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Abstract

We study two-player constant-sum Bayesian games with type-independent payoffs.

Under a “completeness” statistical condition, any “identifiable” equilibrium is an ex-

post equilibrium. We apply this result to a Downsian election in which office-motivated

candidates possess private information about policy consequences. The ex-post property

implies a sharp bound on information aggregation: equilibrium voter welfare is at best

equal to the efficient use of a single candidate’s information. In canonical specifications,

politicians may “anti-pander” (overreact to their information), whereas some degree of

pandering would be socially beneficial. We discuss other applications of the ex-post

result.
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1. Introduction

For representative democracy to be effective, voters must select representatives whose

policies enhance their welfare. A challenge is that citizens are often poorly informed on

policy issues, as posited by Downs (1957) in his “rational ignorance” hypothesis and since

supported by numerous studies starting with Campbell, Converse, Miller and Stokes (1960).

Political candidates, by contrast, devote substantial resources and have broad access to policy

experts and think tanks. Politicians can convey their information to the electorate through

their electoral campaigns, and in particular, through their policy positions. Indeed, there is

evidence that voters learn and/or refine their views during elections.1 But when office-seeking

politicians choose their positions strategically, how effectively do elections aggregate their

information?

One prevalent view is that elections function well because even office-seeking politicians are

impelled to choose policies that promote voters’ interests. Indeed, Wittman (1989, p. 1400) in-

fluentially argued that political competition benefits the electorate because “there are returns

to an informed political entrepreneur from providing the information to the voters, winning

office, and gaining the [...] rewards of holding office.” Concurrently, however, there are also

concerns—raised both in popular circles and in academic work that we discuss subsequently—

that competitive pressures drive politicians to pander to voters’ opinions rather than provide

valuable information. After all, the argument goes, it is hard to win an election by campaign-

ing on policies with recondite merits; a politician is better off simply promising to do whatever

voters believe is best from the outset. Pandering is viewed as inefficient because it would lead

to policies that are excessively distorted toward the voters’ less-informed opinions.

Our paper (re-)assesses the efficiency of elections when office-seeking politicians possess

private information about policy consequences. Section 3 lays out an extension of the canonical

Downsian model of elections (Downs, 1957; Hotelling, 1929). Our framework is quite general,

but we maintain the Downsian assumption of two candidates making policy commitments to

1Le Pennec and Pons (2023) provide large-scale cross-country evidence that a substantial share of voters
decide late in campaigns, consistent with meaningful voter learning. Earlier work includes experiments on
deliberative polling (Fishkin, 1997), studies on the effects of information on voters’ opinions (Zaller, 1992;
Althaus, 1998; Gilens, 2001), work on framing in polls (Schuman and Presser, 1981), and experiments on
priming (Iyengar and Kinder, 1987).

1



maximize their probability of winning the election. The key twist is that each politician has

(imperfect) private information about policy consequences. In other words, they each have

information about which policy would be best for a representative or median voter—hereafter,

“the voter.”

We show that Downsian elections are fundamentally limited in their ability to aggregate

candidates’ private information. Under reasonable conditions, Proposition 1 deduces that

in any equilibrium, holding fixed the politicians’ equilibrium strategies, voter welfare—ex-

ante expected utility—equals the welfare from (hypothetically) electing the same candidate

regardless of platforms. That implies a tight upper bound: equilibrium voter welfare is no

higher than what can be obtained based on one politician’s information alone (Theorem 2).

The key to establishing those conclusions is a general property of a class of constant-

sum Bayesian games, studied in Section 2. Specifically, consider any two-player constant-sum

Bayesian game with type-independent payoffs.2 Our main theoretical result, Theorem 1, says

that under a general completeness condition on the distribution of types, any equilibrium in

which at least one player uses an “identifiable” strategy—for example, a pure strategy—must

be an ex-post equilibrium. That is, even after observing the opponent’s action, a player must

be indifferent among all his own on-path actions. This ex-post property substantially limits

the scope for how much private information a player’s actions can reveal in purely competitive

settings, such as a Downsian election.

To understand politicians’ strategic incentives in more detail, we turn in Subsection 3.2

to a canonical one-dimensional normal-quadratic specification of the Downsian election. We

assume there that the best policy for the voter—the “state” of the world—is drawn from a

normal distribution; each candidate’s private signal is the true state plus noise that is also

normally distributed; and the voter’s payoff is a quadratic loss function of the distance between

the chosen policy and the state.

For that specification, we explain why it is not an equilibrium for each politician to propose

a policy that is best for the voter based on his own information, i.e., to use an “unbiased

2 In the electoral context, the two players are the politicians; office motivation (each candidate is maximizing
their probability of winning) means that no matter the voter’s strategy, the politicians are engaged in a
constant-sum game. Their private information, while certainly relevant to the voter, does not directly affect
the politicians’ payoffs.
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strategy” (in which case the election would aggregate more than one politician’s information).

We show that, perhaps contrary to intuition, politicians would have an incentive to deviate

by “anti-pandering”—overreacting to their private information—as the rational voter would

elect the more extreme politician under unbiased strategies. The voter would do so because

each politician’s estimate of the state based on his own signal places more weight on the prior

than the voter’s estimate after learning both politicians’ signals.3

Building on the above logic, we identify in Proposition 2 a symmetric equilibrium that

features anti-pandering by both politicians. In this equilibrium, politicians choose different

platforms with probability one, yet—regardless of their platforms—are elected with equal

probability. Although there are other equilibria, the anti-pandering equilibrium shows starkly

that office motivation need not induce pandering (or underreaction to private information).

Further, in terms of welfare, we show in Proposition 3 that a suitable degree of disequilibrium

pandering would actually benefit the voter, contrary to perceptions that pandering is always

harmful.

Although our main economic application concerns Downsian elections—or any equivalent

setting in which two agents compete for their proposals to be selected by a decision-maker—

the abstract ex-postness result of Theorem 1 has broader relevance. In Section 4 we develop

another application, in which two firms compete for both private market share and a gov-

ernment action (e.g., procurement). The firms have private information about a fundamental

that matters for the government’s optimal allocation, for example the relative social value of

their products. Although the government might benefit from learning about the fundamen-

tal from the firms’ choices, we show that the ex-post property implied by our key statistical

condition often precludes such benefit. We also discuss how the framework in Section 4 has

broader applicability.

Related Literature. Our Theorem 1 and its ingredient Lemma 1 relate to work on the equi-

librium properties of two-player constant-sum games (hereafter just “constant-sum games”),

which dates back to Von Neumann (1928). Our results go beyond equilibrium payoff unique-

ness or interchangeability (Nash, 1951), by establishing, under some conditions, an ex-post

3Glaeser and Sunstein (2009) and Roux and Sobel (2015) also identify this implication of Bayesian updating
in a non-strategic group decision-making context.
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property for a class of constant-sum games: Bayesian games with type-independent payoffs.

Ex-postness is not a general equilibrium property of constant-sum games; simply consider

“matching pennies”. While the class of games Lemma 1 or Theorem 1 apply to is (very) re-

stricted, we demonstrate relevant economic applications. There are two papers we are aware

of with closely-related results.4 First, Viossat (2006, Proposition 3.8) derives certain proper-

ties of correlated equilibria of complete-information constant-sum games, which, as we explain

after Lemma 1, is connected to our lemma. He does not have an analog to Theorem 1.

Second, Kattwinkel, Niemeyer, Preusser and Winter (2022) study mechanisms without

transfers when two agents, each with a finite set of types, have type-independent and opposing

preferences over a binary allocation. Their Proposition 1 characterizes incentive compatibility

of direct mechanisms, and their Proposition 3 (part 2) shows that under a full-rank condi-

tion, only constant mechanisms are incentive compatible. For finite type sets, these results

are related to our Lemma 1 and Theorem 1, as elaborated in Section 2. We study more

general games rather than just direct mechanisms; moreover, a treatment of infinite type

sets is valuable for applications, including our main electoral one, whose leading specification

(Subsection 3.2) has normally distributed types.

With regard to our main application, there is a small prior literature on electoral competi-

tion when candidates have policy relevant private information.5 Heidhues and Lagerlof (2003)

illustrate why candidates may have an incentive to pander to the electorate’s prior belief; their

setting is one with binary policies, binary states, and binary signals. We find that in our richer

setting, the opposite may be true for a broad class of information structures. Plainly, with

binary policies, one cannot see the logic of why and how candidates may wish to overreact to

private information. Loertscher (2012) maintains the binary signal and state structure, but

introduces a continuum policy space. His results are more nuanced, but at least when signals

4As part of their study of robust implementation, Pei and Strulovici (2025, Theorem 4, part 1) observe
that if two agents’ payoffs are state-independent (but not necessarily constant sum), then any equilibrium of
the game with no information about the state can also be supported as an equilibrium when agents observe
the state. The reason is that the state is merely a correlating device. However, this observation only addresses
some of the equilibria when agents observe the state (which is sufficient for their purposes), and moreover,
these equilibria need not be ex-post equilibria. Our Theorem 1’s conclusion of ex-postness of all (identifiable)
equilibria owes to its constant-sum and statistical-completeness assumptions.

5There are also models in which candidates have private information that is not policy relevant for voters,
e.g., about the location of the median voter (Ottaviani and Sorensen, 2006; Bernhardt, Duggan and Squintani,
2007, 2009).
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are sufficiently precise, the conclusions are similar to those of Heidhues and Lagerlof (2003).6

Laslier and Van de Straeten (2004) show that if voters in the Heidhues and Lagerlof (2003)

model are endowed with sufficiently precise private information about the policy-relevant state,

then there are equilibria in which candidates fully reveal their private information; see also

Klumpp (2014) and Gratton (2014). By contrast, we are interested in settings in which there

is little information voters have that candidates do not.

The anti-pandering equilibrium of our normal-quadratic model specification provides a

new perspective on the classic issue of policy divergence. Unlike some other prevalent expla-

nations (e.g., ideologically-motivated candidates with uncertainty about voter preferences, as

in Wittman (1983) and Calvert (1985)), anti-pandering features office-motivated politicians

diverging in order to maximize support from a risk-averse voter whose ideology is known.7

Building on earlier versions of the current paper, Millner, Ollivier and Simon (2020) intro-

duce confirmation bias for voters in a continuum-policy ternary-state model. They find that

confirmation bias can reduce equilibrium anti-pandering.

Schultz (1996) studies a model in which two candidates are perfectly informed about the

policy-relevant state but are policy motivated. He finds that when the candidates’ ideological

preferences are sufficiently extreme, platforms cannot reveal the true state; however, because

of the perfect information assumption, full revelation can be sustained when ideological prefer-

ences are not too extreme. Martinelli (2001) and Martinelli and Matsui (2002) derive further

results with ideologically motivated candidates who are perfectly informed about a policy-

relevant variable.

Ambrus, Baranovskyi and Kolb (2021) study a model related to our normal-quadratic

specification, but with candidates who are policy motivated. We explain in Subsection 3.3

that our welfare result continues to hold, approximately, when the extent of policy motivation

6 In the Supplementary Appendix, we show how overreaction or anti-pandering arises in a binary-signal
model specification when the policies and the state lie in the unit interval. That specification permits a closer
comparison with Heidhues and Lagerlof (2003) and Loertscher (2012).

7Other explanations for divergence include those based on increasing turnout (Glaeser, Ponzetto and
Shapiro, 2005), campaign contributions (Campante, 2011), valence asymmetries (Groseclose, 2001; Aragones
and Palfrey, 2002), signaling character, competence, or related mechanisms (Callander and Wilkie, 2007;
Kartik and McAfee, 2007; Honryo, 2018), or more than two candidates (Palfrey, 1984).
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is small. Ambrus et al. (2021) show that when policy motivation looms large and candidates’

ideologies are sufficiently similar to the voter’s, equilibria can aggregate more information.

Our papers are complementary.

There are various other settings in economics and political science in which distortions

arise because agents wish to influence their principals’ beliefs. In particular, electoral models

often feature a single politician seeking to build a reputation for either competence (e.g.,

Canes-Wrone, Herron and Shotts, 2001) or aligned preferences (e.g., Maskin and Tirole, 2004).

While most such papers highlight the possibility of pandering—or even “over-pandering” as

in Acemoglu, Egorov and Sonin (2013) and Kartik and Van Weelden (2019)—anti-pandering

arises in Prendergast and Stole (1996), Levy (2004), and Bils (2023).

