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Abstract

Do elections efficiently aggregate politicians’ policy-relevant private information? This

paper argues that politicians’ office motivation is an obstacle. In a two-candidate

Hotelling-Downs model in which each candidate has socially-valuable policy information,

we establish that equilibrium welfare is at best what can be obtained by disregarding one

politician’s information. We also find that for canonical information structures, politi-

cians have an incentive to “anti-pander”, i.e., to overreact to their information. Some

degree of pandering—underreacting to information—would be socially beneficial.
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1. Introduction

For representative democracy to be effective, voters must select representatives whose

policies will enhance their welfare. A challenge is that citizens may be poorly informed on

policy issues, as posited by Downs (1957) in his “rational ignorance” hypothesis and since

supported by numerous studies starting with Campbell, Converse, Miller and Stokes (1960).

Political candidates, on the other hand, devote substantial resources and have broad access

to policy experts and think tanks. Politicians can convey their information to the electorate

through their electoral campaigns, and in particular, their policy positions. Indeed, there

is evidence that voters learn and/or refine their views during elections.1 But when office-

seeking politicians choose their positions strategically, how well do elections aggregate their

information?

One prevalent view is that elections function well because even office-seeking politicians are

impelled to choose policies that promote voters’ interests. Indeed, Wittman (1989, p. 1400) in-

fluentially argued that political competition benefits the electorate because “there are returns

to an informed political entrepreneur from providing the information to the voters, winning

office, and gaining the [...] rewards of holding office. Concurrently, however, there are also

charges—both in popular circles and in academic work that we discuss subsequently—that

competitive pressures drive politicians to pander to voters’ opinions rather than provide valu-

able information. After all, the argument goes, it is hard to win an election by campaigning

on policies with recondite merits; a politician is better off just promising to do whatever voters

believe is best from the outset. Pandering is viewed as inefficient because it would lead to

policies that are excessively distorted toward the voters’ less-informed opinions.

Our paper (re-)assesses the efficiency of elections when office-seeking politicians possess

policy-relevant private information. Section 2 lays out an extension of the canonical Downsian

model of elections (Downs, 1957; Hotelling, 1929). Our framework is quite general—e.g.,

the policy space can be multidimensional—but we maintain the Downsian assumption of

two candidates making policy commitments to maximize their probability of winning the

election. The key twist is that each politician has (imperfect) private information about

1This includes experiments on deliberative polling (Fishkin, 1997), studies on the effects of information on
voters’ opinions (Zaller, 1992; Althaus, 1998; Gilens, 2001), work on framing in polls (Schuman and Presser,
1981), and experiments on priming (Iyengar and Kinder, 1987).
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policy consequences. In other words, they each have information about which policy would

be best for a representative or median voter—hereafter, “the voter”.

Our main result is a sharp bound on how much of the politicians’ private information can

be aggregated in a Downsian election. Theorem 1 establishes that the voter’s welfare—ex-ante

expected utility—in any electoral equilibrium is equal to the welfare from implementing policy

based on just one politician’s information, while not necessarily using even this information

efficiently. Consequently, equilibrium voter welfare is no higher than what can be obtained by

disregarding the presence of one politician entirely. This inefficiency is fairly general—across

informational structures and voter preferences—and we explain how it can be traced to two

implications of office motivation: (i) as far as they are concerned, the politicians are engaged

in a constant-sum game; and (ii) their information, while socially valuable, does not affect

their own payoffs directly.

We gain further insight by specializing in Section 3 to a canonical one-dimensional normal-

quadratic specification. More precisely, we assume that the best policy for the voter—

hereafter, the “state” of the world—is drawn from a normal distribution; each candidate’s

private signal is the true state plus noise that is also normally distributed; and the voter’s

payoff is a quadratic loss function of the distance between the chosen policy and the state.

For this specification, we explain why it is not an equilibrium for each politician to propose

a policy that is best for the voter based on his own information, i.e., to use an “unbiased

strategy” (in which case the election would aggregate more than one politician’s information).

We show that, perhaps contrary to intuition, politicians would have an incentive to deviate

by “anti-pandering”—overreacting to their private information—as the rational voter would

elect the more extreme politician under unbiased strategies. The voter would do so because

each politician’s estimate of the state based on his own signal puts more weight on the prior

than the voter’s estimate after learning both politicians’ signals.2

Building on the above logic, we identify in Proposition 2 a symmetric equilibrium that

features anti-pandering by both politicians. In this equilibrium, politicians choose different

2Glaeser and Sunstein (2009) and Roux and Sobel (2015) also identify this implication of Bayesian updating
in a non-strategic group decision-making context. The underlying statistical property holds whenever the
posterior distribution of the state given a politician’s signal is in an exponential family and the prior is
conjugate with the posterior; this class includes a variety of familiar information structures as elaborated in
Section 4.
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platforms with probability one, but no matter their platforms are elected with equal prob-

ability. Although there are other equilibria,3 the anti-pandering equilibrium provides a new

perspective on the classic issue of policy divergence. Unlike some other prevalent explana-

tions (e.g., ideologically-motivated candidates with uncertainty about voter preferences, as

in Wittman (1983) and Calvert (1985)), anti-pandering features office-motivated politicians

diverging in order to increase their support from a risk-averse voter whose ideology is known.4

Besides observing that pandering—underreacting to information—need not arise in equi-

librium, we also find that some (disequilibrium) pandering would actually benefit the voter,

contrary to perceptions that pandering is harmful. Specifically, an implication of Proposition 3

is that compared to the unbiased strategy profile, and hence also to all equilibria, voter welfare

would be improved if each candidate were to choose a platform that suitably underreacts to his

information. Reminiscent of a winner’s curse, the intuition is that under unbiased strategies a

candidate wins when his signal is more extreme than his opponent’s. The voter would benefit

if candidates were to incorporate such (contingent) information into their platforms.

Related Literature. There is a small prior literature on electoral competition when candi-

dates have policy-relevant private information.5 Heidhues and Lagerlof (2003) illustrate why

candidates may have an incentive to pander to the electorate’s prior belief; their setting is

one with binary policies, binary states, and binary signals. We find that in our richer setting,

the opposite may be true for a broad class of information structures. Plainly, with binary

policies, one cannot see the logic of why and how candidates may wish to overreact to private

information. Loertscher (2012) maintains the binary signal and state structure, but intro-

duces a continuum policy space. His results are more nuanced, but at least when signals are

sufficiently precise, the conclusions are similar to those of Heidhues and Lagerlof (2003).6

3 In particular, there is a trivial equilibrium with full pandering: both candidates ignore their information
and simply choose the prior-optimal platform.

4Other explanations for divergence include those based on increasing turnout (Glaeser, Ponzetto and
Shapiro, 2005), campaign contributions (Alesina and Holden, 2008; Campante, 2011), valence asymmetries
(Groseclose, 2001; Aragones and Palfrey, 2002), signaling character, competence, or related mechanisms
(Callander and Wilkie, 2007; Kartik and McAfee, 2007; Honryo, 2018), or more than two candidates (Palfrey,
1984).

5There are also models in which candidates have private information that is not policy relevant for voters,
e.g., about the location of the median voter (Chan, 2001; Ottaviani and Sorensen, 2006; Bernhardt, Duggan
and Squintani, 2007, 2009).

6 In the Supplementary Appendix, we show how overreaction or anti-pandering arises in a binary-signal
model specification when the policies and the state lie in the unit interval. This model specification is a special

3



Laslier and Van de Straeten (2004) show that if voters in the Heidhues and Lagerlof (2003)

model are endowed with sufficiently precise private information about the policy-relevant state,

then there are equilibria in which candidates fully reveal their private information; see also

Klumpp (2014) and Gratton (2014). By contrast, we are interested in settings in which there is

little information voters have that candidates do not. While we make the extreme assumption

that voters have no private information, our main points are robust to variations on this

dimension.

Building on earlier versions of the current paper, Millner, Ollivier and Simon (2020) intro-

duce confirmation bias for voters in a continuum-policy ternary-state model. They find that

confirmation bias can reduce equilibrium anti-pandering.

Schultz (1996) studies a model in which two candidates are perfectly informed about the

policy-relevant state but are policy motivated. He finds that when the candidates’ ideological

preferences are sufficiently extreme, platforms cannot reveal the true state; however, because

of the perfect information assumption, full revelation can be sustained when ideological prefer-

ences are not too extreme. Martinelli (2001) and Martinelli and Matsui (2002) derive further

results with ideologically motivated candidates who are perfectly informed about a policy-

relevant variable.

Subsequent to earlier versions of the current paper, Ambrus, Baranovskyi and Kolb (2021)

study a model related to our normal-quadratic specification, but with candidates who are

policy motivated.7 We explain in Section 4 that our welfare result continues to hold, approx-

imately, when the extent of policy motivation is small. Ambrus et al. (2021) show that when

policy motivation looms large and candidates’ ideologies are sufficiently similar to the voter’s,

equilibria can aggregate more information. Our papers are complementary.

There are various other settings in economics and political science in which distortions arise

because agents wish to influence their principals’ beliefs. In particular, there are electoral

models in which a single politician seeks to build reputation for either competence (e.g.,

Canes-Wrone, Herron and Shotts, 2001) or aligned preference (e.g., Maskin and Tirole, 2004).

