ui(x, θ

′).5 Now

4Neither MS nor Maskin (1999) state any assumptions on preferences over lotteries. The only statement we could find
about lottery preferences is fn. 7 in Maskin (1999), which states that the mixed-Nash implementation result holds for “any risk
preferences.”

5If there is an outcome that maximizes i’s preferences under θ′ — as is the case if A is finite — then we could just set bki to
be that outcome. This more cumbersome definition accounts for the possibility that is no maximal element when A is infinite.
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imagine that player i plays mk
i =

(
bki , θ, α

k
i (·, ·) , k

)
where limk→∞ ui(α

k
i (ã, θ̃), θ′) = sup

x∈Li(ã,θ̃)
ui(x, θ

′) for all

(ã, θ̃) ∈ A×Θ. In the sequel, we show that if for some b ∈ Li (a, θ), we have ui(b, θ
′) > ui(a, θ

′), then, for k

large enough (and under Assumption 1 made above) player i is better off using mk
i rather than m∗i against

µ−i, which contradicts the assumption that µ is a Nash equilibrium. We conclude that

for all i, Li(a, θ) ⊆ Li(a, θ′).

Hence, since F is monotonic and a ∈ F (θ), we have a ∈ F (θ′) as required.

So let us assume that for some b ∈ Li (a, θ), we have ui(b, θ
′) > ui(a, θ

′), and let us show that for k large

enough, player i is better off using mk
i rather than m∗i against µ−i.

Claim 1. limk→∞ ui(g(mk
i ,m

∗
−i), θ

′) > ui(g(m∗i ,m
∗
−i), θ

′).

Proof. Either (mk
i ,m

∗
−i) falls into Rule (ii) for all k > 1, or it falls into Rule (iii) for all k > 1. If (mk

i ,m
∗
−i)

falls into Rule (ii) for all k > 1, it follows that

lim
k→∞

ui(g(mk
i ,m

∗
−i), θ

′) = lim
k→∞

ui(α
k
i (a, θ), θ′)

= sup
x∈Li(a,θ)

ui(x, θ
′) ≥ ui(b, θ′) > ui(a, θ

′) = ui(g(m∗i ,m
∗
−i), θ

′) = a

where the first inequality comes from the fact that b ∈ Li(a, θ). On the other hand, if (mk
i ,m

∗
−i) falls into

Rule (iii) for all k > 1, it follows that

lim
k→∞

ui(g(mk
i , ŝ−i), θ

′) = sup
x∈A

ui(x, θ
′) ≥ ui(b, θ′) > ui(a, θ

′) = ui(g(m∗i ,m
∗
−i), θ

′).

Claim 2. For any realization m̂−i of µ−i, {ui(g(mk
i , m̂−i), θ

′)}k>1 converges and limk→∞ ui(g(mk
i , m̂−i), θ

′) ≥
ui(g(m∗i , m̂−i), θ

′).

Proof. Fix any m̂−i. Consider the case where (m∗i , m̂−i) falls into Rule (i), and let g(m∗i , m̂−i) = â. In such

a case, for k > 1, (mk
i , m̂−i) falls either into Rule (ii) or into Rule (iii). If for some k > 1, (mk

i , m̂−i) falls into

Rule (ii), we must have that for all k > 1, (mk
i , m̂−i) falls into Rule (ii) and hence, g(mk

i , m̂−i) = αki (â, θ̂)

for some θ̂ s.t. â ∈ F (θ̂). By definition of αki (·, ·),

lim
k→∞

ui(g(mk
i , m̂−i), θ

′) = sup
x∈Li(â,θ̂)

ui(x, θ
′) ≥ ui(â, θ′) = ui(g(m∗i , m̂−i), θ

′).

Next, suppose that for some k > 1, (mk
i , m̂−i) falls into Rule (iii). Then we must have that for all k > 1,

(mk
i , m̂−i) falls into Rule (iii) and hence, g(mk

i , m̂−i) = bki . Thus,

lim
k→∞

ui(g(mk
i , m̂−i), θ

′) = sup
x∈A

ui(x, θ
′) ≥ ui(g(m∗i , m̂−i), θ

′).

Finally, whenever (m∗i , m̂−i) falls into Rule (ii) or (iii), for k large enough, (mk
i , m̂−i) falls into Rule (iii)

and g(mk
i , m̂−i) = bki . Hence, a similar reasoning as above applies.

The following Lemma is useful, which is where we first use Assumption 1:
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Lemma 1. lim
k→∞

∫
m̂−i

ui
(
g(mk

i , m̂−i), θ
′) dµ−i =

∫
m̂−i

lim
k→∞

ui
(
g(mk

i , m̂−i), θ
′) dµ−i.

Proof. Given Assumption 1 and the pointwise convergence from Claim 2, this is an application of the

Lebesgue dominated convergence theorem.

We complete the argument by now observing that

lim inf
k→∞

∫
m̂−i

ui
(
g(mk

i , m̂−i), θ
′) dµ−i =

∫
m̂−i

lim
k→∞

ui
(
g(mk

i , m̂−i), θ
′) dµ−i > ∫

m̂−i

ui(g(m∗i , m̂−i), θ
′)dµ−i,

where the equality is by Lemma 1 and the strict inequality is by Claims 1 and 2 combined with the fact that

µ−i
(
m∗−i

)
> 0 and that, by Assumption 1,

∫
m̂−i

ui(g(m∗i , m̂−i), θ
′)dµ−i is finite. This implies that for k large

enough, ∫
m̂−i

ui
(
g(mk

i , m̂−i), θ
′) dµ−i > ∫

m̂−i

ui(g(m∗i , m̂−i), θ
′)dµ−i,

and hence player i is better off using mk
i rather than m∗i against µ−i, a contradiction.

Finally, in case m∗ falls into Rule (ii) or Rule (iii) and g (m∗) = a, a similar reasoning as above can be

used to show that if a is not the most prefered outcome at θ′ for at least n − 1 players, then there is some

player i for whom mk
i is a profitable deviation. Hence, by NVP, we must also have a ∈ F (θ′).

4 Concluding remarks

Remark 3. Based on the proof of Theorem 1, it is clear that we can extend the argument to all objective

correlated equilibria (CE). In other words, if µ is a CE at θ′ and µ (m∗) > 0, then g (m∗) ∈ F
(
θ′
)
, using

only the assumptions for Nash implementation.6

On the other hand, since the set of all action profiles played with positive probability by some subjective

correlated equilibrium is a superset of the set of correlated rationalizable action profiles (Brandenburger

and Dekel (1987)), the results of Bergemann, Morris, and Tercieux (2011) imply that the assumptions in

Theorem 1 are not enough to ensure implementation in subjective correlated equilibria.

Remark 4. Although we have assumed here that preferences over lotteries have a vNM representation,

note that the proof of Theorem 1 proceeds by showing that for an any opponents’ pure strategy profile,

we can find a strategy that dominates the equilibrium strategy for the relevant player (as was also noted

by MS). Therefore, it appears that one needs only minimal assumptions on preferences over lotteries for

MSNE-implementation. We are currently developing this point.
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