Finally, we note that our applications illustrate that ex-post equilibrium or incentive con-

straints leave limited scope for information revelation among two purely competitive players.

Although in a very different setting, that is reminiscent of negative results like Jehiel, Meyer-

ter Vehn, Moldovanu and Zame (2006), who show that generically only constant mechanisms

are ex-post implementable under interdependent values and multidimensional signals.

2. Two-Player Constant-Sum Bayesian Games

Our applications are underpinned by a general result on two-player constant-sum Bayesian

games with type-independent payoffs. This section develops that result.

Setting. There are two players, A and B. Each player i ∈ {A,B} has a private type

si ∈ Si, where Si is a nonempty standard Borel space. The type profile (sA, sB) is drawn

from a common-prior probability measure F on SA × SB, whose marginals FA and FB have

supports SA and SB, respectively. Writing −i for the player different from i as usual, we will

denote by F (· | si) the regular conditional distribution of s−i given si.
8

After learning their types, players choose actions simultaneously; player i’s action is de-

noted xi ∈ Xi, where each Xi is a nonempty standard Borel space.9 Player i’s (von-Neumann–

8This exists and is unique almost everywhere (a.e., hereafter) because SA × SB is a standard Borel space
(Durrett, 1995, pp. 229–230).

9As usual, each xi can also be interpreted as player i’s action plan in a sequential-move game.
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Morgenstern) payoff is ui(xi, x−i), with uA (·) + uB (·) = 0. So the game is constant sum

and types do not directly affect payoffs. (Nevertheless, the players’ types may affect the

payoffs of third parties, as in our subsequent applications.) Assume payoffs are uniformly

bounded: |ui(·)| ≤ K, for some constant K. We denote each player i’s space of mixed

actions—randomizations over actions—by ∆(Xi), with generic element ξi, and extend payoffs

to (∆(XA),∆(XB)) by linearity as usual, writing ui(ξi, ξ−i). A mixed strategy for player i is

σi : Si → ∆(Xi). We study Bayes-Nash equilibria.

Identifiability conditions. Theorem 1 below requires the following statistical condition on

the distribution of signals. As is common, we use notation like F (g(si) = 0) as shorthand for

F ({si : g(si) = 0}).

Condition 1. For any i ∈ {A,B} and any bounded measurable function g : S−i → R, it holds

that

Es−i
[g(s−i) | si] = 0 for Fi-a.e. si ∈ Si =⇒ F (g(s−i) = 0 | si) = 1 for Fi-a.e. si ∈ Si. (1)

In words, (1) says that if g(s−i) has mean zero conditional on i’s signal, then it must in fact

equal zero almost surely (a.s., hereafter) conditional on i’s signal. Since si is itself a random

variable, conditional expectations and distributions are defined only up to Fi-null sets, and we

therefore formulate (1) in an si-a.s. sense. With that caveat in mind, Condition 1 is equivalent

to requiring that the family of conditional distributions {F (· | si)}si∈Si
is boundedly complete.

Bounded completeness is a recognized concept in statistics (e.g., Lehmann, 1986, p. 144),

which in our context captures a notion of richness in how variation in si affects player i’s beliefs

about his opponent’s type s−i. Specifically, the variation in si must identify or distinguish

any nontrival bounded “feature” of the opponent’s type. For finite type spaces, Condition 1 is

equivalent to the matrix of joint probabilities of types sA and sB having full row and column

rank, since bounded completeness rules out nontrivial linear relations among each player’s

conditional distributions. Crémer and McLean (1985, 1988) have prominently used a linear

independence notion of richness in the context of full surplus extraction in mechanism design

with finite type spaces. Appendix B discusses the connection of completeness with linear

independence in infinite type spaces.
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Plainly, if either |SA| > 1 or |SB| > 1, then Condition 1 is violated if the types are

independent. But we are interested in settings in which each player’s type is informative

about the other’s, stemming from both being informative about some underlying “state of the

world”. In those contexts, we view Condition 1 as a reasonable requirement. In particular, it

follows from a well-known fact about complete families that if each type space Si ⊂ Rn has

a nonempty interior, Condition 1 holds when the distribution of s−i | si for each i ∈ {A,B}

is in a regular exponential family of distributions with continuous cumulant function.10 This

canonical class includes a variety of widely-used discrete and continuous distributions with

bounded and unbounded supports, such as normal, exponential, gamma, beta, chi-squared,

binomial, Dirichlet, and Poisson.

Theorem 1 also requires the following analogy to Condition 1 on players’ strategies.

Definition 1. Strategy σi is identifiable if for any bounded and measurable g : Xi → R, it

holds that

Exi
[g (xi) | si] = 0 for Fi-a.e. si ∈ Si =⇒ Pr (g (xi) = 0 | si) = 1 for Fi-a.e. si ∈ Si,

where the left-hand-side expectation and right-hand-side probability are computed using σi.

Importantly for our applications, any pure strategy σi : Si → Xi is identifiable because in

that case Exi
[g(xi) | si] = g(σi(si)). An example of a non-identifiable strategy is any non-pure

strategy that does not vary with the player’s signal.

The result. Since the game has type-independent payoffs, standard arguments for constant-

sum games imply that all equilibria yield the same payoff vector (U∗
A, U

∗
B). We say that an

10This follows from the well-known property that regular exponential families are boundedly complete when
the natural parameter ranges over a set with nonempty interior (e.g., Lehmann, 1986, Theorem 1, p. 142). In
particular, when each player i’s type space Si ⊂ Rn has nonempty interior and the conditional distribution of
s−i | si admits a density of the form

f(s−i | si) = exp
(
si · T (s−i)− ψ(si)

)
h(s−i), (2)

and the cumulant function ψ is continuous—as is the case for familiar exponential-family distributions—
Condition 1 is satisfied. For, in such families, the map si 7→ E [g (s−i) | si] is continuous for a bounded
function g, and so E[g(s−i) | si] vanishing on Fi-a.e. si implies it vanishes throughout the interior of Si. hence
g(s−i) = 0 F (· | si)-a.s. for every interior si, which yields (1) because in a regular exponential family the
interior si have full Fi-measure.
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equilibrium σ∗ := (σ∗
A, σ

∗
B) is an ex-post equilibrium if ui(xi, x−i) = U∗

i for each i ∈ {A,B} and

for (σ∗, F )-a.e. pair (xA, xB). In other words, in an ex-post equilibrium, it holds that no type

of either player would have an incentive to change their action even after learning the action

played by the opponent.11 We also say that an equilibrium σ∗ is an identifiable equilibrium if

either σ∗
A or σ∗

B is identifiable. In particular, any equilibrium in which at least one player is

playing a pure strategy is identifiable.

Theorem 1. If Condition 1 holds, then any identifiable equilibrium σ∗ is an ex-post equilib-

rium.

The theorem says that, subject to Condition 1, in any identifiable equilibrium the players

are indifferent over all the action profiles that are played in equilibrium—even though different

types of a player may be playing different (distributions over) actions and hold different beliefs

about the opponent’s type.

The theorem’s proof requires the following lemma, which is of independent interest as

it does not rely on either Condition 1 or identifiability of strategies. The lemma says that

in any equilibrium, all types of a player obtain the same interim expected payoff (which is

independent of the equilibrium), and any type would obtain that interim payoff regardless of

which action it plays among all the actions taken by some type of that player.

Lemma 1. Let (U∗
A, U

∗
B) denote the payoffs in every equilibrium, and let σ∗ be some equilib-

rium. Then for each i ∈ {A,B}, for (σ∗
i , Fi)-a.e. xi and Fi-a.e. si, it holds that

U∗
i = Ex−i

[ui(xi, x−i) | si],

where the expectation is taken with respect to the measure induced by σ∗
−i and F .

Proof. Since the game is constant sum with type-independent payoffs, and there is some

equilibrium σ∗, it holds that each player i can secure U∗
i .

12 This implies that for each i,

11To be precise, this is up to a probability-zero caveat; to lighten the exposition, we frequently omit such
caveats hereafter outside of formal statements.

12A mixed action ξi ∈ ∆(Xi) secures player i the payoff Ui ∈ R if for all ξ−i ∈ ∆(X−i), it holds that
ui(ξi, ξ−i) ≥ Ui. The statement follows from standard logic for constant-sum games, which we detail for
completeness. For either player i, consider the mixed action ξ∗i defined as the ex-ante measure over Xi
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conditional on Fi-a.e. types si, player i’s interim equilibrium payoff must in fact equal U∗
i .

We now make two observations: first, for Fi-a.e. types si, the conditional distribution of the

opponent’s actions induced by σ∗
−i and F must secure the opponent U∗

−i; for if not, there would

be some action that yields si a payoff strictly larger than U∗
i . Second, (σ

∗
i , Fi)-a.e. actions xi

must be a best response to any mixed action ξ−i that secures U∗
−i; for if not, player −i can

obtain a payoff strictly larger than U∗
−i by playing the constant strategy s−i 7→ ξ−i. Hence,

for (σ∗
i , Fi)-a.e. xi and Fi-a.e. si, it follows that Ex−i

[ui(xi, x−i) | si] = U∗
i ; the expectation

cannot be larger by the first observation earlier, nor smaller by the second. □

One way to appreciate the content of Lemma 1 is via its connection to correlated equilib-

rium of complete-information games. Consider a complete-information two-player constant-

sum game G with action spaces XA and XB and payoff functions uA and uB as above. Any

(objective) correlated equilibrium of this game is a Bayes-Nash equilibrium of our Bayesian

game with a suitably-defined information structure; conversely, any Bayes-Nash equilibrium

of our game is a correlated equilibrium of G. It follows from Lemma 1 that if ρ ∈ ∆(X1×X2)

is a correlated equilibrium of G with payoffs (π1, π2), then for any i ∈ {A,B} and ρ-a.e. xi, x
′
i,

it holds that Ex−i
[ui(x

′
i, x−i) | xi] = πi, and hence x′

i is a best response to ρ(· | xi). For finite

games, this fact has been noted by Viossat (2006, Proposition 3.8).13

Lemma 1 also relates to Kattwinkel et al. (2022, Proposition 1). Our result is stronger

for two reasons. First, we allow for infinite type sets. Second, our result applies to arbitrary

action spaces and equilibrium strategies, not just direct mechanisms and truthful equilibria.

When types may mix over their actions, Lemma 1 establishes that each type is indifferent

among all the actions in any type’s equilibrium mixture—not merely indifferent among all

types’ distributions. This is crucial for the proof of Theorem 1, which we now turn to.

Proof of Theorem 1. Let σ∗ be an equilibrium in which player −i’s strategy is identifiable.

Below, all expectations are with respect to the measure induced by (σ∗, F ). Fix xi in a

induced by the equilibrium strategy σ∗
i . If ξ

∗
i does not secure the payoff U∗

i , then there is some mixed action
ξ−i such that ui(ξ

∗
i , ξ−i) < U∗

i , or equivalently by the constant-sum property, u−i(ξ−i, ξ
∗
i ) > U∗

−i. But then
playing the constant strategy σ−i(s−i) = ξ−i would be a profitable deviation for player −i against σ∗

i .
13Moreover, because of the “conversely” point noted earlier in the paragraph, if we restricted to finite types

and actions, Viossat’s (2006) result could in turn be used to prove Lemma 1. Indeed, that indirect approach
was used in earlier versions of our paper (Kartik, Squintani and Tinn, 2015, Appendix A) and by Kattwinkel
et al. (2022, Lemma 1 and Proposition 1).
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(σ∗
i , Fi)-full-measure subset of Xi. For Fi-a.e. si, we have

U∗
i = Ex−i

[ui(xi, x−i) | si] by Lemma 1

= Es−i

[
Ex−i

[ui(xi, x−i) | si, s−i] | si
]

by the law of iterated expectation

= Es−i

[
Ex−i

[ui(xi, x−i) | s−i] | si
]

because x−i is independent of si, conditional on s−i.

Now, applying Condition 1 (just for one player, i) with g(s−i) = Ex−i
[ui(xi, x−i) | s−i]−U∗

i ,

we get for Fi-a.e. si that

Ex−i
[ui(xi, x−i) | s−i] = U∗

i for F (· | si)-a.s. s−i.

Integrating over si with respect to Fi and using the law of total probability yields the above

equality for F−i-a.e. s−i.