While most such papers highlight the possibility of pandering—or even “over-pandering” in

case of the statistical family mentioned in fn. 2; it permits a closer comparison with Heidhues and Lagerlof
(2003) and Loertscher (2012).

7They assume the state is drawn from an improper prior, which can be viewed as the limit of our normal
prior as the precision goes to 0.
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Acemoglu, Egorov and Sonin (2013) and Kartik and Van Weelden (2019)—anti-pandering

arises in Prendergast and Stole (1996) and Levy (2004).

2. The Limit to Aggregating Candidates’ Information

This section formulates our general model of a Downsian election with informed candidates

and presents our main result.

The Model. An electorate is represented in reduced-form by a single (median or represen-

tative) voter, whose preferences depend upon the implemented policy x ∈ X, and an unknown

state of the world θ ∈ Θ, where both X and Θ are standard Borel spaces (e.g., subsets of Rn).

The state is drawn from a probability measure Fθ. The voter’s preferences are represented by

a bounded von-Neumann utility function u(x, θ) : X×Θ → R. A leading example that we will

return to is the (one-dimensional) quadratic loss function: X,Θ ⊂ R and u(x, θ) = −(x− θ)2.

There are two electoral candidates, A and B. Given the state θ, each candidate i ∈ {A,B}
observes a signal si ∈ Si. The signal space Si is a closed subset of Rn, with n ≥ 1. To avoid

trivialities, we assume that either SA or SB contains more than one element. We denote the

conditional cumulative distribution of si in state θ by Fsi|θ. The measure Fθ and distributions

Fsi|θ (i = A,B) induce a joint cumulative distribution FsA,sB of signal profiles, with marginals

FsA and FsB . We assume each marginal distribution Fsi has support Si.

It bears noting that we do not impose restrictions on the interdependence of the signals

sA and sB conditional on the state θ. The signals can be conditionally independent, or

conditionally positively (or even negatively) correlated. We also allow for FsA|θ to differ from

FsB |θ; for instance, candidates may have access to information of different quality. A leading

specification, however, is the familiar (one-dimensional) symmetric normal-normal structure:

the state θ ∈ R is drawn from a normal distribution with mean 0 and precision α ∈ R++ (or

variance 1/α); and candidate i = A,B observes signal si = θ + εi, where each εi is drawn

independently of any other random variable from a normal distribution with mean 0 and

precision β ∈ R++.

After privately observing their signals, the candidates simultaneously choose their plat-

forms xA and xB from the policy space X, with the objective of maximizing their respective
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probabilities of winning the election.8 Upon observing the platforms (xA, xB), the voter up-

dates her belief about the state θ and then elects the candidate who provides the highest

expected utility. The elected candidate i ∈ {A,B} implements his platform xi. Platforms

are thus policy commitments in the Downsian tradition. All aspects of the model except the

candidates’ private signals are common knowledge.

Strategies, Equilibria, and Welfare. A pure strategy for a candidate i is a measurable

function yi : Si → X, with yi(si) the platform chosen by i when his signal is si. A strategy

for the voter is a measurable function wA : X2 → [0, 1], where wA(xA, xB) represents the

probability with which candidate A is elected when the platforms are xA and xB. Candidate

B is elected with the complementary probability wB(xB, xA) := 1− wA(xA, xB).

We study (weak) perfect Bayesian equilibria (yA, yB, wA) of the electoral game in which

candidates play pure strategies—hereafter, simply equilibria.9 The voter elects candidate i if

xi is strictly preferred to x−i (the subscript −i refers to candidate i’s opponent). We allow the

voter to randomize arbitrarily when indifferent. For the median voter interpretation, one may

want to insist on uniform randomization when indifferent; our results would be unaffected by

this requirement, modulo one caveat noted in fn. 16.

Our notion of (equilibrium) welfare is the voter’s ex-ante expected utility:

v(yA, yB, wA) := EsA,sB [max {Eθ[u(yA(sA), θ) | yA(sA), yB(sB)],Eθ[u(yB(sB), θ) | yA(sA), yB(sB)]}] .

Main Result. Our main result, Theorem 1 below, is a bound on voter welfare across all

equilibria. It requires the following statistical condition.

Condition 1. For any i ∈ {A,B}, any dense Ŝi ⊆ Si,
10 and any bounded and measurable

8We assume that both candidates can choose from the same set of platforms for notational simplicity.
Our analysis in this section would hold equally well if each candidate i can only choose platforms from some
subset Xi ⊂ X. One could use XA ̸= XB to capture asymmetries between the candidates, e.g., if there is an
incumbent and a challenger, and the incumbent’s history precludes him from choosing certain policies.

9Our leading specifications—such as the normal-normal structure—have continuous signals with atomless
distributions, in which case it is salient to focus on equilibria with pure candidate strategies. Proposition 1
assures that such equilibria exist regardless of the model specification. Notwithstanding, we discuss equilibria
in which candidates may mix in Section 4.

10Dense in the relative topology of Si.
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function g : S−i → R,

Es−i
[g(s−i) | si] = 0 for all si ∈ Ŝi =⇒ Pr ({s−i : g(s−i) = 0} | si) = 1 for all si ∈ Ŝi. (1)

In words, (1) says that if g(s−i) has mean zero conditional on every si ∈ Ŝi, then conditional

on any such si, it holds that g(s−i) = 0 a.s. Condition 1 is thus equivalent to saying that

any dense subset of Si induces a boundedly complete family of conditional distributions over

S−i. Bounded completeness is a recognized concept in statistics (e.g., Lehmann, 1986, p. 144),

which in our context captures a notion of richness in how variation in si affects candidates

i’s beliefs about his opponent’s signal s−i. For finite signal spaces SA and SB, Condition 1

is equivalent to the matrix of joint probabilities of signals sA and sB (unconditional on the

state θ) having full rank. Plainly, Condition 1 is violated if the signals are independent,

e.g., if either signal is uninformative about the state. But so long as both signals sA and

sB are informative about the state—which is the case of interest—we view Condition 1 as a

reasonable requirement.

In particular, it follows from a well-known fact about complete families that, so long as

each signal space Si has a nonempty interior, Condition 1 holds when the distribution of s−i|si
for each i ∈ {A,B} is in the exponential family of distributions; see Remark 2 in Appendix B

for details. This canonical class includes a variety of widely-used discrete and continuous

distributions with bounded and unbounded supports, such as normal, exponential, gamma,

beta, chi-squared, binomial, Dirichlet, and Poisson. Condition 1 is thus satisfied by common

statistical models of a state θ ∈ Rn and signals sA and sB, including our leading normal-normal

specification.

Theorem 1. Assume Condition 1. In any equilibrium, there is a candidate i ∈ {A,B} such

that the voter’s welfare is the same as if candidate i were elected no matter which policies are

proposed in that equilibrium.

To elaborate, consider any equilibrium (yA, yB, wA). Denote by vi(yA, yB) the voter’s wel-

fare from electing candidate i no matter which policies are proposed. Theorem 1 implies that,

under Condition 1, the voter’s equilibrium welfare v(yA, yB, wA) is given by

v(yA, yB, wA) = max{vA(yA, yB), vB(yA, yB)}.
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Put another way, insofar as welfare is concerned, the voter may as well be ignoring one of the

candidates and always electing the other. Crucially, this is an “as if”: both candidates may

in fact win with positive ex-ante probability, with the voter strictly preferring candidate A

after some platforms and strictly preferring B after other platforms.

Theorem 1 implies a sharp upper bound on the voter’s welfare across all equilibria. To

make that precise, let v∗i denote the voter’s welfare if candidate i were always elected with

his platform chosen—based on his information alone—to maximize voter welfare. Theorem 1

implies that in any equilibrium, welfare is at most

max{v∗A, v∗B}. (2)

In other words, even when both candidates having socially valuable information, the voter’s

equilibrium welfare is, at best, determined by the efficient use of only one candidate’s signal.

We now sketch the logic behind Theorem 1. The key insight is Lemma 1 below, which states

that under Condition 1, every equilibrium of our model must be also an ex-post equilibrium.

Specifically, we show that in any equilibrium, the voter’s strategy wA(xA, xB) must be constant

across almost all on-path platforms. Consequently, neither candidate can affect his probability

of winning by changing his platform, no matter which (on-path) platform is played by his

opponent.

Lemma 1. Assume Condition 1. In any equilibrium (yA, yB, wA), there is a constant c ∈ [0, 1]

such that Pr ({(xA, xB) : wA(xA, xB) ̸= c}) = 0.11

To see the logic behind the lemma, observe that given an arbitrary voter strategy, the

candidates are engaged in a constant-sum Bayesian game in which their payoffs depend only

on their platforms xA and xB, not directly on their signals sA and sB. Lemma 2 in Appendix A

provides a general result about any two-player constant-sum Bayesian game with payoffs that

depend only on the players’ actions and not on their types. In any Bayes-Nash equilibrium,

any action chosen by some type of a player would also be a best response for any other type

of that player,12 even though the two types will generally hold different beliefs about the

opponent’s distribution of actions when types are correlated. Applied to our electoral game,

11Here, Pr(·) refers to the probability distribution over platforms induced by the joint distribution of can-
didates’ signals FsA,sB and the strategy profile (yA, yB).