It then follows from the identifiability of σ∗
−i, applied with g(x−i) = ui(xi, x−i)− U∗

i , that

for F−i-a.e. s−i we have

ui(xi, x−i) = U∗
i for σ∗

−i(· | s−i)-a.s. x−i.

Integrating over s−i with respect to F−i yields the above equality for
(
σ∗
−i, F−i

)
-a.e. (x−i, s−i).

Since xi was arbitrary in a (σ∗
i , Fi)-full-measure set, the result follows. □

The following two examples show that neither Condition 1 nor the qualification of identi-

fiability can be dropped from Theorem 1. Both examples are based on a “matching pennies”

payoff structure.

Example 1. Consider XA = XB = SA = SB = {0, 1}, uA(xA, xB) = 1{xA = xB}, and F

the uniform distribution. Condition 1 fails because sA and sB are independent. There is

an identifiable equilibrium in which each player i plays the pure strategy si 7→ si. This is,

however, not an ex-post equilibrium.

Example 2. Now consider a complete-information variant of the previous example. There are

singleton type sets, |SA| = |SB| = 1; trivially, Condition 1 holds. Actions and payoffs are

as in Example 1. The equilibrium in which both players uniformly randomize over their two
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actions is not an ex-post equilibrium; these mixed strategies are not identifiable, and hence

the equilibrium is not identifiable.

Note that Lemma 1 applies to both examples. In particular, in the equilibrium of Ex-

ample 1, neither type of a player is playing an action that secures the equilibrium payoff;

nevertheless, each type has the same interim payoff and is indifferent between its equilibrium

action and the equilibrium action of the other type.

We close this section by fleshing out one implication of Theorem 1 that is useful for

applications. Let Ω be some set of outcomes and w : XA × XB → Ω an outcome function.

Assume that preferences depend on only the outcome, i.e., there is some ũi : Ω → R such

that ui(xA, xB) = ũi(w(xA, xB)) for all (xA, xB). Say that there are strict preferences over

outcomes if each ũi is injective, and say that an equilibrium σ∗ has a single outcome ω∗ if

w(xA, xB) = ω∗ for (σ∗, F )-a.e. (xA, xB). If there are strict preferences over outcomes, then

plainly an ex-post equilibrium must have a single outcome. Hence, the following result follows

directly from Theorem 1.

Corollary 1. Assume strict preferences over outcomes. If Condition 1 holds, then any iden-

tifiable equilibrium has a single outcome.

In fact, since the corollary holds for an arbitrary outcome space and function, it is equiv-

alent to Theorem 1. For, if we define outcomes as the utility-equivalence classes of action

profiles and the outcome function as mapping each action profile into its equivalence class,

then we have strict preferences over outcomes by construction, and a single outcome corre-

sponds exactly to ex-postness.

As detailed in in Appendix C, Corollary 1 implies Kattwinkel et al.’s (2022) Proposition 3.2.

In a direct-mechanism setting with binary allocations that two agents with a finite number of

types have opposed preferences over, those authors show that incentive compatibility requires

a constant allocation probability, so long as the type distribution has full rank.

In the remainder of the paper, we use Theorem 1/Corollary 1 to study information reve-

lation and aggregation in some economic settings.
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3. Information Aggregation and Pandering in Elections

This section studies a model of a Downsian election with informed candidates.

Model. We consider an electorate that is represented in reduced-form by a single voter.

The voter’s preferences depend upon the implemented policy x ∈ X and an unknown state of

the world θ ∈ Θ, where both X and Θ are standard Borel spaces (e.g., subsets of Euclidean

spaces). The voter can be interpreted as either some representative of a group, or a median

voter if one exists—as is assured if, for example, X ⊂ R and voters have single-crossing

expectational-differences preferences (Kartik, Lee and Rappoport, 2023)—or even just a single

decision-maker.

The state is drawn from a probability measure Fθ. The voter’s preferences are represented

by a von-Neumann–Morgenstern utility function u : X×Θ → R. We assume there is a utility-

maximizing policy in each state and an expected-utility-maximizing policy under the prior.

A leading example that we will return to is the (one-dimensional) quadratic loss function:

X,Θ ⊂ R and u(x, θ) = −(x− θ)2, with Fθ having finite expectation.

There are two electoral candidates, A and B. Given the state θ, each candidate i ∈ {A,B}

privately observes a signal si ∈ Si, where Si is a closed subset of Rn, with n ≥ 1. The joint

conditional cumulative distribution of (sA, sB) ∈ SA × SB is denoted by FsA,sB |θ, and the

conditional marginal for each candidate i by Fsi|θ. The measure Fθ and distributions FsA,sB |θ

induce a joint cumulative distribution FsA,sB of signal profiles unconditional on the state, with

marginals FsA and FsB ; we assume that for each candidate i, the support of Fsi is Si. We

assume that for either candidate i ∈ {A,B} and any signal si ∈ Si, there is a voter-optimal

policy: maxx∈X Eθ[u(x, θ) | si] exists.

Our results will require that the joint cumulative distribution FsA,sB satisfy Condition 1.

This is a reasonable requirement when both signals sA and sB are informative about the state;

in particular, following the discussion after Condition 1, typical exponential families of signal

distributions satisfy the requirement. A leading example that we will return to is the (one-

dimensional) normal-normal structure: Θ = SA = SB = R, θ ∼ N (0, 1/α), i.e., the state

is normally distributed with mean 0 and precision α ∈ R>0, and conditional on the state θ,
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each candidate i’s signal is drawn independently from the normal distribution N (θ, 1/βi) with

precision parameter βi ∈ R>0.
14 The case of βA ̸= βB captures candidates having access to

information of different quality. In general, FsA,sB can satisfy Condition 1 even with signals

being positively (or negatively) correlated conditional on the state.

After privately observing their signals, the candidates simultaneously choose their plat-

forms xA and xB from the policy space X, with the objective of maximizing their respective

probabilities of winning the election.15 Upon observing the platforms (xA, xB), the voter

updates her belief about the state θ and then elects the candidate whose platform provides

the highest expected utility. The elected candidate i ∈ {A,B} implements his platform xi.

Platforms are thus policy commitments in the Downsian tradition. Candidates are expected

utility maximizers, with the elected candidate obtaining a utility of 1 and the other candi-

date 0. Hence, candidates are purely office motivated. All aspects of the model except the

candidates’ private signals are common knowledge.

Strategies, Equilibria, and Welfare. A pure strategy for a candidate i is a measurable

function yi : Si → X, with yi(si) the platform chosen by i when his signal is si. A strategy

for the voter is a measurable function wA : X2 → [0, 1], where wA(xA, xB) represents the

probability with which candidate A is elected when the platforms are xA and xB. Candidate

B is elected with the complementary probability wB(xB, xA) := 1− wA(xA, xB).

We study (weak) perfect Bayesian equilibria (yA, yB, wA) of the electoral game in which

candidates play pure strategies—hereafter, simply equilibria.16 Hence, as noted in Section 2,

14 In this case, it is routine to verify that conditional on signal si, the distribution of signal s−i is normal
with mean βi

α+βi
si and variance σ2 := 1

α+βi
+ 1

β−i
. Hence, Equation 2 holds with

T (s−i) =
1

σ2
· βi
α+ βi

s−i, ψ(si) =
1

2σ2

(
βi

α+ βi
si

)2

, and h(s−i) =
1

σ
√
2π
e−

1
2σ2 s2−i .

15We assume that both candidates can choose from the same set of platforms for notational simplicity.
Our analysis in this section would hold equally well if each candidate i can only choose platforms from some
subset Xi ⊂ X. One could use XA ̸= XB to capture asymmetries between the candidates, e.g., if there is an
incumbent and a challenger, and the incumbent’s history precludes him from choosing certain policies.

16Our leading specifications—such as the normal-normal structure—have continuous signals with atomless
distributions, in which case it is salient to focus on equilibria with pure candidate strategies. Theorem 2
assures that such equilibria exist regardless of the model specification. Notwithstanding, we discuss equilibria
in which candidates may mix in Subsection 3.3.
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the players’ strategies are identifiable in these equilibria. The voter elects candidate i if xi

is strictly preferred to x−i. We allow the voter to randomize arbitrarily when indifferent.

For the median voter interpretation, one may want to insist on uniform randomization when

indifferent; our results would be unaffected by this requirement, modulo one caveat noted in

fn. 20.

The notion of welfare we adopt is the voter’s ex-ante expected utility, which we denote

v(yA, yB, wA) as a function of the strategies.

Policy Commitment. In the Downsian tradition, our model assumes that candidates make

commitments to the policies they would implement if elected.17 In reality, while commitment

may be imperfect, some degree of it is plausible and valuable to candidates; in their meta-study

of earlier research, Pétry and Collette (2009) conclude that around 67% of campaign promises

have historically been kept. The theoretical literature has proposed multiple rationales for

commitment, most prominently that of re-election concerns (Alesina, 1988). Alternatively, if

there is uncertainty about a candidate’s quality of information and candidates have reputa-

tion concerns (perhaps because of re-election motives), then “flip flopping” or “vacillating”

may be associated with poor quality information, resulting in stickiness akin to commitment

(e.g., Majumdar and Mukand, 2004).

Alternative Model Interpretations. Although we focus on the elections interpretation,

the model applies equally well to other political or organizational settings involving a principal

or decision-maker (DM) and two agents (cf. Ambrus et al., 2021). The privately-informed

agents make proposals and the DM selects one of the two proposals; each agent simply wants

her own proposal to be selected, while the DM wants a proposal that best matches the state.

3.1. The Limit to Information Aggregation

Our welfare conclusions for our Downsian model stem from the following result.

Proposition 1. Assume the signal distribution FsA,sB satisfies Condition 1, and consider any

equilibrium with candidates’ strategies (yA, yB). There is a candidate i ∈ {A,B} such that the

17See Osborne and Slivinski (1996), Besley and Coate (1997) and subsequent work for non-Downsian
“citizen-candidate” models.
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voter’s welfare in this equilibrium is the same as if candidate i were elected no matter which

policies are proposed using (yA, yB).

To elaborate, consider any equilibrium (yA, yB, wA). Denote by vi(yA, yB) the voter’s

welfare from electing candidate i no matter which policies are proposed. Since the voter

always has the option of electing one candidate regardless of the platforms, it holds that

v(yA, yB, wA) ≥ max{vA(yA, yB), vB(yA, yB)}. Proposition 1 says that under Condition 1, the

bound is tight:

v(yA, yB, wA) = max{vA(yA, yB), vB(yA, yB)}.

Put another way, insofar as equilibrium welfare is concerned, the voter may as well be ignoring

one of the candidates and always electing the other. Crucially, this is an “as if”: both candi-

dates may in fact win with positive probability in equilibrium, as detailed in Subsection 3.2.

Proposition 1 is a straightforward application of Corollary 1. Given an arbitrary voter

strategy wA (recall wB ≡ 1−wA), the two candidates are engaged in a constant-sum Bayesian

game in which each candidate i’s payoff is the probability wi(xi, x−i) with which he wins the

election. These payoffs are type independent because the candidates are office motivated and

the voter can only infer their types from the platforms. As candidates have strict preferences

over the winning probability outcome, Corollary 1 implies that under Condition 1, in any

equilibrium the probability of a candidate winning is independent of which on-path platforms

are proposed. Hence, there are only two possibilities on the equilibrium path. Either (i)

one candidate wins with probability one, or (ii) both candidates win with a constant interior

probability, regardless of their platforms. In the latter case, the voter is always indifferent

between the candidates. It follows that in either case, the voter’s ex-ante expected utility can

be evaluated as if she always elects the same candidate.

Proposition 1 implies a sharp upper bound on the voter’s welfare across all equilibria. To

make that precise, let v∗i denote the voter’s welfare if candidate i were always elected with his

platform chosen—based on his information alone—to maximize voter welfare. Proposition 1

implies that in any equilibrium, welfare is at most

max{v∗A, v∗B}. (3)
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In other words, even when both candidates have socially valuable information, the voter’s

equilibrium welfare is, at best, determined by the efficient use of only one candidate’s signal.

Theorem 2 below states that point and also observes that the upper bound (3) can be

achieved. Say that candidate i is better (than his opponent) if v∗i ≥ v∗−i. That is, if each

candidate would choose the voter-optimal policy based on their information alone, playing

y∗i (si) := argmaxx∈X Eθ [u(x, θ) | si],18 then the voter would prefer to ex-ante delegate policy-

making to i rather than the opponent. (If v∗A = v∗B, then without loss we stipulate that A is

the better candidate.)