12To be precise, this is up to a probability-zero caveat; we frequently omit such caveats hereafter.
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Lemma 2 implies that in any equilibrium (yA, yB, wA), each candidate i’s ex-ante probability

of winning, call it ωi, is also i’s interim probability of winning, Ex−i
[wi(xi, x−i) | si], no matter

his signal si or which on-path platform xi (possibly chosen in equilibrium only by some other

type s′i) he chooses. Equivalently, ωi = Es−i
[wi (xi, y−i(s−i)) | si] for all si and on-path xi.

But then, Condition 1 implies that for any on-path xi, we have ωi = wi (xi, y−i(s−i)) for all

s−i. It follows that wi(·) is constant on path, which is the ex-postness property of Lemma 1.13

Lemma 1 implies that in any equilibrium, there are only two possibilities on the equilibrium

path. Either (i) one candidate wins with probability one, or (ii) both candidates win with

a constant interior probability, regardless of their platforms. In the latter case, the voter is

always indifferent between the candidates. It follows that in either case, the voter’s ex-ante

expected utility can be evaluated as if she always elects the same candidate, which is what

Theorem 1 states.

As already noted, Theorem 1 implies the upper bound (2) on equilibrium voter welfare.

Our next result is that this upper bound can be achieved. Say that candidate i is better (than

his opponent) if v∗i ≥ v∗−i. That is, if each candidate would choose the voter-optimal policy

based on their information alone, y∗i (si) := argmaxx∈X Eθ [u(x, θ) | si],14 then the voter would

prefer to ex-ante delegate policymaking to i rather than the opponent.

Proposition 1. If Condition 1 holds, then a voter-welfare maximizing equilibrium has welfare

max{v∗A, v∗B}. There is one such equilibrium in which the better candidate i ∈ {A,B} is elected

with probability one and plays y∗i .

While there may be multiple equilibria that achieve the proposition’s welfare bound, a sim-

ple equilibrium construction is as follows. The better candidate i plays y∗i , and the opponent

uninformatively chooses the prior-optimal policy, i.e., he plays y−i(s−i) = argmaxx∈X Eθ[u(x, θ)].
It is then optimal for the voter to always elect i on path. We can stipulate that the voter

also elects i if −i chooses any other platform (and i chooses any of his on-path platforms)

13To see how ex-postness can fail absent Condition 1, consider Θ = X = S1 = S2 = {1, 2}, u(x, θ) = 1
if x = θ and 0 if x ̸= θ, a uniform prior on Θ, and each candidate gets an uninformative signal with each
si ∈ {1, 2} equally likely in both states. Condition 1 fails because s1 and s2 are independent. There is an
equilibrium in which both candidates play yi(si) = si and the voter (being indifferent between both policies)
plays wA(xA, xB) = 1 if xA = xB and 0 if xA ̸= xB . This is not an ex-post equilibrium, but regardless of their
signals candidates are indifferent between both platforms because they face a “matching pennies” problem.

14 If there are multiple maximizers at any si, we can choose an arbitrary one.
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because she believes that the deviation by −i is uninformative about s−i.
15,16 Note that this

construction does not require Condition 1; rather, the condition guarantees, by Theorem 1,

that this equilibrium is welfare maximizing.

3. Pandering and Anti-Pandering

We now turn to assessing pandering both from an equilibrium and (disequilibrium) welfare

perspective. We specialize in this section to a one-dimensional normal-quadratic specification:

X,Θ ⊂ R, the voter’s utility is u(x, θ) = −(x − θ)2, the state is θ ∼ N (0, 1/α), and each

candidate i ∈ {A,B} receives a conditionally independent signal si = θ + εi, with εi ∼
N (0, 1/β), with parameters α, β ∈ R++. Section 4 discusses how the themes of this section

can be generalized.

Quadratic-loss utility implies that that voter’s preferred policy given information I is

E[θ|I]. Hence, by standard properties of normal information (e.g., Degroot, 1970),

y∗i (si) = E [θ|si] =
β

α + β
si, (3)

and we refer to y∗i as the unbiased strategy because it is the best estimate of state given si. We

say that a strategy yi displays pandering (or underreaction) if si > 0 =⇒ yi(si) ∈ [0,E[θ|si]),
si < 0 =⇒ yi(si) ∈ (E[θ|si], 0], and yi(0) = 0. In other words, a candidate panders

if for si ̸= 0 his platform is distorted from his unbiased estimate toward the voter’s prior

expectation E[θ] = 0 of the best policy. Analogously, we say that yi displays anti-pandering

(or overreaction) if si > 0 =⇒ yi(si) > E[θ|si] and si < 0 =⇒ yi(si) < E[θ|si]. We also say

that a platform x is more extreme than platform x′ if the former is further from the prior mean

of 0, i.e., if |x| > |x′|. A strategy yi is informative if it is not constant, and it is fully revealing

if it is bijective. An equilibrium is symmetric if both candidates use the same strategy and

both win with positive probability.

15Any sequentially rational behavior by the voter after an observable deviation by i supports the equilibrium,
as i has no incentive to deviate.

16Let xi be an on-path platform of candidate i. Our construction entails the voter electing candidate i even
if both candidates choose xi. If one insists that the voter must randomize uniformly between the candidates
when indifferent, then Proposition 1 is still valid with essentially the same construction so long as every on-
path platform of candidate i has zero ex-ante probability. This is the case with a continuous policy space
when there is a unique and distinct optimal policy after each signal of the better candidate i and the marginal
distribution Fsi is atomless. An example is the normal-normal information structure with quadratic-loss voter
preferences.
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Equilibrium Anti-Pandering. There are trivial equilibria in which candidates disregard

their information and fully pander to the voter’s prior belief, i.e., play yi(·) = E[θ] = 0.17 We

are interested, instead, in the nature of informative equilibria.

A natural starting point is to consider the profile of unbiased strategies. From Equation 3,

we see that the voter would then infer from a platform xi that si =
α+β
β
xi. As the expected

value of θ conditional on both signals is

E[θ|sA, sB] =
2β

α + 2β

(
sA + sB

2

)
, (4)

the voter’s posterior expectation of the state given the platforms xA and xB is

2(α + β)

α + 2β

(
xA + xB

2

)
.

So the voter’s preferred policy, which is the posterior expectation, has the same sign as the

average of the two platforms but is more extreme (so long as the average is non-zero). Since the

voter elects the candidate whose platform is closer to her posterior expectation, she elects the

more extreme candidate. Each candidate would thus benefit by deviating to a more extreme

platform, i.e., by overreacting to his information; on the other hand, underreacting would not

be profitable. Proposition 4 in the appendix provides a formal argument.

Building on the above intuition, the next result identifies an anti-pandering equilibrium.

Proposition 2. There is a symmetric and fully-revealing equilibrium with anti-pandering:

both candidates play

yi(si) = E[θ|si, s−i = si] =
2β

α + 2β
si, (5)

and each candidate is elected with probability 1/2 regardless of their platforms. Moreover, any

symmetric equilibrium in which both candidates use fully-revealing and continuous strategies

has both candidates playing (5).

In the equilibrium of Proposition 2, candidates can be viewed as acting as if their signals are

twice as accurate as they actually are. Alternatively, candidate i’s platform is the Bayesian

estimate of the state assuming his opponent has received the same signal si. Note that i

knows that in expectation, his opponent’s signal is in fact more moderate than his own, as

17 Indeed, for any uninformative pure strategy, there is an equilibrium in which both candidates use that
strategy due to the latitude in specifying off-path beliefs.
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i’s expectation of his opponent’s signal is simply his unbiased estimate of the state, β
α+β

si.

When the voter conjectures that both candidates play the strategy (5), she is indifferent

between the candidates no matter their platforms. For, whenever a candidate i increases his

platform by δ > 0, formula (4) implies that the voter’s posterior expectation increases by
2β

α+2β

(
α+2β
2β

δ
2

)
= δ/2.

Not only does Proposition 2 establish the existence of an anti-pandering equilibrium, but

it shows that this is the unique symmetric fully-revealing equilibrium subject to continuity.18

It implies, for example, that if both candidates play the same linear strategy y(si) = ksi

with coefficient k ̸= 0, then only k = 2β/(α + 2β) constitutes a symmetric equilibrium;

in particular, there is no non-trivial symmetric linear equilibrium with pandering, i.e., with

k ∈ (0, β/(α + β)).

The degree of overreaction in the equilibrium of Proposition 2, as measured by 2β
α+2β

− β
α+β

,

is non-monotonic in the parameters: it is increasing in β and decreasing in α when β
√
2 < α,

and decreasing in β and increasing in α when β
√
2 > α. The degree of overreaction vanishes

as either α or β tend to 0 or ∞. Thus, Proposition 2 predicts that overreaction is maximized

when candidates are somewhat better informed than the voters but not too much so.

The Benefits of Pandering. A common view is that politicians’ pandering to an elec-

torate’s prior harms welfare (e.g., Heidhues and Lagerlof, 2003). We will show that in the

normal-quadratic setting, an appropriate degree of (disequilibrium) pandering would actually

benefit the voter. To get some intuition for why, consider again the benchmark where both

politicians play the unbiased strategy y∗i (θ) = E[θ|si]. As explained above, the voter would

then select the politician with the most extreme platform. This implies a “winner’s curse”:

the electoral winner, say i, would have received the most extreme signal, and so voter welfare

would be improved if i were elected with a slightly more moderate platform. Such moderation

can be achieved by underreacting to private information, i.e., by pandering.

Building on this intuition, the following result shows that, subject to a qualifier, voter

18The proof of Proposition 2 actually establishes that among fully-revealing equilibria with continuous
strategies in which both candidates win with positive probability, there can be only a very limited degree of
asymmetry. In any such equilibrium, there is a constant c ∈ R and a candidate i ∈ {A,B} such that

yi(si) =
2β

α+ 2β
si + c and y−i(s−i) =

2β

α+ 2β
s−i − c.
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welfare would be maximized by a suitable degree of pandering.

Proposition 3. The symmetric strategy profile in which each candidate i panders by playing

yi(si) = E [θ | si, |s−i| ≤ |si|] , (6)

maximizes voter welfare among all strategy profiles in which the voter’s optimal response would

lead to candidate i winning whenever |si| > |s−i|.

The intuition for Proposition 3 is as follows. The welfare-maximizing platform given any

information I is E[θ|I]. When the voter is selecting the candidate with the most extreme

signal, the relevant information that candidate i has when he conditions on winning is his

own signal, si, and that |si| > |s−i|. Strategy (6) features pandering because conditioning on

the opponent having a more moderate signal makes a candidate underreact to his own signal.

Since the voter would optimally elect the candidate with the most extreme signal if both

candidates used unbiased strategies, an implication of Proposition 3 is that both candidates

playing the pandering strategy (6) provides higher voter welfare than both candidates playing

unbiased strategies. Hence, by Theorem 1, such pandering also dominates any equilibrium.

We remark that although we do not have a proof, we conjecture that Proposition 3 holds

without the qualification that a candidate must win when he has the more extreme signal.19

4. Discussion

This section discusses the robustness of Theorem 1 to mixing by candidates and to candi-

dates who are not entirely office motivated; we also generalize the anti-pandering equilibrium

beyond the normal-normal information structure.

Candidates’ Mixed Strategies. We have studied equilibria with pure candidate strategies.

We now explain how Theorem 1 extends to candidates mixing, at least subject to a qualifier.

19For a suggestive heuristic, consider any symmetric strategy profile in which both candidates play the same
strategy y that is symmetric around 0. For the unbiased strategy, we have the derivative y′(·) = β

β+α ; for

the overreaction strategy identified in Proposition 2, we have y′(·) = 2β
α+2β . Presuming differentiability, one

can verify that whenever y′(·) ∈ [0, 2β
α+2β ], it would be optimal for the voter to elect the candidate with the

most extreme platform and hence the most extreme signal. Thus, roughly speaking, the requirement that a
candidate wins when he has the most extreme signal is satisfied as long as neither candidate overreacts by
more than he would when conditioning on the opponent having received the same signal as he did. It appears
unlikely that such a degree of overreaction could improve voter welfare.
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A mixed strategy for candidate i is a measurable function σi : Si → ∆(X), where ∆(X)

is the set of probability measures over the policy space X. We say that a strategy σi is

identifiable if for any dense Ŝi ⊆ Si and any bounded and measurable g : X → R,

Exi [g (xi) | si] = 0 for all si ∈ Ŝi =⇒ Pr ({xi : g (xi) = 0} | si) = 1 for all si ∈ Ŝi,

where both the left-hand-side expectation and the right-hand-side probability are computed

using σi. Analogous to Condition 1, identifiability is a completeness property, but now on the

distributions of xi|si induced by σi. Any pure strategy yi is identifiable because in that case

E[g(xi) | si] = g(yi(si)). An example of a non-identifiable strategy is σi(si) any non-degenerate

probability measure on X that does not vary with si.

Theorem 1 holds for any equilibrium in which candidates mix, so long as at least one

candidate plays an identifiable strategy. This is because the ex-postness conclusion of Lemma 1

applies to such equilibria, formally as a consequence of Theorem 2 in Appendix A. We do

not know whether equilibria in which both candidates play non-identifiable strategies—if they

exist in a given specification—can overturn the conclusion of Theorem 1.20 In particular,

even non-ex-post equilibria can still satisfy the theorem’s conclusion. To illustrate, consider

a variant of the example described in fn. 13: Θ = X = {1, 2}, u(x, θ) = 1 if x = θ and 0

if x ̸= θ, a uniform prior on Θ, and any signal structure that satisfies Condition 1. There

is an equilibrium in which, regardless of their signals, both candidates mix uniformly over

both policies, and the voter (being indifferent between both policies) plays wA(xA, xB) = 1 if

xA = xB and 0 if xA ̸= xB. Neither candidate’s strategy is identifiable and Lemma 1 fails;

yet, the equilibrium trivially still satisfies the conclusion of Theorem 1.

Ideological and Other Motivations. We now argue that our main welfare conclusion,

Proposition 1, is robust to small departures from the assumption that candidates are entirely

office-motivated. Consider a variant of our model in which the payoff of each candidate

i ∈ {A,B} is given by ui(xA, xB, θ,W ; γi), where the new notation W ∈ {A,B} denotes

the election’s winner and γi is a commonly-known payoff parameter. Pure office-motivation

corresponds to the utility 1{W=i}, but in general ui(·) allows for a variety of mixed motivations,

20 In some specifications, we can deduce that they do not. For example, consider a binary-policy binary-
signal setting (e.g., Heidhues and Lagerlof, 2003). Here the only non-identifiable strategies are uninformative
and so an equilibrium in which neither candidate uses an identifiable strategy is clearly no better for voter
welfare than efficiently aggregating one candidate’s signal.
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including policy motivation (a candidate cares about the winner’s policy, in relation to the

state), platform motivation (he cares about his own platform, in relation to the state), etc.

An election with mixed motivations is not generally a constant-sum game for the candi-

dates; consequently, for arbitrary mixed motivations, voter welfare may be significantly differ-

ent from the bound in Proposition 1. However, consider a family of mixed-motivations games

in which each candidate i’s payoff is parameterized by γi ∈ Rm such that ui(xA, xB, θ,W ; 0⃗) =

1{W=i}. That is, when γi = 0⃗ ≡ (0, . . . , 0), candidate i is purely office motivated. Under

appropriate technical conditions, the Theorem of the Maximum assures that the equilibrium

correspondence is upper hemicontinuous in the parameter (γA, γB), and hence the upper bound

on voter welfare when (γA, γB) ≈ (⃗0, 0⃗), i.e., when candidates are almost office-motivated, is

approximately that of Proposition 1.21 Simple sufficient technical conditions are that all the

spaces SA, SB, Θ, and X are finite and that each ui(·) is continuous in (xA, xB, θ, γi).

We note that our leading normal-quadratic specification does not satisfy the aforemen-

tioned technical conditions; in particular, the policy space X = R is not compact. The

Supplementary Appendix analyzes an extension of the normal-quadratic model with mixed

motivations of the form

ui(x, θ,W ; bi, ρi) = −ρi(xW − θ − bi)
2 + (1− ρi)1{W=i}. (7)

So each candidate i has quadratic-loss policy utility with an ideological bias bi ∈ R and places

weight ρi ∈ [0, 1] on policy utility. The Supplementary Appendix establishes that even though

the equilibrium correspondence is not upper hemicontinuous, the upper bound on voter welfare

when each bi ≈ 0 and ρi ≈ 0 is still close to that of efficiently using only one candidate’s signal.

Moreover, there is an equilibrium that approximately achieves that welfare. So, the welfare

conclusions of Proposition 1 still approximately hold.22

21More precisely, we would be assured upper hemicontinuity of the set of Bayes-Nash equilibria. Although
our solution concept is weak Perfect Bayesian equilibrium (in which candidates use pure strategies), Theorem 1
holds for Bayes-Nash equilibria too because its backbone, Lemma 1, guarantees the ex-postness property for
an arbitrary voter strategy. Note also that we implicitly restrict attention to equilibria of the perturbed games
in which candidates use pure strategies, to ensure that this property is preserved in any limit.

22Ambrus et al. (2021) study specification (7) assuming an improper prior, i.e., when our normal prior’s pre-
cision α → 0. As noted in the comparative-statics paragraph after Proposition 2, at this limit the overreaction
in our anti-pandering equilibrium vanishes, i.e., unbiased strategies constitute an equilibrium when candidates
are office motivated (ρA = ρB = 0). Because of the improper prior, voter welfare in this equilibrium is the
same as if only aggregating one candidate’s signal, consistent with Theorem 1. Ambrus et al. (2021) construct
equilibria with higher welfare when candidates are substantially policy motivated (each ρi is sufficiently large)
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Robustness of the Anti-Pandering Equilibrium. In any specification of our model,

there are both a trivial equilibrium with “full pandering” in which candidates uninformatively

choose a prior-optimal policy, and an informative equilibrium that efficiently aggregates one

candidate’s signal.

The existence of an anti-pandering equilibrium like the one characterized in Proposition 2

requires more structure, but holds beyond our normal-quadratic specification. The simplest

extension is to an asymmetric normal-quadratic specification in which the candidate’s signals

si = θ + εi have εi’s drawn from normal distributions with different precisions βi. So, one

candidate is more ‘competent’ than the other. In this case, the anti-pandering equilibrium

strategy takes the form yi(si) =
2βi

α+βA+βB
si.