Theorem 2. If the signal distribution FsA,sB satisfies Condition 1, then a voter-welfare maxi-

mizing equilibrium has welfare max{v∗A, v∗B}. There is one such equilibrium in which the better

candidate i ∈ {A,B} is elected with probability one and plays y∗i .

There may be multiple equilibria that achieve the proposition’s welfare bound, but a simple

construction is as follows. The better candidate i plays y∗i , and the opponent uninformatively

chooses the prior-optimal policy, i.e., he plays y−i(s−i) = argmaxx∈X Eθ[u(x, θ)]. It is then

optimal for the voter to always elect i on path. We can stipulate that the voter also elects

i if −i chooses any other platform (and i chooses any of his on-path platforms) because she

believes that the deviation by −i is uninformative about s−i.
19,20 Note that this construction

does not require Condition 1; rather, the condition guarantees, by Proposition 1, that this

equilibrium is welfare maximizing. The following example shows that Condition 1 cannot be

dispensed with in Theorem 2.

Example 3. Let X = SA = SB = {1, 2, 3, 4}, and Θ = SA × SB with a uniform prior. In

each state θ, the signal profile is deterministically (sA, sB) = θ. Hence, the unconditional

joint signal distribution is uniform on SA × SB, violating Condition 1. The voter’s utility is

18 If there are multiple maximizers at any si, we can choose an arbitrary one.
19Any sequentially rational behavior by the voter after an observable deviation by i supports the equilibrium,

as i has no incentive to deviate.
20Let xi be an on-path platform of candidate i. Our construction entails the voter electing candidate i even

if both candidates choose xi. If one insists that the voter must randomize uniformly between the candidates
when indifferent, then Theorem 2 is still valid with essentially the same construction so long as every on-path
platform of candidate i has zero ex-ante probability. This is the case with a continuous policy space when
there is a unique and distinct optimal policy after each signal of the better candidate i and the marginal
distribution Fsi is atomless. An example is the normal-normal information structure with quadratic-loss voter
preferences.
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1 if the “correct” action is taken in a state and 0 otherwise, with the correct action in each

state—or equivalently, after each signal profile (sA, sB)—marked in blue in the table below.

The table also shows, in magenta, a strategy for the voter, i.e., which candidate the voter

elects following each platform pair (xA, xB).

sA / sB

xA / xB

1 2 3 4

1 1, A 2, B 3, B 1, A

2 1, B 2, A 3, B 2, A

3 3, A 2, B 3, A 4, B

4 1, B 4, A 4, A 4, B

This voter strategy and each candidate playing the strategy si 7→ si constitute an equilibrium:

the voter is playing optimally because she obtains her preferred policy in every state; candi-

dates are playing optimally because, no matter their signal, their posterior is uniform over the

opponent’s signal and they thus expect to win with probability 1/2 no matter their platform.

This equilibrium achieves the voter’s first-best welfare, which is larger than the welfare level

max{v∗A, v∗B} because neither candidate’s signal individually reveals the state. Evidently, the

conclusions of Proposition 1 and Theorem 2 do not hold.

3.2. The Normal-Quadratic Specification

To substantiate Proposition 1 and Theorem 2, we now elaborate on a leading specification

of our Downsian model. The analysis of this subsection yields insights into how politicians’

strategic incentives play out in equilibria—in particular, on whether office motivation neces-

sarily leads to pandering, and whether pandering is detrimental to welfare.

Consider a one-dimensional normal-quadratic specification: X,Θ ⊂ R, the voter’s utility is

u(x, θ) = −(x−θ)2, the state is θ ∼ N (0, 1/α), and, conditional on the state θ, each candidate

i ∈ {A,B} receives an independent signal si ∼ N (θ, 1/β), with parameters α, β ∈ R>0. Note

that the unconditional joint signal distribution satisfies Condition 1. Subsection A.4 discusses

how some of this section’s themes generalize to broader informational structures.

Quadratic-loss utility implies that that voter’s preferred policy given any information I is
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E[θ | I]. Hence, by standard properties of normal information,

y∗i (si) = E [θ | si] =
β

α + β
si, (4)

and we refer to y∗i as the unbiased strategy because it is the best estimate of state given si. We

say that a strategy yi displays pandering (or underreaction) if si > 0 =⇒ yi(si) ∈ [0,E[θ | si]),

si < 0 =⇒ yi(si) ∈ (E[θ | si], 0], and yi(0) = 0. In other words, a candidate panders

if for si ̸= 0 his platform is distorted from his unbiased estimate toward the voter’s prior

expectation E[θ] = 0 of the best policy. Analogously, we say that yi displays anti-pandering

(or overreaction) if si > 0 =⇒ yi(si) > E[θ | si] and si < 0 =⇒ yi(si) < E[θ | si]. We

also say that a platform x is more extreme than platform x′ if the former is further from the

prior mean of 0, i.e., if |x| > |x′|. A strategy yi is informative if it is not constant, and it is

fully revealing if it is bijective. An equilibrium is symmetric if both candidates use the same

strategy and both win with positive probability.

Unbiased Strategies. There are trivial equilibria in which candidates disregard their in-

formation, e.g., the “full pandering equilibrium” in which they each play yi(·) = E[θ] = 0,

and the voter elects each candidate with some constant probability no matter the platforms.

To tackle informative equilibria, a natural starting point is the profile of unbiased strategies.

From Equation 4, we see that the voter would then infer from a platform xi that si =
α+β
β

xi.

As the expected value of θ conditional on both signals is

E[θ | sA, sB] =
2β

α + 2β

(
sA + sB

2

)
, (5)

the voter’s posterior expectation of the state given the platforms xA and xB is

2(α + β)

α + 2β

(
xA + xB

2

)
.

So the voter’s preferred policy, which is the posterior expectation, has the same sign as the

average of the two platforms but is more extreme (so long as the average is non-zero). The

voter thus elects the more extreme candidate, and consequently, each candidate would ben-

efit by deviating to a more extreme platform, i.e., by anti-pandering or overreacting to his

information. Proposition 5 in Appendix A.1 provides a formal statement.
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Equilibrium Anti-Pandering. Building on the above intuition, the next result identifies

an anti-pandering equilibrium.

Proposition 2. In the normal-quadratic specification, there is an anti-pandering equilibrium,

which is symmetric and fully-revealing: both candidates play

yi(si) = E[θ | si, s−i = si] =
2β

α + 2β
si, (6)

and each candidate is elected with probability 1/2 regardless of their platforms. The voter’s

welfare in this equilibrium is

− α + 4β

(α + 2β)2
. (7)

Moreover, any symmetric equilibrium in which both candidates use fully-revealing and contin-

uous pure strategies has both candidates playing (6) and voter welfare (7).

In the equilibrium of Proposition 2, candidates can be viewed as choosing the unbiased

platform based on a signal with twice the actual accuracy. Alternatively, each candidate’s

platform is the Bayesian estimate of the state assuming his opponent has received the same

signal. That is despite each candidate i knowing that, in expectation, his opponent’s signal

is in fact more moderate than his own, as that expectation is just i’s unbiased estimate of

the state, β
α+β

si. When the voter conjectures that both candidates play the strategy (6), she

is indifferent between the candidates no matter their platforms. For, whenever a candidate i

increases his platform by any δ > 0, formula (5) implies that the voter’s posterior expectation

increases by 2β
α+2β

(
α+2β
2β

δ
2

)
= δ/2.

An important implication of Proposition 2 is that office motivation does not necessarily

lead to pandering. Moreover, the voter’s welfare (7) in the anti-pandering equilibrium is

higher than in the trivial full-pandering equilibrium, as the welfare in the latter is simply

−1/α. Consistent with Proposition 1, both the anti-pandering equilibrium and the trivial full-

pandering equilibrium have the ex-post property for the candidates, and the voter’s welfare

in these equilibria is the same as if she always elected either candidate. Moreover, consistent

with the construction we described for Theorem 2, there is yet another equilibrium: (either)

candidate i plays the unbiased strategy (4), the other candidate −i plays y−i(·) = E[θ] = 0,
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and the voter always elects candidate i.21 The voter’s welfare in this equilibrium can be

straightforwardly computed as −1/(α + β), which is even higher than the anti-pandering

equilibrium’s welfare (7). Indeed, although it is infeasible to characterize all equilibria of the

normal-quadratic specification, Theorem 2 tells us that that −1/(α + β) is the maximum

equilibrium welfare.

The (Disequilibrium) Benefits of Pandering. Interestingly, in this normal-quadratic

specification, an appropriate degree of non-equilibrium pandering would actually benefit the

voter. To get some intuition for why, consider again the benchmark where both politicians

play the unbiased strategy y∗i (θ) = E[θ | si]. As explained above, the voter would then select

the politician with the most extreme platform. This implies a “winner’s curse”: the electoral

winner, say i, would have received the most extreme signal, and so voter welfare would be

improved if i were elected with a slightly more moderate platform. Such moderation can

be achieved by underreacting to private information, i.e., by pandering—although that run

counter to office motivation.

To formalize the point, consider the following strategy:

yi(si) = E [θ | si, |s−i| ≤ |si|] , (8)

which features pandering because conditioning on the opponent having a more moderate

signal makes a candidate underreact to his own signal. Lemma 2 in Appendix A.3 verifies

that, and also shows that the voter’s best response to both candidates playing (8) is to elect

the candidate with the more extreme platform (which, recall, is also her best response to both

candidates using unbiased strategies).

Proposition 3. In the normal-quadratic specification, consider the strategy profile where both

candidates pander by playing strategy (8), and the voter best responds. This profile yields

higher voter welfare than any equilibrium, as well as the non-equilibrium profile in which the

candidates play the unbiased strategies (4) and the voter best responds.

21 In this normal-quadratic specification, the same outcome—i.e., that i plays (4) is always elected—can
also be supported in a fully-revealing equilibrium with y−i(s−i) = s−i. Candidate −i is overreacting to his
information here to such an extent that the voter never finds it optimal to elect −i despite correctly inferring
his information.
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In fact, we prove in Appendix A.3 that the (non-equilibrium) strategy profile of Propo-

sition 3 maximizes voter welfare within a broad class of profiles. Our takeaway is that an

appropriate degree of pandering would benefit the voter.

3.3. Discussion

We now return to our general Downsian model with informed candidates and discuss the

robustness of our welfare conclusions.

Candidates Mixing. Proposition 1, and hence the welfare bound of Theorem 2, also apply

to equilibria in which candidates mix, so long as at least one candidate plays an identifiable

strategy. This is because the ex-postness conclusion of Theorem 1 applies to such equi-

libria. We do not know whether equilibria in which both candidates play non-identifiable

strategies—if they exist in a given specification—can overturn the conclusion of Proposi-

tion 1/Theorem 2.22 In particular, even non-ex-post equilibria can still satisfy the welfare con-

clusions. To illustrate, consider a variant of Example 1: Θ = X = {1, 2}, u(x, θ) = 1{x = θ},

a uniform prior on Θ, and any signal structure FsA,sB that satisfies Condition 1. There is an

equilibrium in which, regardless of their signals, both candidates mix uniformly over both poli-

cies, and the voter (being indifferent between both policies) plays wA(xA, xB) = 1{xA = xB}.

Neither candidate’s strategy is identifiable and Theorem 1 does not apply; yet, the equilibrium

trivially still satisfies the conclusion of Proposition 1.

Other Game Forms. Proposition 1 also applies much more generally than to the canonical

Downsian game form we have considered. For concreteness, we only mention two variations:

1. The elected candidate does not necessarily implement their platform xi, but instead some

exogenous—possibly stochastic—function of xi. For example, there could be a status

quo policy x0 (e.g., the ex-ante optimal policy), and the elected candidate i implements

their platform xi with some probability (which could depend on xi) and x0 otherwise.

Alternatively, the candidate may always moderate after the election and implement qi ·xi

22 In some specifications, we can deduce that they do not. For example, consider a binary-policy binary-
signal setting (e.g., Heidhues and Lagerlof, 2003). Here the only non-identifiable strategies are uninformative
and so an equilibrium in which neither candidate uses an identifiable strategy is clearly no better for voter
welfare than efficiently aggregating one candidate’s signal.
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for some parameter qi > 0.