More generally, maintaining quadratic loss voter preferences, a fully-revealing anti-pandering

equilibrium exists when the distributions of the state θ and signals si are conjugate and belong

to an exponential family. The Supplementary Appendix explicitly derives such an equilibrium

in a Beta prior-Bernoulli signals specification and shows that it has characteristics analogous

to that of Section 3. The key general property of an exponential family is that the poste-

rior expectation E[θ|s0, s1, . . . , sn] of the state θ given a prior mean parameter, say s0, and

any number of signal realizations, s1, . . . , sn, is linear in s0, s1, . . . and sn, (Jewel, 1974). In

our Downsian framework, suppose the two candidates’ signals sA and sB are identically dis-

tributed conditional on the state θ. (Identical distributions are not necessary, but make the

points below more transparent.) Then, there are constants w0 and w1 such that

E[θ|si] =
w0s0 + w1si
w0 + w1

and E[θ|sA, sB] =
w0s0 + 2w1 ((sA + sB) /2)

w0 + 2w1

.

Hence, the difference between the posterior mean and the prior mean s0 is

E[θ|sA, sB]− s0 =
2w1 ((sA + sB) /2− s0)

w0 + 2w1

. (8)

Instead, the difference between the midpoint of the candidates’ unbiased strategy platforms

and the prior mean is

y∗A (sA) + y∗B (sB)

2
− s0 =

E[θ|sA] + E[θ|sB]
2

− s0 =
w1 ((sA + sB) /2− s0)

(w0 + w1)
. (9)

with limited ideological biases (the magnitude of each bi is sufficiently small). Note that the best equilibrium
with benevolent candidates (ρi = bi = 0) would maximize voter welfare; cf. Proposition 3 for proper priors.
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We see from (8) and (9) that for any pair of signal realizations, the posterior expectation

given the average signal and the average of candidates’ individual posterior expectations both

shift in the same direction relative to the prior mean, but the former does so by a larger

magnitude. It is this property that underlies the incentive to overreact in an unbiased strategy

profile; the logic of anti-pandering thus applies here.23 The following generalization of the

existence result of Proposition 2 can be verified: there is an equilibrium with overreaction in

which each candidate i plays

yi(si) =
2w1

w0 + 2w1

si +
w0

w0 + 2w1

s0,

and the voter randomizes uniformly after any pair of on-path platforms.24

5. Conclusion

Motivated by the debate on whether political competition promotes information aggrega-

tion and leads electorates to make informed choices when exercising voting rights, this paper

has studied Downsian electoral competition between two office-motivated candidates who have

private information about policy consequences.

Our main result is a sharp bound on the (median or representative) voter’s welfare that

holds under a statistical condition on the candidate’s signals. We find that welfare in any

equilibrium is effectively determined by just one candidate’s platform strategy. Consequently,

Downsian elections cannot efficiently aggregate more than one candidate’s information, de-

spite the availability of two informational sources. Moreover, the upper bound of efficiently

aggregating the “better” candidate’s information can be achieved in an equilibrium.

We have also studied positive and normative aspects of pandering in a normal-quadratic

specification of our model. Although a trivial equilibrium exists in which candidates fully

disregard their private information (i.e., they fully pander to the electorate’s prior belief), we

23As the prior density need no longer be symmetric around the mean (unlike with a normal prior) and signals
may be bounded (unlike with normally distributed signals), the definitions of anti-pandering or overreaction
have to be broadened from earlier. We now say that a strategy yi has overreaction if for all si, |yi(si)−E[θ]| ≥
|E[θ|si]− E[θ]| with strict inequality for some si. The focus on posterior expectations of the state is justified
when the voter has a quadratic loss function. See the discussion in Roux and Sobel (2015) to get a sense of
how asymmetric loss functions would affect the conclusions.

24While there may now be off-path platforms (unlike with normal distributions), as in the Beta-Bernoulli
example in the Supplementary Appendix, the equilibrium can be supported with reasonable off-path beliefs.
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show that a fully-revealing equilibrium with anti-pandering exists in which politicians overre-

act to their information. Furthermore, we find that an appropriate degree of (disequilibrium)

pandering by candidates would actually benefit voters.

In the Downsian tradition, our analysis assumes that candidates make commitments to the

policies they would implement if elected.25 From a positive point of view, it seems reasonable

to suppose that some degree of electoral commitment is available and valuable to candidates;

in their meta-study of earlier research, Pétry and Collette (2009) conclude that around 67% of

campaign promises have historically been kept. The theoretical literature has proposed multi-

ple rationales for commitment, most prominently that of re-election concerns (Alesina, 1988).

Another rationale, particularly relevant in our context, is that if there is uncertainty about a

candidate’s quality of information and candidates have reputation concerns (perhaps because

of re-election motives), then “flip flopping” or “vacillating” may be associated with poor qual-

ity information, resulting in stickiness akin to commitment; see, for example, Prendergast and

Stole (1996) or Majumdar and Mukand (2004).

As in most formal models of spatial electoral competition, we have restricted attention to

two candidates and assumed that their information is exogenously given. Relaxing both these

assumptions are interesting topics for future research. We note here that since a voter-optimal

equilibrium of our model involves always electing the “better”—roughly, more informed—

candidate, there can be strong incentives for candidates to observably acquire information.

Finally, while we have focused exclusively here on electoral competition, we believe the

logic underlying anti-pandering and the welfare bounds ought to be relevant more broadly. For

example, consider two consultants (or other experts) proposing changes that an organization

should undertake; the optimal course of action is uncertain and only one of their proposals

can be accepted. One may also consider product choice or standards submissions by firms

who are vying for a consumer’s purchase or a standards-setting body’s approval. Depending

on the application, it may of interest to extend our model to incorporate additional features

such as prices.

25See Osborne and Slivinski (1996), Besley and Coate (1997) and subsequent work for non-Downsian
“citizen-candidate” models.
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Appendices

A. Constant-Sum Bayesian Games with Type-Independent

Payoffs

In this appendix, we prove a more general version of Lemma 1 that may have independent

interest.

Setting. There are two players, A and B. Each player i ∈ {A,B} has type si ∈ Si, where Si

is a standard Borel space. Type profiles (sA, sB) are drawn from a probability measure F on

SA×SB with marginals FA and FB whose supports are SA and SB. The players simultaneously

choose actions xi ∈ Xi, where each Xi is a standard Borel space. No matter the type profile,

player i’s payoff is ui(xi, x−i), with uA(·)+uB(·) = 0. So the game is constant sum, and types

do not directly affect payoffs. Assume payoffs are uniformly bounded: |ui(·)| ≤ 1, where the

constant 1 is a normalization. We denote elements of ∆(Xi), i.e., mixed actions, by ξi. Payoffs

are extended to mixed action profiles by linearity as usual, and we also write ui(ξi, ξ−i). A

mixed strategy for player i is σi : Si → ∆(Xi). We study Bayes-Nash equilibria.

Say that a mixed action ξi ∈ ∆(Xi) secures player i (no matter his type) the payoff Ui ∈ R
if for all ξ−i ∈ ∆(X−i), it holds that ui(ξi, ξ−i) ≥ Ui.

Results. Loosely, the following result says that in any equilibrium, any on-path action of a

player is a best response for every type of that player.

Lemma 2. Take any equilibrium σ∗ ≡ (σ∗
A, σ

∗
B) with equilibrium payoffs (U∗

A, U
∗
B). It holds

for each i ∈ {A,B}, (σ∗
i , Fi)-a.e. xi, and Fi-a.e. si that

U∗
i = Ex−i

[ui(xi, x−i) | si],

where the expectation is with respect to the measure induced by σ∗
i and F .

Proof. Since the game is zero sum and σ∗ is an equilibrium, each player i can secure U∗
i . This

implies that for each i, conditional on Fi-a.e. types si, player i’s equilibrium payoff must in fact

be U∗
i . Moreover, for Fi-a.e. types si, the conditional distribution of the opponent’s actions

induced by σ∗
−i and F must secure the opponent U∗

−i; for if not, there would be some action
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that yields si a payoff strictly larger than U∗
i . Finally, (σ

∗
i , Fi)-a.e. actions xi must be a best

response to any mixed action ξ−i that secures U∗
−i; for if not, player −i can obtain a payoff

strictly larger than U∗
−i by playing the constant strategy s−i 7→ ξ−i. The lemma’s conclusion

follows.

Remark 1. Consider a complete-information two-player game G with action spaces XA and

XB and payoff functions uA and uB as above. Any (objective) correlated equilibrium of this

game is a Bayes-Nash equilibrium of a suitably-defined Bayesian game as above. It thus follows

from Lemma 2 that if ρ ∈ ∆(X1 ×X2) is a correlated equilibrium of G with payoffs (π1, π2),

then for any i ∈ {A,B} and ρ-a.e. xi and ρ-a.e. x′i, it holds that Ex−i
[ui(x

′
i, x−i) | xi] = πi,

and hence x′i is a best response to ρ(·|xi). For finite games, this result has been noted by

Viossat (2006, Proposition 3.8). □.

We build on Lemma 2 for a generalization of Lemma 1. In the current setting, say that

an equilibrium σ∗ with payoffs (U∗
A, U

∗
B) is an ex-post equilibrium if for (σ∗, F )-a.e. (xA, xB),

it holds that ui(xi, x−i) = U∗
i for i ∈ {A,B}. Note that the notions of bounded completeness

(Condition 1) and strategy identifiability (Section 4) port over without change to the current

setting.26 Recall that any pure strategy is identifiable.

Theorem 2. If Condition 1 holds, then any equilibrium in which either player’s strategy is

identifiable (in particular, if either player uses a pure strategy) is an ex-post equilibrium.

Proof. Let player −i’s strategy be identifiable and σ∗ be an equilibrium with i’s payoff U∗
i .

Below, all expectations are with respect to the measure induced by (σ∗, F ). For (σ∗
i , Fi)-a.e. xi

and Fi-a.e. si, it holds that

U∗
i = Ex−i

[ui(xi, x−i) | si] by Lemma 2

= Es−i
[Ex−i

[ui(xi, x−i) | si, s−i] | si] by the law of iterated expectation

= Es−i
[Ex−i

[ui(xi, x−i) | s−i] | si] because x−i is independent of si, conditional on s−i.

Since any subset of Si that has Fi-probability one is dense in Si (because Fi has support

26The topology on Si for denseness in Condition 1 is now given by the metric that makes Si standard Borel.
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Si), it follows from Condition 1 that for (σ∗
i , Fi)-a.e. xi and F−i-a.e. s−i, we have

Ex−i
[ui(xi, x−i) | s−i] = U∗

i .

It then follows from the identifiability of σ∗
−i that for (σ

∗, F )-a.e. (xi, x−i), we have ui(xi, x−i) =

U∗
i .

B. Proofs and Supporting Material for Section 2

The following two remarks concern exponential families and Condition 1.

Remark 2. It is well known (e.g., Lehmann, 1986, Theorem 1, p. 142) that the entire set Si

is boundedly complete if it has a nonempty interior and the distribution of s−i|si is in the

exponential family of distributions, i.e., the conditional density is given by

f(s−i|si) = esi·T (s−i)−ψ(si)h(s−i), (10)

where si · T (s−i) is the dot product (with si ∈ Rn viewed as a row vector and T (s−i) ∈ Rn as

a column vector), ψ : Si → R, and h : S−i → R.

In addition, if ψ is continuous— as is the case for familiar exponential-family distributions—

then Condition 1 is satisfied. To see that, note that if ski → si, then the density f(s−i|ski ) →
f(s−i|si) pointwise, hence in total variation (by Scheffe’s Theorem), and hence for any bounded

and measurable g : S−i → R, it holds that ski → si =⇒
∫
S−i

gdFski →
∫
S−i

gdFsi . Thus, if

the antecedent in (1) holds for a dense subset Ŝi, then it also holds when replacing Ŝi with its

closure Si, and Si being boundedly complete implies Condition 1. □

Remark 3. As an example, we detail how the exponential family includes our leading normal-

normal specification in which the state θ ∼ N (0, 1/α), and each candidate i receives a

conditionally independent signal si = θ + εi, with εi ∼ N (0, 1/β). In this case, the ran-

dom variable s−i|si = (θ + ε−i) |si is normally distributed with mean µ|si = E [θ + ε−i|si] =
E [θ|si] + E [ε−i|si] = β

α+β
si and variance σ2 = Var [θ + ε−i|si] = Var [θ|si] + Var [ε−i|si] =

1
α+β

+ 1
β
, because ε−i is independent of si. Hence, Equation 10 holds with T (s−i) =

1
σ2

β
α+β

s−i,

ψ(si) =
1

2σ2

(
β

α+β
si

)2

, and h(s−i) =
1

σ
√
2π
e−

1
2σ2 s

2
−i . □

Proof of Lemma 1. Given any voter strategy wA, the two candidates are playing a zero-
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sum Bayesian game with type-independent payoffs—e.g., A’s payoff is wA(xA, xB)—that fits

into the setting of Appendix A. The lemma follows from Theorem 2.

Proof of Theorem 1. Fix any equilibrium (yA, yB, wA). The result trivially holds if there

is one candidate who is elected with probability one after almost all platform pairs on the

equilibrium path. So, suppose that is not the case. Then Lemma 1 implies that the voter is

indifferent between the two candidates after almost all on-path platform pairs. Hence, voter

welfare v(yA, yB, wA) would not change if, holding fixed the candidates’ strategies (yA, yB),

either candidate i were elected with probability one after almost every platform pair.

Proof of Proposition 1. Omitted, as it was explained in the main text.

C. Proofs and Supporting Material for Section 3

We first show that there is no equilibrium with unbiased strategies.

Proposition 4. The profile of unbiased strategies cannot be supported in an equilibrium. In

particular, candidates would deviate by overreacting to their information, whereas underreact-

ing would be worse than playing the unbiased strategy.

Proof. Assume both candidates use the unbiased strategy yi(si) =
β

α+β
si. Since this strategy is

fully revealing, the voter correctly infers sA, sB for all signal realizations. The voter’s expected

utility from a platform x follows a standard mean-variance decomposition:

E[u(x, θ)|sA, sB] = −E
[
(x− θ)2 |sA, sB

]
= −

[
x2 + E(θ2|sA, sB)− 2xE(θ|sA, sB)

]
= −

[
x2 + E(θ|sA, sB)2 − 2xE(θ|sA, sB)

]
− E(θ2|sA, sB) + E(θ|sA, sB)2

= − [x− E(θ|sA, sB)]2 − Var (θ|sA, sB) . (11)

So the voter elects candidate i with probability one whenever xi is closer to E[θ|sA, sB] than
is x−i.

We now show that for any i = A,B and si, candidate i can profitably deviate. By (11),

if i plays as if he has received signal ŝi (no matter his true signal), then i wins against any
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realization s−i such that

(y−i (s−i)− E [θ|s−i, si])2 > (yi(ŝi)− E [θ|s−i, si])2 .

Substituting from (3) and (4), this is equivalent to(
β

α + β
s−i −

β

α + 2β
(ŝi + s−i)

)2

>

(
β

α + β
si −

β

α + 2β
(ŝi + s−i)

)2

,

or after algebraic simplification, (ŝi)
2 > (s−i)

2. Hence, i wins when he mimics a more extreme

(i.e., larger in magnitude) signal than −i’s true signal. Since for any true signal si the

conditional distribution of −i’s signal is normal with mean E[θ|si] = β
α+β

si, it follows that no

matter his true signal, candidate i strictly increases his win probability by overreacting and

strictly decreases it by underreacting.

Proof of Proposition 2. For the proposition’s first statement, it suffices to verify that the

voter is indifferent between the two candidates for any pair of platforms, assuming that both

candidates play the strategy (5). Since the candidates’ strategies are fully revealing, the

voter correctly infers the candidates’ signals from the platform pair. Furthermore, since the

candidates’ strategies each have range R, there are no off-path platform pairs. Therefore, it

suffices to show that for any si and s−i, −E[(yi(si)− θ)2|si, s−i] = −E[(y−i(s−i)− θ)2|si, s−i],
or equivalently that (yi(si)− E [θ|si, s−i])2 = (y−i (s−i)− E [θ|si, s−i])2.27 Using (4) and (5),

this latter equality can be rewritten as(
2β

α + 2β
si −

2β

α + 2β

(
si + s−i

2

))2

=

(
2β

α + 2β
s−i −

2β

α + 2β

(
si + s−i

2

))2

,

which holds for any si, s−i.

Next, we turn to the proposition’s second statement. We actually prove something stronger:

in any equilibrium in which both candidates win with positive probability and use continuous

fully-revealing strategies, there is c ∈ R and i ∈ {A,B} such that

yi(si) =
2β

α + 2β
si + c and y−i(s−i) =

2β

α + 2β
s−i − c.28

27That this latter equality is equivalent to the former follows from a standard mean-variance decomposition
under quadratic loss utility as in the proof of Proposition 4.

28Using a very similar analysis to that in the previous paragraph, it is readily verified that these strategies
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To prove that, fix any equilibrium in which each candidate i uses a continuous and fully re-

vealing and continuous strategy ȳi and both win with positive probability. Denote the interior

of the range of ȳi by X̄i, noting that X̄i is an open interval. Also denote s̄i(xi) := (ȳi)
−1(xi).