2. Instead of choosing platforms simultaneously, candidate A chooses his platform xA first,

and candidate B, having observed xA, then chooses xB. The asymmetry in timing might

reflect that one candidate is an incumbent and the other a challenger.

The reason Proposition 1 holds for these variations is that the candidates are still purely office

motivated and the voter’s decision cannot depend directly on their signals; hence, given any

voter strategy, the candidates still face a constant-sum Bayesian game with type-independent

payoffs, and Theorem 1 applies.

On the other hand, the welfare level obtained in Theorem 2 may not apply to these

variations. In model variation #1 above, the upper bound on equilibrium welfare would have

to be adjusted for the stochastic policy implementation; if the status quo is implemented with

high probability, then evidently equilibrium voter welfare cannot be much higher than the

expected utility from the status quo. More importantly, model variation #2 above generally

allows for equilibria that achieve welfare higher than max{v∗A, v∗B}. For, the level v∗i obtains

from efficiently using only candidate i’s signal. Under natural specifications, there can even

be full information aggregation in model variation #2: candidate A reveals his signal sA via

his platform; candidate B then proposes the best policy for the voter given both sA and sB;

and the voter always selects candidate B. Certainly this raises questions about equilibrium

refinements.23 We do not pursue that issue; instead, we observe that the welfare bound of

Theorem 2 is focal because it applies to the canonical Downsian game form.

Voter Commitment. For some interpretations of the model—such as decision-making in

an organization, as mentioned earlier—it is plausible that the voter (decision maker) can

commit ex ante to how she will select among the candidates’ (agents’) platforms (proposals).

Since the constant-sum property between candidates holds for an arbitrary voter strategy,

Proposition 1 and Theorem 2 also apply to this case. In other words, commitment cannot

increase the maximum voter welfare.

23 Indeed, there could be another equilibrium in which candidate A—without loss, the better candidate—
proposes the best policy given his signal sA (which reveals his signal); candidate B then proposes the worst
policy for the voter given both candidates’ signals; and voter always selects candidate A. This equilibrium’s
welfare is the same as that of Theorem 2.

23



Beyond Office Motivation. Since candidates’ office motivation is a key assumption for

our results, we conclude this subsection by discussing the robustness of Theorem 2’s welfare

conclusion to small departures from that assumption.

Consider a variant of our Downsian model in which the payoff of each candidate i ∈ {A,B}

is given by ui(xA, xB, θ,W ; γi), where the new notation W ∈ {A,B} denotes the election’s

winner and γi is a commonly-known payoff parameter. Pure office-motivation corresponds to

the utility 1{W = i}, but in general ui(·) allows for a variety of mixed motivations, including

policy motivation (a candidate cares about the winner’s policy, in relation to the state) and

platform motivation (he cares about his own platform, in relation to the state).

An election with mixed motivations is not generally a constant-sum game for the candi-

dates; consequently, for arbitrary mixed motivations, voter welfare may be significantly differ-

ent from the bound in Theorem 2. However, consider a family of mixed-motivations games in

which each candidate i’s payoff is parameterized by γi ∈ Rm such that ui(xA, xB, θ,W ; 0⃗) =

1{W = i}. That is, when γi = 0⃗ ≡ (0, . . . , 0), candidate i is purely office motivated. Under

appropriate technical conditions, the Theorem of the Maximum assures that the equilibrium

correspondence is upper hemicontinuous in the parameter (γA, γB), and hence the upper bound

on voter welfare when (γA, γB) ≈ (⃗0, 0⃗), i.e., when candidates are almost office-motivated, is

approximately that of Theorem 2.24 Simple sufficient technical conditions are that all the

spaces SA, SB, Θ, and X are finite and that each ui(·) is continuous in (xA, xB, θ, γi).

We note that our leading one-dimensional normal-quadratic specification from Subsec-

tion 3.2 does not satisfy the aforementioned technical conditions; in particular, the policy

space X = R is not compact. The Supplementary Appendix analyzes an extension of the

normal-quadratic model with mixed motivations of the form

ui(x, θ,W ; bi, ρi) = −ρi(xW − θ − bi)
2 + (1− ρi)1{W = i}. (9)

So each candidate i has quadratic-loss policy utility with an ideological bias bi ∈ R and places

24More precisely, we would be assured upper hemicontinuity of the set of Bayes-Nash equilibria. Although
our solution concept is weak Perfect Bayesian equilibrium (in which candidates use pure strategies), Proposi-
tion 1 holds for Bayes-Nash equilibria too because its backbone, Theorem 1, guarantees the ex-post property
for an arbitrary voter strategy. Note also that we implicitly restrict attention to equilibria of the perturbed
games in which candidates use pure strategies, to ensure that this property is preserved in any limit.
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weight ρi ∈ [0, 1] on policy utility. The Supplementary Appendix establishes that even though

the equilibrium correspondence is not upper hemicontinuous, the upper bound on voter welfare

when each bi ≈ 0 and ρi ≈ 0 is still close to that of efficiently using only one candidate’s signal.

Moreover, there is an equilibrium that approximately achieves that welfare. So, the welfare

conclusions of Theorem 2 still approximately hold.

4. Competition in Dual Spheres

To illustrate the implications of Theorem 1 beyond elections, we now develop an application

involving competition in dual spheres. We frame it as two firms competing to both maximize

their shares of a private market and to secure a government allocation. So, as in Section 3,

we have two agents (politicians previously, now firms) competing for the favor of a principal

(an electorate previously, now a government). Now, however, the agents’ actions directly

affect their own payoffs but not the principal’s. At the end of this section we discuss how the

framework is more broadly applicable beyond the framing with which we introduce it.

Consider two firms, A and B. Each firm i ∈ {A,B} chooses a product or technology

xi ∈ Xi. There is an unknown state of the world θ ∈ Θ ⊂ Rn, representing a variable that

matters for a government’s action (elaborated below); for instance, θ could reflect the relative

social value of the firms. Each firm i observes a private signal si ∈ Si ⊂ Rn about the state,

drawn from some joint distribution conditional on the state FsA,sB |θ. Denote the unconditional

joint distribution of signals by FsA,sB .
25

The firms’ choices have consequences in two domains. First, they determine market shares

in a private market, captured by a function m : XA × XB → [0, 1], where m(xA, xB) is firm

A’s share. This private-market competition is zero sum: it contributes a payoff m(xA, xB) to

firm A and 1−m(xA, xB) to firm B. Note that the function m does not depend on the state θ;

the state represents social value rather than appeal in the private market. This is reasonable

when θ represents externalities, long-run reliability, or other attributes that the market does

not price.

Second, a government observes some statistic t ∈ T of the firms’ choices, generated by

25We suppress the technical conditions on Θ, each Si, and the distributions, which follow those in the
previous sections.
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the map τ(xA, xB), and then chooses an action or allocation a ∈ A. The government’s payoff

is given by uG(xA, xB, a, θ). For instance, a may represent the share of public procurement

allocated to firm A, and the payoff uG may represent how well this allocation matches the

state, with higher values of θ leading the government to prefer larger shares for firm A. That

could be captured by a ∈ [0, 1], θ ∈ R, and uG = −(a− θ)2.

The firms care about both their private market share and the government action (e.g.,

public procurement share). For some bounded function v : A → R, firm A’s overall payoff is

uA(xA, xB, a) := m(xA, xB) + v(a),

and firm B’s, after normalization, is

uB(xA, xB, a) := −m(xA, xB)− v(a).

We refer to this setting as one of competition in dual spheres, because the firms are com-

peting for both market share and the government action.

Observe that any government strategy α : T → ∆(A) induces a constant-sum Bayesian

game with type-independent payoffs between the firms in which A’s payoff is m(xA, xB) +

vα(xA, xB), where we define vα : (xA, xB) 7→ E [v(α(τ(xA, xB)))], with the expectation over the

government’s randomization.26 Denoting firm i’s strategy by σi : Si → ∆(Xi), the following

result follows immediately from Corollary 1.

Proposition 4. Consider competition in dual spheres, with FsA,sB satisfying Condition 1. In

any Bayes-Nash equilibrium (σ∗
A, σ

∗
B, α

∗) in which firms play identifiable strategies, there exists

a constant c such that (a.s.) on path, m(xA, xB) + vα∗(xA, xB) = c.

Although stated for (Bayes-Nash) equilibria of the game, the result evidently holds for any

government strategy to which the firms mutually best respond.

Proposition 4 establishes that—under Condition 1 and identifiability, qualifiers we omit

in the subsequent paragraphs for brevity—competitive pressure in the private market ties

the government’s hands. Whatever the government’s objective, its equilibrium actions must

26We assume this expectation is well-defined; we suppress such technical details in the rest of this section.
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perfectly offset the market outcome in the sense that vα∗(xA, xB) = c −m(xA, xB). In other

words, the firms’ dual competition forces a rigid relationship between the private market and

the government action.

What does Proposition 4 imply about information revelation and government welfare?

Intuitively, it places strong constraints. For brevity, we only discuss two illustrative spec-

ifications. In both cases, we assume the government only observes the market outcome:

τ(·) = m(·). First, suppose the firms don’t actually care about the government action:

v(·) = 0. Then it is immediate that in any equilibrium the market outcome must be con-

stant on path. This implies that the government learns nothing, so it cannot tailor its action

to the fundamental θ even if firms are arbitrarily well informed; moreover, even aside from

its own action, any desire for the government to have market outcomes correlated with θ is

defeated in equilibrium.

Second, suppose the government’s action is a ∈ [0, 1] with linear firm valuation v(a) = a.

Then Proposition 4 says that in equilibrium m + E[α(m)] is constant. With θ ∈ R and

government utility uG(a, θ) = −(a − θ)2, it is m + E[θ | m] that must be constant. It will

typically not be possible for the posterior mean to decrease and precisely offset any increase of

the market share when the latter is informative. So, again, typically the equilibrium market

outcome has to be uncorrelated with the fundamental and the government will not learn any

of the firms’ information.27

Remark 1. The framework of this section is in some respects quite general and relevant to

various economic contexts, as we now illustrate:

1. It subsumes the Downsian election model from Section 3. Concretely, the Downsian

one-dimensional quadratic specification obtains when XA = XB = Θ = R, τ(xA, xB) =

(xA, xB), A = {A,B}, uG(xA, xB, a, θ) = −(xa−θ)2, andm(·) = 0 and v(a) = 1{a = A}.

This corresponds to the principal (voter) selecting a winning agent (candidate) to mini-

27To see the role of Condition 1 in the conclusions for both cases, consider a variation of Example 1. Let the
distribution on SA × SB = {0, 1} × {0, 1} be uniform (violating Condition 1) and take θ = 1{sA = sB}. Let
XA = XB = {0, 1}, and m(xA, xB) = |xA − xB |. Suppose each firm i plays the pure strategy si 7→ si. From
each firm’s perspective, taking the other firm’s strategy as given, either of its own actions induces a uniform
lottery over market outcomes 0 and 1. But the realized outcome fully reveals θ; specifically, abusing notation,
we have m ∈ {0, 1} and E[θ | m] = 1 − m. So, we have an equilibrium (with identifiable firms’ strategies)
either when (i) v(·) = 0 or (ii) v(a) = a and the government optimally chooses a = E[θ | m].
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mize the distance between the winner’s action and the state, while the agents just want

to be selected.

2. Consider a modification of the above specification to uG(a, θ) = − (1{a = A} − θ)2.

Then the agents’ actions are cheap-talk messages, and the principal wants to select

agent A when the state is high. This is now a model of arbitration with a binary

allocation, similar to Kattwinkel et al. (2022). Proposition 4 implies that under its

conditions, the principal’s (probabilistic) selection in any equilibrium—or, even in a

stochastic mechanism that the principal commits to, as the result holds for any principal

strategy—must be independent of the agents’ signals, as those authors also show for the

case of finite signals.

But Proposition 4 can be applied to richer arbitration problems as well. Consider A =

[0, 1], where a represents the arbitrator’s ruling of a transfer from agent B to A, and any

strictly increasing affine v(a) and any uG(a, θ). Assume the arbitrator has a unique prior-

optimal ruling, a∗ := argmaxa∈A Eθ [uG(a, θ)]. Then Proposition 4 implies that under its

conditions, the expected transfer in any equilibrium (or mechanism) is a∗, independent

of the agents’ signals. While that does not generally necessitate the realized transfer to

be constant, it would if uG(·, θ) were strictly concave for each θ, for example.

3. The principal can be passive while caring about the agents’ interaction and the state. For

instance, agent B may be a regulator (or security force) chasing a non-compliant firm A

(or interdicting a smuggler). Each agent i chooses a location xi ∈ Xi ⊂ Rk and they have

opposing preferences over their location gap or compliance: m(xA, xB) = ∥xA − xB∥ for

some norm ∥·∥, and v(·) = 0. The principal/society takes no action (|A| = 1) but has

utility uG(xA, xB, θ) = −θ ∥xA − xB∥. So society would prefer tighter compliance when

the stakes θ ∈ Θ ⊂ R≥0 are higher. Although the agents are informed about these

stakes, Proposition 4 implies that under its conditions, in any equilibrium the realized

compliance does not vary with signal profiles or stakes.28

28Even though the agents do not care about the stakes, absent Condition 1 there are examples in which
society gets its first-best state-contingent outcome; cf. fn. 27.

28



5. Conclusion

We have developed a general result about equilibrium behavior in two-player constant-sum

Bayesian games with type-independent payoffs. Under a completeness statistical condition on

the distribution of types, any identifiable (Bayes-Nash) equilibrium must be ex post: each

player is indifferent among all the actions played by any of his types, even after observing the

opponent’s action. This ex-postness property limits the extent to which adversarial players’

information can be revealed to and used by third parties.

Motivated by the debate on whether political competition promotes information aggrega-

tion and informed choices by electorates, we have applied the above result to Downsian elec-

toral competition between two office-motivated candidates who have private information about

policy consequences. We find a sharp bound on the (median or representative) voter’s welfare.

Welfare in any equilibrium–under our statistical condition and pure/identifiable politician

strategies—is effectively determined by just one candidate’s platform strategy. Consequently,

Downsian elections cannot efficiently aggregate more than one candidate’s information, de-

spite the availability of two informational sources. Moreover, the upper bound of efficiently

aggregating the “better” candidate’s information can be achieved in an equilibrium.

To substantiate the electoral welfare bound and to better understand politicians’ strategic

incentives, we have studied in more detail a normal-quadratic specification of our Downsian

model. In that specification, there is a fully-revealing equilibrium in which candidates’ anti-

pander or overreact to their information. Furthermore, we find that an appropriate degree

of (disequilibrium) pandering by candidates would actually benefit voters. These findings

run counter to conventional views that candidates’ pandering is an inevitable consequence of

candidate office-motivation, and is necessarily harmful to voters.

As in most formal models of spatial electoral competition, we have restricted attention to

two candidates and assumed that their information is exogenously given. Relaxing both these

assumptions are interesting topics for future research. We note here that since a voter-optimal

equilibrium of our model involves always electing the “better”—roughly, more informed—

candidate, there can be strong incentives for candidates to observably acquire information.

While our primary application is to electoral competition, the logic of Theorem 1 applies
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more broadly. We have illustrated this with a model of competition in dual spheres, in which

firms compete for both private market share and government actions. Even though the firms

may be well informed about a fundamental that the government cares about, their zero-

sum rivalry forces a rigid relationship between market outcomes and government actions—for

instance, precluding state-contingent government procurement. This application underscores

that the limits to information revelation and aggregation identified in this paper are not

specific to elections, but are a general feature of institutions constrained by purely adversarial

incentives.

A. Proofs and Other Material for Section 3

We omit proofs for Proposition 1 and Theorem 2 (and also Proposition 4 in Section 4), as

they were explained in the main text.

A.1. Unbiased Strategies

Let us substantiate the discussion in Subsection 3.2 by showing that candidates cannot

play unbiased strategies in an equilibrium of the normal-quadratic specification.

Proposition 5. In the normal-quadratic specification, the profile of unbiased strategies cannot

be supported in an equilibrium. In particular, candidates would deviate by overreacting to their

information, whereas underreacting would be worse than playing the unbiased strategy.

Proof. Assume both candidates use the unbiased strategy yi(si) =
β

α+β
si. Since this strategy

is fully revealing, the voter correctly infers sA, sB for all signal realizations. The voter’s

expected utility from a platform x follows a standard mean-variance decomposition:

E[u(x, θ) | sA, sB] = −E
[
(x− θ)2 | sA, sB

]
= −

[
x2 + E

[
θ2 | sA, sB

]
− 2xE [θ | sA, sB]

]
= −

[
x2 + (E [θ | sA, sB])2 − 2xE [θ | sA, sB]

]
− E

[
θ2 | sA, sB

]
+ (E [θ | sA, sB])2

= − [x− E(θ | sA, sB)]2 − Var (θ | sA, sB) . (10)

So the voter elects candidate i whenever xi is closer to E[θ | sA, sB] than is x−i.
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We now show that for any i = A,B and si, candidate i can profitably deviate. By (10),

if i plays as if he has received signal ŝi (no matter his true signal), then i wins against any

realization s−i such that

(y−i (s−i)− E [θ | ŝi, s−i])
2 > (yi(ŝi)− E [θ | ŝi, s−i])

2 .

Substituting from (4) and (5), this is equivalent to(
β

α + β
s−i −

β

α + 2β
(ŝi + s−i)

)2

>

(
β

α + β
ŝi −

β

α + 2β
(ŝi + s−i)

)2

,

or after algebraic simplification, (ŝi)
2 > (s−i)

2. Hence, i wins when he mimics a more extreme

(i.e., larger in magnitude) signal than −i’s true signal. Since for any true signal si the

conditional distribution of −i’s signal is normal with mean E[θ | si] = β
α+β

si, it follows that

no matter his true signal, candidate i strictly increases his win probability by overreacting

and strictly decreases it by underreacting. □

A.2. Anti-Pandering

Proof of Proposition 2. For the proposition’s first statement, it suffices to verify that

the voter is indifferent between the two candidates for any pair of platforms, assuming that

both candidates play the strategy (6). Since the candidates’ strategies are fully revealing, the

voter correctly infers the candidates’ signals from the platform pair. Furthermore, since the

candidates’ strategies each have range R, there are no off-path platform pairs. Therefore, it

suffices to show that for any si and s−i, we have

−E[(yi(si)− θ)2 | si, s−i] = −E[(y−i(s−i)− θ)2 | si, s−i],

or equivalently that (yi(si)− E [θ | si, s−i])
2 = (y−i (s−i)− E [θ | si, s−i])

2.29 Using (5) and (6),

this latter equality can be rewritten as(
2β

α + 2β
si −

2β

α + 2β

(
si + s−i

2

))2

=

(
2β

α + 2β
s−i −

2β

α + 2β

(
si + s−i

2

))2

,

29That this latter equality is equivalent to the former follows from a standard mean-variance decomposition
under quadratic loss utility as in the proof of Proposition 5.
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which holds for any si, s−i.

Next, we derive the equilibrium welfare (7) as follows:

E[−(yi − θ)2] = E

[
−
(

2β

α + 2β
si − θ

)2
]

= −Var

(
2β

α + 2β
si − θ

)
= −

(
2β

α + 2β

)2

Var(si)− Var(θ) + 2

(
2β

α + 2β

)
Cov(si, θ)

= −
(

2β

α + 2β

)2(
1

α
+

1

β

)
− 1

α
+ 2

(
2β

α + 2β

)
1

α

= − α + 4β

(α + 2β)2
.

Finally, for the proposition’s last statement, we prove something stronger that does not

assume symmetry: in any equilibrium in which both candidates win with positive probability

and use continuous fully-revealing pure strategies, there is c ∈ R and i ∈ {A,B} such that

yi(si) =
2β

α + 2β
si + c and y−i(s−i) =

2β

α + 2β
s−i − c.30

(Imposing symmetry, as in the proposition, implies c = 0, which yields Equation 6.) To

prove that, fix any equilibrium in which each candidate i uses a continuous and fully revealing

strategy ȳi and both win with positive probability. Denote the interior of the range of ȳi

by X̄i, noting that X̄i is an open interval. Also denote s̄i(xi) := (ȳi)
−1(xi). Theorem 1 and

voter optimality imply that the voter is indifferent between both candidates after almost all

on-path platform pairs. This implies that for almost all x′
A ∈ X̄A and x′

B ∈ X̄B—hereafter we

drop the “almost all” qualifier for brevity, understanding that some subsequent statements

are up to measure zero sets, returning to the issue at the very end of the proof—we must have

E[θ | x′
A, x

′
B] =

x′
A+x′

B

2
, which implies β

α+2β
(s̄A(x

′
A) + s̄B(x

′
B)) =

x′
A+x′

B

2
, or equivalently

s̄B(x
′
B) =

α + 2β

2β
(x′

A + x′
B)− s̄A(x

′
A). (11)

30Using a very similar analysis to that in the first paragraph of this proof, it is readily verified that these
strategies constitute an equilibrium, with the voter indifferent after any pair of platforms, and hence welfare
is given by (7).
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For small ε > 0 and xA ∈ X̄A and xB ∈ X̄B, the same logic also holds for platforms xA + ε

and xB − ε, yielding

s̄B(xB − ε) =
α + 2β

2β
(xA + xB)− s̄A(xA + ε). (12)

Substituting x′
B = xB − ε and x′

A = xA into (11) and then equating that with (12) yields

α + 2β

2β
(xA + xB − ε)− s̄A(xA) =

α + 2β

2β
(xA + xB)− s̄A(xA + ε),

or equivalently,

s̄A(xA + ε) =
α + 2β

2β
ε+ s̄A(xA). (13)

The equality in (13) can only hold for all xA ∈ X̄A and small ε > 0 if there is a con-

stant cA ∈ R such that s̄A(xA) = α+2β
2β

xA + cA for all xA ∈ X̄, from which it follows that

ȳA(sA) =
2β

α+2β
sA + cA for all sA. A symmetric argument establishes that ȳB(sB) =

2β
α+2β

sB + cB

for all sB. But then (11) implies cB = −cA. Finally, note that continuity pins down the strate-

gies even at measure zero sets of signals. □

A.3. The Benefits of Pandering

Proposition 6 below provides a result that is stronger than Proposition 3. Before that, we

record the following.

Lemma 2. Assume the normal-quadratic specification. The strategy (8) exhibits pandering.

Moreover, if both candidates play (8), then the voter’s best response is to elect the candidate

with the more extreme platform.

Proof. We first prove that the strategy (8) exhibits pandering. Using (5) and iterated

expectations, and dropping the subscript on yi for the reminder of this proof (since the strategy

is common to both candidates), we can rewrite (8) as

y(si) = E
[
E[θ | si, s−i] | si, |s−i| ≤ |si|

]
=

β

α + 2β

(
si + E

[
s−i | si, |s−i| ≤ |si|

])
. (14)

Plainly y(0) = 0. We will argue that if si > 0 then y(si) ∈
(
0,E[θ | si]

)
. By a symmetric

33



argument for si < 0, it follows that y(·) exhibits pandering.

Accordingly, fix any si > 0. It is straightforward from (14) that y(si) > 0. Next, al-

gebraic manipulation of (14) and the equalities E[θ | si] = E[s−i | si] = β
α+β

si shows that

y(si) < E[θ | si] is equivalent to

E
[
s−i | si, |s−i| ≤ |si|

]
< E[s−i | si].

This inequality holds because s−i | si is normally distributed with a mean β
α+β

si > 0, and

a truncation to the interval [−si, si] which is symmetric around 0 (hence centered below the

mean) pulls the truncated mean towards 0.

Now we turn to the voter’s best response. Define the function l : R → R by

l(si) := si − E
[
s−i | si, |s−i| ≤ |si|

]
.

Using (5) again and the formulae above, some algebra yields

E[θ | sA, sB]−
yA(sA) + yB(sB)

2
=

β

2(α + 2β)

(
l(sA) + l(sB)

)
. (15)

Since strategy (8) is fully revealing, and under quadratic loss it is optimal for the voter to

elect A over B if and only if

(yA(sA)− yB(sB))
(
E[θ | sA, sB]−

yA(sA) + yB(sB)

2

)
≥ 0,

Equation 15 implies that it is optimal for the voter to elect A if and only if

(y(sA)− y(sB))
(
l(sA) + l(sB)

)
≥ 0. (16)

Note that both y (si) and l (si) are odd and strictly increasing in si. Oddness follows from

symmetry of the joint signal distribution around zero, while monotonicity follows because

s−i | si is normally distributed with mean E [s−i | si] = β
α+β

si and symmetric truncation on[
−|si|, |si|

]
preserves monotone dependence on si (by log-concavity of the normal density).