Lemma 1 and voter optimality imply that the voter is indifferent between both candidates after

almost all on-path platform pairs. This implies that for almost all x′A ∈ X̄A and x′B ∈ X̄B—

hereafter we drop the “almost all” qualifier for brevity, understanding that some subsequent

statements are up to measure zero sets, returning to the issue at the very end of the proof—we

must have E[θ|x′A, x′B] =
x′A+x′B

2
, which implies β

α+2β
(s̄A(x

′
A) + s̄B(x

′
B)) =

x′A+x′B
2

, or equiva-

lently

s̄B(x
′
B) =

α + 2β

2β
(x′A + x′B)− s̄A(x

′
A). (12)

For small ε > 0 and xA ∈ X̄A and xB ∈ X̄B, the same logic also holds for platforms xA + ε

and xB − ε, yielding

s̄B(xB − ε) =
α + 2β

2β
(xA + xB)− s̄A(xA + ε). (13)

Substituting into (13) from (12) with x′B = xB − ε and x′A = xA yields

α + 2β

2β
(xA + xB − ε)− s̄A(xA) =

α + 2β

2β
(xA + xB)− s̄A(xA + ε),

or equivalently,

s̄A(xA + ε) =
α + 2β

2β
ε+ s̄A(xA). (14)

The equality in (14) can only hold for all xA ∈ X̄A and small ε > 0 if there is a con-

stant cA ∈ R such that s̄A(xA) = α+2β
2β

xA + cA for all xA ∈ X̄, from which it follows that

ȳA(sA) =
2β

α+2β
sA + cA for all sA. A symmetric argument establishes that ȳB(sB) =

2β
α+2β

sB + cB

for all sB. But then (12) implies cB = −cA. Finally, note that continuity pins down the strate-

gies even at measure zero sets of signals.

Proof of Proposition 3. By the law of iterated expectations, the voter’s ex-ante utility

can be expressed as

v(yA, yB, wA) = −E[(x− θ)2] = −E[E[(x− θ)2 |sA, sB]] = −E

[(
x− β (sA + sB)

α + 2β

)2
]
− 1

α + 2β

constitute an equilibrium, with the voter indifferent after any pair of platforms.
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= −Pr (A wins)E

[(
xA − β (sA + sB)

α + 2β

)2 ∣∣∣ A wins

]

− Pr (B wins)E

[(
xB − β (sA + sB)

α + 2β

)2 ∣∣∣ B wins

]
− 1

α + 2β
. (15)

It is convenient to define hi(si) := E [s−i|si, i wins]. Using iterated expectations again and a

mean-variance decomposition as in the proof of Proposition 4, it also holds that for any i,

E

[(
xi −

β (sA + sB)

α + 2β

)2 ∣∣∣ i wins]

= E

[
E

[(
xi −

β (sA + sB)

α + 2β

)2 ∣∣∣ si, i wins] ∣∣∣ i wins]

= E

[(
xi −

β (si + E [s−i|si, i wins])
α + 2β

)2

+

(
β

α + 2β

)2

Var [s−i|si, i wins]
∣∣∣ i wins]

= E

[(
xi −

β (si + h(si))

α + 2β

)2 ∣∣∣ i wins]+

(
β

α + 2β

)2

E
[
Var [s−i|si, i wins]

∣∣∣ i wins] .
(16)

Equations (15) and (16) imply

v(yA, yB, wA) = −
(

β

α + 2β

)2

LV − LE − 1

α + 2β
, (17)

where

LV :=
∑
i=A,B

Pr (i wins)E
[
Var [s−i|si, i wins]

∣∣∣ i wins] , (18)

LE :=
∑
i=A,B

Pr (i wins)E

[(
xi(si)−

β (si + h(si))

α + 2β

)2 ∣∣∣ i wins] . (19)

Our problem is to maximize (17) subject to i winning when |si| > |s−i|. Since (18) does

not depend on platforms while (19) is bounded below by 0, a solution must satisfy for each i:

yi(si) =
β (si + h(si))

α + 2β
= E[θ | si, i wins].
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Since the constraint is that i wins when |si| > |s−i|, it follows immediately that the solution

is for each candidate to use the strategy (6).

Using the closed-form expression for truncated normal distributions, Equation 6 can be

expressed as

y (si) =
β

α + β
si − σ

β

α + 2β

ϕ
(

1
σ

α
α+β

si

)
− ϕ

(
− 1
σ
α+2β
α+β

si

)
Φ
(

1
σ

α
α+β

si

)
− Φ

(
− 1
σ
α+2β
α+β

si

) ,
where σ :=

√
α+2β
(α+β)β

, and ϕ and Φ are respectively the density and cumulative distributions of

the standard normal distribution. To see that this strategy has pandering, consider any si > 0

(with a symmetric argument for si < 0). Then 0 < y (si) <
β

α+β
si because ϕ

(
1
σ

α
α+β

si

)
>

ϕ
(

1
σ
α+2β
α+β

si

)
> 0 and Φ

(
1
σ

α
α+β

si

)
> Φ

(
− 1
σ
α+2β
α+β

si

)
> 0.
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Supplementary Appendix

D. Mixed Motives

This section substantiates the discussion in Section 4 of the paper by formally generalizing

our main welfare conclusions to a normal-quadratic setting in which candidates are largely

but not entirely office motivated. We will establish that when the parameters bi and ρi defined

in Equation 7 are sufficiently close to zero for each i = A,B, (i) there is an equilibrium that

achieves welfare arbitrarily close to the level obtained by efficiently aggregating the signal of

only one candidate (Proposition 5 below), and (ii) that welfare is an approximate bound on

voter welfare in any equilibrium (Proposition 6 below).

In the context of a normal-quadratic mixed-motivation game, with candidates’ payoffs as

defined in Equation 7, we say that candidate’s i strategy is unbiased if

yi(si) =
β

α + β
si + bi. (20)

Note that this refers to candidate i choosing a policy that maximizes his preference over policy

given his signal, as opposed to the voter’s.

Proposition 5. In the normal-quadratic mixed-motivations game, there is a fully revealing

equilibrium in which one candidate i plays the unbiased strategy (20), the other candidate −i
plays

y−i(s−i) = s−i −
α + β

β
bi, (21)

and the voter elects candidate i no matter the pair of platforms.

Proof. Given the strategies (20) and (21), it follows that

E[θ|xi, x−i] =
β(xi − bi)

α+β
β

+ β
(
x−i +

α+β
β
bi

)
α + 2β

=
αxi + β(xi + x−i)

α + 2β
.

Straightforward algebra then verifies that for any xi and x−i,

(xi − E[θ|xi, x−i])2 < (x−i − E[θ|xi, x−i])2 ⇐⇒ β < α + β.

Hence it is optimal for the voter to always elect candidate i; clearly the candidates are playing
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optimally given this strategy for the voter.

As the equilibrium constructed in Proposition 5 is invariant to ρA and ρB, it has a number

of interesting implications. First, the equilibrium exists when candidates are purely policy-

motivated. Second, for ρA = ρB = bA = bB = 0, this equilibrium reduces to one that verifies

the first statement of Proposition 1. Moreover, by taking bA = bB = 0 and ρA = ρB = 1, we

see that there is also an equilibrium in which one candidate plays the unbiased strategy and

always wins when both candidates are benevolent. Hence, the equilibrium of Proposition 5

continuously spans all three polar cases of candidate motivation.

Consider a normal-quadratic game with mixed-motivated candidates parameterized by

(ρ, b), where ρ ≡ (ρA, ρB) and b ≡ (bA, bB). Let E(ρ, b) denote the set of equilibria in which

candidates play pure strategies, for consistency with our baseline model. Given any equilib-

rium σ ≡ (yA, yB, wA), let v(σ) be the voter’s welfare in this equilibrium. Note that the voter’s

welfare depends only on the strategies used and not directly on the candidates’ motivations.

Let v∗(ρ, b) := sup{v(σ) : σ ∈ E(ρ, b)} be the supremum of equilibrium voter welfare given

candidate motivations. Plainly, v∗(0,0) is the welfare bound identified by Proposition 1.

Proposition 6. In the normal-quadratic mixed-motivations game, as (ρ, b) → (0,0), it holds

that v∗(ρ, b) → v∗(0,0).

This result holds despite the equilibrium correspondence not being upper hemicontinuous.

Indeed, observe that given any candidates’ motivations with bA > 0, there is an equilibrium in

which both candidates use the constant strategy yi(si) = 1/bA; this is supported by suitable

off-path beliefs such that any candidate whose platform differs from bA loses for sure. The

limit of these candidates’ strategies, limbA→0 1/bA, is not a valid strategy.

We require two lemmas to prove Proposition 6. Let

E∗(ρ, b) := {σ ∈ E(ρ, b) : v(σ) = v∗(ρ, b)}

be the set of welfare-maximizing equilibria.29 Given a strategy profile σ ≡ (yA, yB, wA) and an

ε > 0, let W σ
ε (sA, sB) denote the set of candidates who win with probability at least ε when

29 In what follows, we will proceed as if E∗(ρ, b) is non-empty for all (ρ, b). If this is not the case, one can
proceed almost identically, just by defining for any ε > 0, E∗

ε (ρ, b) := {σ ∈ E∗(ρ, b) : v(σ) ≥ v∗(ρ, b)− ε}, and
then applying the subsequent arguments for a sequence of ε → 0.
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the signal realizations are sA, sB.

Lemma 3. For any bounded set of signals ŜA × ŜB of positive measure and any ε > 0, there

exists k > 0 such that for any (ρ, b), if σ ≡ (yA, yB, wA) ∈ E∗(ρ, b) and i ∈ W σ
ε (sA, sB) for

almost all (sA, sB) ∈ ŜA × ŜB, then |yi(si)| < k for almost all si ∈ Ŝi.

Proof. Take any σ ∈ E∗(ρ, b). We have v(σ) ≥ −Var(θ) = −1/α, because −Var(θ) is the

welfare in a trivial equilibrium in which both candidates uninformatively choose policy 0.