Hence, when the realized sA and sB have the same sign, the term l(sA)+l(sB) shares that sign,

so whether inequality (16) holds is determined by the sign of y (sA) − y (sB). When instead
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the realized signals have opposite signs, y(sA) − y(sB) has the same sign as sA (since y is

sign-preserving), so whether the inequality holds is determined by the sign of l (sA)+ l (sB) =

l (sA)− l (−sB). By oddness and monotonicity of both y and l, it follows that in both cases,

inequality (16) holds if and only if |sA| ≥ |sB|, which—because |y(s)| is strictly increasing in

|s|—is equivalent to |y(sA)| ≥ |y(sB)|. That is, the voter elects the candidate with the more

extreme platform. □

Lemma 2 implies that if both candidates pander using strategy (8) and the voter best

responds, then the candidate with the more extreme signal wins. With that in mind, we now

state the following result.

Proposition 6. Assume the normal-quadratic specification. Consider the symmetric strategy

profile in which each candidate i panders by playing (8) and the voter best responds. This

profile maximizes voter welfare among all strategy profiles in which the voter’s best response

would lead to candidate i winning whenever |si| > |s−i|.

The intuition for Proposition 6 is as follows. The welfare-maximizing platform given any

information I is E[θ | I]. When the voter is selecting the candidate with the most extreme

signal, the relevant information that candidate i has when he conditions on winning is his

own signal, si, and that |si| > |s−i|. Since the voter would optimally elect the candidate

with the most extreme signal if both candidates used unbiased strategies, an implication of

Proposition 6 is that both candidates playing the pandering strategy (8) provides higher voter

welfare than both candidates playing unbiased strategies (and the voter best responding in

each case), and hence also over any equilibrium—which is the statement of Proposition 3.

Proof of Proposition 6. By the law of iterated expectations, the voter’s ex-ante utility

can be expressed as

v(yA, yB, wA) = −E[(x− θ)2] = −E[E[(x− θ)2 | sA, sB]] = −E

[(
x− β (sA + sB)

α + 2β

)2
]
− 1

α + 2β

= −Pr (A wins)E

[(
xA − β (sA + sB)

α + 2β

)2 ∣∣∣ A wins

]

− Pr (B wins)E

[(
xB − β (sA + sB)

α + 2β

)2 ∣∣∣ B wins

]
− 1

α + 2β
. (17)
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It is convenient to define hi(si) := E [s−i | si, i wins]. Using iterated expectations again and a

mean-variance decomposition as in the proof of Proposition 5, it also holds that for any i,

E

[(
xi −

β (sA + sB)

α + 2β

)2 ∣∣∣ i wins]

= E

[
E

[(
xi −

β (sA + sB)

α + 2β

)2 ∣∣∣ si, i wins] ∣∣∣ i wins]

= E

[(
xi −

β (si + E [s−i | si, i wins])
α + 2β

)2

+

(
β

α + 2β

)2

Var [s−i | si, i wins]
∣∣∣ i wins]

= E

[(
xi −

β (si + h(si))

α + 2β

)2 ∣∣∣ i wins]+

(
β

α + 2β

)2

E
[
Var [s−i | si, i wins]

∣∣∣ i wins] .
(18)

Equations (17) and (18) imply

v(yA, yB, wA) = −
(

β

α + 2β

)2

LV − LE − 1

α + 2β
, (19)

where

LV :=
∑
i=A,B

Pr (i wins)E
[
Var [s−i | si, i wins]

∣∣∣ i wins] , (20)

LE :=
∑
i=A,B

Pr (i wins)E

[(
xi(si)−

β (si + h(si))

α + 2β

)2 ∣∣∣ i wins] . (21)

Our problem is to maximize (19) subject to i winning when |si|| > |s−i|. Since (20) does

not depend on platforms while (21) is bounded below by 0, a solution must satisfy for each i:

yi(si) =
β (si + h(si))

α + 2β
= E[θ | si, i wins].

Since the constraint is that i wins when |si| > |s−i|, it follows immediately that the solution

is for each candidate to use the strategy (8). □

We remark that although we do not have a proof, we conjecture that Proposition 6 holds
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without the qualification that a candidate must win when he has the more extreme signal.31

A.4. Anti-Pandering Beyond the Normal-Normal Structure

The existence of an anti-pandering equilibrium like the one characterized in Proposition 2

holds beyond our normal-normal informational structure. The simplest extension is to an

asymmetric normal-normal specification in which, conditional on the state θ, each candidate

i receives an independent signal si ∼ N (θ, 1/βi), with different precisions βi. In this case, the

anti-pandering equilibrium strategy takes the form yi(si) =
2βi

α+βA+βB
si.

More generally, maintaining quadratic loss voter preferences, a fully-revealing anti-pandering

equilibrium exists when the distributions of the state θ and signals si are conjugate and belong

to an exponential family. The Supplementary Appendix explicitly derives such an equilibrium

in a Beta-prior–Bernoulli-signals specification and shows that it has characteristics analogous

to that of Subsection 3.2. The key general property of an exponential family is that the

posterior expectation E[θ | s0, s1, . . . , sn] of the state θ given a prior mean parameter, say s0,

and any number of signal realizations, s1, . . . , sn, is linear in s0, s1, . . . and sn, (Jewel, 1974).

In our Downsian framework, suppose the two candidates’ signals sA and sB are identically

distributed conditional on the state θ. (Identical distributions are not necessary, but make

the points below more transparent.) Then, there are constants w0 and w1 such that

E[θ | si] =
w0s0 + w1si
w0 + w1

and E[θ | sA, sB] =
w0s0 + 2w1 ((sA + sB) /2)

w0 + 2w1

.

As a result, the following generalization of the existence result of Proposition 2 can be veri-

31For a suggestive heuristic, consider any symmetric strategy profile in which both candidates play the same
strategy y that is symmetric around 0. For the unbiased strategy, we have the derivative y′(·) = β

β+α ; for

the overreaction strategy identified in Proposition 2, we have y′(·) = 2β
α+2β . Presuming differentiability, one

can verify that whenever y′(·) ∈ [0, 2β
α+2β ], it would be optimal for the voter to elect the candidate with the

most extreme platform and hence the most extreme signal. Thus, roughly speaking, the requirement that a
candidate wins when he has the most extreme signal is satisfied as long as neither candidate overreacts by
more than he would when conditioning on the opponent having received the same signal as he did. It appears
unlikely that such a degree of overreaction could improve voter welfare.
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fied:32 there is an equilibrium with overreaction in which each candidate i plays

yi(si) =
2w1

w0 + 2w1

si +
w0

w0 + 2w1

s0,

and the voter randomizes uniformly after any pair of on-path platforms.33

B. Completeness and Strong Linear Independence

Using “signal” as a synonym for “type”, recall that we noted in the main text after

introducing Condition 1 that it is equivalent to a full row and column rank condition for

finite signal spaces. This appendix clarifies that relationship more generally, with its main

result being Proposition 7 below. The setting and notation for this appendix follow Section 2.

B.1. Strong Linear Independence

Let B(Si) denote the Borel σ-algebra on Si and let M(Si) denote the set of finite signed

measures on Si. Define the linear operator Ki : M(Si) → M(S−i) by setting, for any

µ ∈ M(Si) and B ∈ B(S−i),

(Kiµ)(B) :=

∫
Si

F (B | si)µ(dsi).

For any µ ∈ M(Si), the map si 7→ F (B | si) is bounded and measurable, so (Kiµ)(B) is a

well-defined Lebesgue integral for each B ∈ B(S−i). Moreover, Kiµ is a finite signed measure

because µ is finite and F (· | si) is a probability measure for each si.

Let Mac(Si) ⊂ M(Si) denote the subset of finite signed measures that are dominated by

(i.e., absolutely continuous with respect to) Fi. Writing, as usual, that a measure µ = 0 means

µ(·) = 0, we define:

32As the prior density need no longer be symmetric around the mean (unlike with a normal prior) and signals
may be bounded (unlike with normally distributed signals), the definitions of anti-pandering or overreaction
have to be broadened from earlier. We now say that a strategy yi has overreaction if for all si, |yi(si)−E[θ]| ≥
|E[θ | si]−E[θ]| with strict inequality for some si. The focus on posterior expectations of the state is justified
when the voter has a quadratic loss function. See the discussion in Roux and Sobel (2015) to get a sense of
how asymmetric loss functions would affect the conclusions.

33While there may now be off-path platforms (unlike with normal distributions), as in the Beta-Bernoulli
example in the Supplementary Appendix, the equilibrium can be supported with reasonable off-path beliefs.
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Definition 2. The family {F (· | si)}si∈Si
satisfies Strong Linear Independence (SLI) for player

i if for every µ ∈ Mac(Si), we have

Kiµ = 0 =⇒ µ = 0.

For short, we will say that there is SLI for i when the family {F (· | si)}si∈Si
satisfies

SLI for player i. SLI requires that no nonzero finite signed measure that is dominated by Fi

creates a zero mixture of the conditional distributions {F (· | si)}si∈Si
. When Si is countable,

any measure is dominated by Fi (which has support Si), so SLI is stronger than textbook

linear independence because SLI does not restrict to finite mixtures.34 SLI is equivalent to

linear independence for finite Si.

B.2. Completeness

As usual, write L1(Fi) for the measurable and Fi-integrable real-valued functions on Si.

Definition 3. Player i’s signals have a complete family of conditional distributions {F (· | si)}si∈Si

if for every g ∈ L1(F−i) it holds that

E[g(s−i) | si] = 0 for Fi-a.e. si =⇒ F (g(s−i) = 0 | si) = 1 for Fi-a.e. si.

For short, we will say that there is completeness for i when player i’s signals have a complete

family of conditional distributions. Completeness (when required for both players) is closely

related to Condition 1 and captures the same idea; it is, however, slightly stronger in general

because it allows for unbounded test functions g. Unbounded test functions are irrelevant

when S−i is finite, but we will see that they are essential for the connection of completeness

to SLI when S−i is infinite. When Definition 3 is restricted to bounded test functions g, we

say that there is bounded completeness for i.

34Recall that even when Si is infinite, {F (· | si)}si∈Si
is linearly independent if every nonzero finite linear

combination is nontrival, i.e., for any finite set {s1i , . . . , sKi } ⊂ Si and any c : {1, . . . ,K} → R, it holds that

K∑
k=1

c(k)F (· | ski ) = 0 =⇒ c(·) = 0.
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B.3. Equivalence

Completeness for i concerns how informative si is about the other player −i’s signal.

So, even with finite signal sets, completeness for i corresponds to linear independence of

{F (· | s−i)}s−i∈S−i
, not of i’s own conditional distributions. Indeed, with finite signal sets for

both players (albeit of different cardinality), we can have completeness for i but a failure of

linear independence of {F (· | si)}si∈Si
, and vice-versa.35

With that in mind, we have the following equivalence.

Proposition 7. For each player i ∈ {A,B}, it holds that

Completeness for i ⇐⇒ Strong Linear Independence for −i.

Proof. Fix an arbitrary player i ∈ {A,B} and write j for −i.

(Completeness for i =⇒ SLI for j). Assume completeness for i. Let µ ∈ Mac(Sj) such

that Kjµ = 0. We must show that µ = 0.

Let g(sj) := dµ/dFj(sj) be the Radon–Nikodym derivative of µ with respect to Fj, which

exists because µ is dominated by Fj. Fix any measurable A ⊂ Si. We have

(Kjµ)(A) =

∫
Sj

F (A | sj) g(sj)Fj(dsj)

= E[1A(si) g(sj) ] using F (A | sj) = E[1A(si) | sj ] and the law of iterated expectations

=

∫
A

E[ g(sj) | si ]Fi(dsi).

Since Kjµ = 0, the left-hand side above is zero for all measurable A ⊂ Si, and hence

E[ g(sj) | si ] = 0 for Fi-a.e. si.

By completeness for i, it follows that

F (g(sj) = 0 | si) = 1 for Fi-a.e. si.