Now consider any (sA, sB), any ε > 0. The voter’s (expected) utility from any policy x given

sA, sB does not depend on (ρ, b) and gets arbitrarily low as |x| → ∞. Since the voter’s utility

conditional on any other signal profile is bounded above by zero, if the lemma’s conclusion

were false then σ would have arbitrarily low welfare, a contradiction.

Lemma 4. In any sequence of welfare-maximizing equilibria σρ,b ≡ (yρ,bA , yρ,bB , wρ,b
A ) ∈ E∗(ρ, b),

as (ρ, b) → (0,0) either:

(1) for some i, Pr(i wins in σρ,b) → 0 as (ρ, b) → 0; or

(2) for any i and almost all si, y
ρ,b
i (si) is bounded.

Proof. Suppose the lemma is false. Then, without loss, there is a positive measure of signals

sA, a number δ > 0, and a (sub)sequence of (ρ, b) → (0,0) with equilibria σρ,b ∈ E∗(ρ, b)

such that: (i) for all (ρ, b) and i ∈ {A,B}, it holds that Pr(i wins in σρ,b) > δ; and (ii) either

yρ,bA (sA) → +∞ or yρ,bA (sA) → −∞. Lemma 3 implies for any k > 0 and ε > 0, there exists

(ρ̂, b̂) > (0,0) such for any (ρ, b) < (̂ρ̂, b̂), if |sB| < k, then almost surely A /∈ W σρ,b

ε (sA, sB).

(Intuitively, as (ρ, b) → (0,0), since yρ,bA (sA) explodes, it must be that A with signal sA wins

with non-vanishing probability only against at most a set of signals sB that have vanishing

prior probability.) Since the distribution of sB|sA does not change with (ρ, b), it follows that

for any ε > 0, if (ρ, b) is small enough then UA(sA;σ
ρ,ρ, b) < ε, (22)

where UA(sA;σ,ρ, b) is the expected utility for candidate A when his signal is sA in an equilib-

rium σ given candidate motivations (ρ, b). However, notice that by point (i) above, it must be

that there is a bounded set, say ŜA ⊂ R, such that for any (ρ, b), Pr(i wins in σρ,b|sA ∈ ŜA)

is bounded below by some positive number.30 But then, candidate A with signal sA can mimic

30The reason ŜA must be a bounded set is because types in the tails have vanishing prior probability.
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how he plays when his signal is in ŜA (e.g., mix uniformly over the associated strategies) to

get a probability of winning for all (ρ, b) that is bounded away from zero, which given (22)

would be a profitable deviation for small enough (ρ, b).

Proof of Proposition 6. Let σρ,b
UB be the equilibrium identified in Proposition 5 where,

without loss, we take A to be the candidate who wins with probability one. Let σρ,b ≡
(yρ,bA , yρ,bB , wρ,b

A ) ∈ E∗(ρ, b) be a sequence of welfare-maximizing equilibria as (ρ, b) → (0,0).

Applying Lemma 4 to this sequence, there are two cases:

(a) If Case 1 of Lemma 4 holds, then it is straightforward to verify that v(σρ,b) → v∗(0,0).

Intuitively, for (ρ, b) ≈ (0,0), if i is winning with ex-ante probability approximately zero, then

the voter’s welfare cannot be much higher than if −i wins with ex-ante probability one using

the unbiased strategy, and Proposition 5 ensures that in a welfare-maximizing equilibrium it

is not much lower either.

(b) If Case 2 of Lemma 4 holds, pick any subsequence of σρ,b that converges pointwise

almost everywhere and denote the limit by σ0,0.31 Since payoffs are continuous, it can be

verified using standard arguments that σ0,0 is an equilibrium of the limit pure-office-motivation

game (intuitively, if the voter or a candidate with any signal has a profitable deviation, there

would also have been a profitable deviation from σρ,b for small enough (ρ, b) > (0,0)). This

implies that

lim
(ρ,b)→(0,0)

v(σρ,b) = v(σ0,0) ≤ v∗(0,0).

Finally, the inequality above holds with equality because for all (ρ, b), we have v(σρ,b) ≥
v(σρ,b

UB) as σ
ρ,b is welfare maximizing, and v(σρ,b

UB) → v∗(0,0).

E. A Beta-Bernoulli Specification

Here we repeat the analysis of Section 3 for the case in which the state follows a Beta

distribution and each candidate gets a binary signal drawn from a Bernoulli distribution; the

feasible set of policies is [0, 1] (or any superset thereof). This statistical structure is a member

31More precisely, letting σ0,0 ≡ (yA, yB , wA), we require that (i) yρ,bi (si) → yi(si) for each i and almost all

si and (ii) wρ,b
A (xA, xB) → wA(xA, xB) for each (xA, xB) ∈ R2. Case 2 of Lemma 4 assures that at least one

subsequence converges in this sense. How each yi is defined on zero-measure sets of signals is irrelevant. Note
also that because the ex-ante probability of {si : si /∈ [−k, k]} can be made arbitrarily small by choosing k > 0
arbitrarily large, it follows that v(σρ,b) → v(σ0,0).
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of the exponential family with conjugate priors discussed in Section 4 of the main text. Aside

from illustrating how the incentives to overreact exist even when the state distribution may not

be unimodal and may be skewed, signals are discrete, etc., it also provides a closer comparison

with the setting of Heidhues and Lagerlof (2003) and Loertscher (2012) than does our leading

normal-normal specification.

Assume the prior distribution of θ is Beta(α, β), which is the Beta distribution with pa-

rameters α, β > 0 whose density is given by f (θ) = θα−1(1−θ)β−1

B(α,β)
, where B(·, ·) is the Beta

function.32 Thus θ has support [0, 1] and E[θ] = α
α+β

. For reasons explained at the end of the

section, we assume α ̸= β. (This rules out a uniform prior, which corresponds to α = β = 1.)

Each candidate i ∈ {A,B} observes a private signal si ∈ {0, 1}; conditional on θ, signals are
drawn independently from the same Bernoulli distribution with Pr(si = 1|θ) = θ. The policy

space is any subset of R containing [0, 1].

It is well-known that the posterior distribution of the state given signal 1 is now Beta (α + 1, β)

(i.e. has density f (θ|si = 1) = θα(1−θ)β−1

B(α+1,β)
); similarly the posterior given signal 0 is Beta (α, β + 1).

It is also straightforward to check that the posterior distribution of the state given two sig-

nals is as follows: if both si = s−i = 1, it is Beta (α + 2, β); if si = 0 and s−i = 1, it is

Beta (α + 1, β + 1); and if si = s−i = 0, it is Beta (α, β + 2) .

It follows that

E [θ|si] =
α + si

α + β + 1
and E [θ|si, s−i] =

α + si + s−i
α + β + 2

.

The above formulae imply that for any realization (sA, sB),

sign (E[θ|sA, sB]− E [θ]) = sign

(
E [θ|sA] + E [θ|sB]

2
− E [θ]

)
,

|E[θ|sA, sB]− E [θ]| >
∣∣∣∣E [θ|sA] + E [θ|sB]

2
− E [θ]

∣∣∣∣ . (23)

In other words, both the posterior mean given two signals and the average of the individual

posterior means shift in the same direction from the prior mean, but the former does so by a

larger amount.

32 If α and β are positive integers then B (α, β) = (α−1)!(β−1)!
(α+β−1)! .
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Consequently, if candidates were to play unbiased strategies and the voter best responds,

then whenever sA ̸= sB there is one candidate who wins with probability one: the candidate

i with si = 1 (resp., si = 0) when β > α (resp., β < α). Of course, when sA = sB,

both candidates would choose the same platform and win with equal probability. It is worth

highlighting that when sA ̸= sB, it is the candidate with the ex-ante less likely signal who

wins, because ex-ante Pr(si = 1) = E[θ] = α/(α + β). This implies that unbiased strategies

cannot form an equilibrium, but not because candidates would deviate when drawing the ex-

ante less likely signal; rather, they would deviate when drawing the ex-ante more likely signal

to the platform corresponding to the ex-ante less likely signal.33 Notice that this profitable

deviation given signal si is to an (on-path) platform xi such that |xi−E[θ]| > |E[θ|si]−E[θ]|;
hence, it is a profitable deviation through overreaction rather than pandering.

Finally, we observe there is symmetric fully revealing equilibrium with overreaction in

which both candidates play

y(1) =
α + 2

α + β + 2
and y(0) =

α

α + β + 2
.

This strategy displays overreaction because

y(0) < E[θ|si = 0] < E[θ] < E[θ|si = 1] < y(1).

It is readily verified that when both candidates use this strategy, E[θ|sA, sB] = y(sA)+y(sB)
2

for

all (sA, sB), and hence each candidate would win with probability 1/2 for all on-path platform

pairs; a variety of off-path beliefs can be used to support the equilibrium.

Note that this overreaction equilibrium would exist even when α = β. However, were

α = β, unbiased strategies would also constitute an equilibrium: the reason is that in this

case, both sides of (23) would be equal to each other (in fact, equal to zero) when sA ̸= sB, and

hence the voter would elect both candidates with equal probability no matters their platforms

under unbiased strategies.

33See Che, Dessein and Kartik (2013) for an analog where options that are “unconditionally better-looking”
need not be “conditionally better-looking”.
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