35 In particular, linear independence fails for i when Si has duplicate signals, while there is completeness for
i when |S−i| = 1. Conversely, if |S−i| > |Si| = 1, there is linear independence for i but not completeness for i.
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Integrating over si with respect to Fi and using the law of total probability yields g(sj) = 0

Fj-a.s., and therefore µ = 0.

(SLI for j =⇒ Completeness for i). Assume SLI for j. Let g ∈ L1(Fj) satisfy

E[ g(sj) | si ] = 0 for Fi-a.e. si. (22)

Define µ ∈ Mac(Sj) by

µ(B) :=

∫
B

g(sj)Fj(dsj) for any B ∈ B(Sj). (23)

Fix any measurable A ⊂ Si. We have

(Kjµ)(A) =

∫
Sj

F (A | sj) g(sj)Fj(dsj)

= E[1A(si)E[ g(sj) | si ] ] using F (A | sj) = E[1A(si) | sj ] and the law of iterated expectations

= 0 by (22).

Thus Kjµ = 0. SLI implies µ = 0, which by (23) implies g(sj) = 0 Fj-a.s. The law of total

probability now implies F (g(sj) = 0 | si) = 1 for Fi-a.e. si, which is completeness for i. □

Proposition 7 formalizes the sense in which SLI is the appropriate infinite-dimensional

analog of full rank (of the other player’s conditional distributions) for completeness. With

infinite (even countable) signal spaces, finite linear combinations are no longer sufficient, as

seen in Example 4 below. SLI instead requires injectivity of the linear operator mapping

(absolutely continuous) finite signed measures on one player’s signal space to mixtures of the

corresponding conditional distributions.

The following example with countable signals illustrates how the relevant directions of

Proposition 7 rely on completeness rather that bounded completeness and on SLI rather than

linear independence.

Example 4. Consider SA = {0, 1, . . .} and SB = {1, 2, . . .}. While we could use any signal

distribution F that has a full-support marginal FA, for concreteness take FA(0) = 1/2 and
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FA(sA) = 3−sA for sA > 0, and let the conditional distributions be

F (sB | sA) =

2−sB if sA = 0

1{sB = sA} if sA > 0.

Bounded completeness holds for player B: for any signal sB, the conditional distribution

F (· | sB) is supported on {0, sB}; thus, if a bounded function g(sA) has E[g(sA) | sB] = 0 for

all sB, then g(0) = 0 by considering large enough sB, and consequently g(·) = 0.

The family {F (· | sA)}sA∈SA
does not satisfy SLI because for any sB ∈ SB, we have

F (sB | 0) +
∞∑

sA=1

(
−2−sA

)
F (sB | sA) = 2−sB − 2−sB = 0.

The family {F (· | sA)}sA∈SA
is, however, linearly independent: if

∑K
sA=0 c(sA)F (· | sA) = 0

for any integer K, then c(0) = 0 by considering sB > K, and consequently c(·) = 0.

These observations show that bounded completeness for B does not imply SLI for A, and

linear independence for A does not imply completeness for B (since SLI failing for A implies

that completeness fails for B, by Proposition 7).36

B.4. Insufficiency of Convex Independence

In their work on informational richness in mechanism design, Crémer and McLean (1988)

discussed the role of both linear independence (for dominant-strategy mechanisms) and also

convex independence (for Bayesian-incentive-compatible mechanisms) with finite types; McAfee

and Reny (1992) extended the latter analysis to an infinite setting.

Even with finite signals, convex independence—being weaker than linear independence—

is insufficient for our purposes. Formally, say that convex independence holds for player

i ∈ {A,B} if for all si ∈ Si,

F (· | si) /∈ co ({F (· | ti) : ti ∈ Si \ {si}}) ,

36The failure of completeness can also be directly verified using the test function g given by g (0) = 1 and
g(sA) = −(1/2)(3/2)sA for sA > 0.
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where co(·) denotes the convex hull.

Consider the following joint distribution when each player has 4 signals:

F =
1

40


4 2 1 3

2 4 3 1

1 3 4 2

3 1 2 4

 .

This is a symmetric distribution in which the marginal distribution of a player’s signal is

uniform. Hence, the matrix of conditional distributions for either player is just a rescaling

of the above matrix (multiplying it by 4). For either player i, the family of conditional

distributions {F (· | si)}si∈Si
is convexly independent—each conditional distribution F (· | si)

assigns highest probability to a distinct opponent signal—yet completeness (or equivalently

here, bounded completeness) fails because the conditional matrix has rank 3 (as the sum of

the first and third rows of the F matrix equals the sum of the second and fourth rows).

The conclusion of Theorem 1 fails under this joint distribution:

Example 5. Consider the above signal structure, labeling signals as Si = {1, 2, 3, 4} in the

natural way. Let XA = XB = {0, 1} and uA(xA, xB) = −1{xA = xB}. There is an identifiable

equilibrium in which each player takes action 1 when he receives signal 1 or 3, and takes action

0 otherwise; the signal structure implies that each type of each player then faces a uniform

distribution over the opponent’s actions. This is, however, not an ex-post equilibrium.

C. On Corollary 1

Here we make precise the connection between Corollary 1 and Kattwinkel et al. (2022,

Proposition 3, part 2). They consider direct mechanisms, so Xi = Si, and an outcome space

Ω = [0, 1], interpreted as an allocation probability. Their primitive is preferences over out-

comes given by ũA(ω) = ω and ũB(ω) = −ω. Given any mechanism (or outcome function) w,

the induced preferences are ui(xA, xB) := ũi(w(xA, xB)), and hence there are strict preferences

over outcomes. Kattwinkel et al. ask which mechanisms are incentive compatible in the sense

that truthful reporting (i.e., the strategy si 7→ si) forms an equilibrium. Since such strate-

gies are identifiable (being pure), Corollary 1 implies that under Condition 1 only constant

43



mechanisms are incentive compatible. This subsumes Kattwinkel et al. (2022, Proposition 3,

part 2), which assumes finite type sets, in which case Condition 1 reduces to their full-rank

condition.37

In the other direction, Kattwinkel et al.’s (2022) result can be combined with a revelation-

principle argument to derive Corollary 1 for finite type sets and pure-strategy equilibria.

However, to deal with infinite type sets or (identifiable) mixed-strategy equilibria, we believe

an argument like ours is needed.
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Supplementary Appendix

D. Mixed Motives

This section substantiates the discussion in Subsection 3.3 of the paper by formally gen-

eralizing our main welfare conclusions to a normal-quadratic setting in which candidates are

largely but not entirely office motivated. We will establish that when the parameters bi and ρi

defined in Equation 9 are sufficiently close to zero for each i = A,B, (i) there is an equilibrium

that achieves welfare arbitrarily close to the level obtained by efficiently aggregating the signal

of only one candidate (Proposition 8 below), and (ii) that welfare is an approximate bound

on voter welfare in any equilibrium (Proposition 9 below).

In the context of a normal-quadratic mixed-motivation game, with candidates’ payoffs as

defined in Equation 9, we say that candidate’s i strategy is unbiased if

yi(si) =
β

α + β
si + bi. (24)

Note that this refers to candidate i choosing a policy that maximizes his preference over policy

given his signal, as opposed to the voter’s.

Proposition 8. In the normal-quadratic mixed-motivations game, there is a fully revealing

equilibrium in which one candidate i plays the unbiased strategy (24), the other candidate −i

plays

y−i(s−i) = s−i −
α + β

β
bi, (25)

and the voter elects candidate i no matter the pair of platforms.

Proof. Given the strategies (24) and (25), it follows that

E[θ | xi, x−i] =
β(xi − bi)

α+β
β

+ β
(
x−i +

α+β
β

bi

)
α + 2β

=
αxi + β(xi + x−i)

α + 2β
.

Straightforward algebra then verifies that for any xi and x−i,

(xi − E[θ | xi, x−i])
2 < (x−i − E[θ | xi, x−i])

2 ⇐⇒ β < α + β.

Hence it is optimal for the voter to always elect candidate i; clearly the candidates are playing

optimally given this strategy for the voter. □
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As the equilibrium constructed in Proposition 8 is invariant to ρA and ρB, it has a number

of interesting implications. First, the equilibrium exists when candidates are purely policy-

motivated. Second, for ρA = ρB = bA = bB = 0, this equilibrium reduces to one that verifies

the first statement of Theorem 2. Moreover, by taking bA = bB = 0 and ρA = ρB = 1, we

see that there is also an equilibrium in which one candidate plays the unbiased strategy and

always wins when both candidates are benevolent. Hence, the equilibrium of Proposition 8

continuously spans all three polar cases of candidate motivation.

Consider a normal-quadratic game with mixed-motivated candidates parameterized by

(ρ, b), where ρ ≡ (ρA, ρB) and b ≡ (bA, bB). Let E(ρ, b) denote the set of equilibria in which

candidates play pure strategies, for consistency with our baseline model. Given any equilib-

rium σ ≡ (yA, yB, wA), let v(σ) be the voter’s welfare in this equilibrium. Note that the voter’s

welfare depends only on the strategies used and not directly on the candidates’ motivations.

Let v∗(ρ, b) := sup{v(σ) : σ ∈ E(ρ, b)} be the supremum of equilibrium voter welfare given

candidate motivations. Plainly, v∗(0,0) is the welfare bound identified by Theorem 2.

Proposition 9. In the normal-quadratic mixed-motivations game, as (ρ, b) → (0,0), it holds

that v∗(ρ, b) → v∗(0,0).

This result holds despite the equilibrium correspondence not being upper hemicontinuous.

Indeed, observe that given any candidates’ motivations with bA > 0, there is an equilibrium in

which both candidates use the constant strategy yi(si) = 1/bA; this is supported by suitable

off-path beliefs such that any candidate whose platform differs from bA loses for sure. The

limit of these candidates’ strategies, limbA→0 1/bA, is not a valid strategy.

We require two lemmas to prove Proposition 9. Let

E∗(ρ, b) := {σ ∈ E(ρ, b) : v(σ) = v∗(ρ, b)}

be the set of welfare-maximizing equilibria.38 Given a strategy profile σ ≡ (yA, yB, wA) and

an ε > 0, let W σ
ε (sA, sB) denote the set of candidates who win with probability at least ε

when the signal realizations are sA, sB. The first lemma below says that in welfare-maximizing

equilibria, a candidate cannot win with non-vanishing probability on a non-negligible set of

bounded signal realizations while proposing arbitrarily extreme policies. To state it formally,

denote by projŜi
(E) the projection of E ⊂ R2 onto Ŝi ⊂ R.

38 In what follows, we will proceed as if E∗(ρ, b) is non-empty for all (ρ, b). If this is not the case, one can
proceed almost identically, just by defining for any ε > 0, E∗

ε (ρ, b) := {σ ∈ E∗(ρ, b) : v(σ) ≥ v∗(ρ, b)− ε}, and
then applying the subsequent arguments for a sequence of ε→ 0.
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Lemma 3. Let ŜA × ŜB be a bounded set of signals of positive measure, and ε, η > 0. There

exists k > 0 such that for any (ρ, b), if σ ≡ (yA, yB, wA) ∈ E∗(ρ, b) and there exists a

measurable set E ⊆ ŜA × ŜB with measure at least η such that i ∈ W σ
ε (sA, sB) for almost all

(sA, sB) ∈ E, then |yi(si)| < k for almost all si ∈ projŜi
(E).

Proof. Take any σ ∈ E∗(ρ, b). We have v(σ) ≥ −Var(θ) = −1/α, because −Var(θ) is the

welfare in a trivial equilibrium in which both candidates uninformatively choose policy 0. Since

E ⊆ ŜA × ŜB and ŜA × ŜB is bounded, the voter’s expected utility E [u(x, θ) | sA, sB] → −∞
as |x| → ∞, uniformly over (sA, sB) ∈ E. Since the voter’s utility conditional on any signal

profile (in particular, those outside E) is bounded above by zero, if the lemma’s conclusion

were false then σ would have arbitrarily low welfare, a contradiction. □

The next lemma builds on the previous one to show that in welfare-maximizing equilibria,

a candidate’s platform cannot diverge on any set of signals of positive measure while still

winning with non-vanishing probability.

Lemma 4. In any sequence of welfare-maximizing equilibria σρ,b ≡ (yρ,bA , yρ,bB , wρ,b
A ) ∈ E∗(ρ, b),

as (ρ, b) → (0,0) either:

(1) for some i, Pr(i wins in σρ,b) → 0 as (ρ, b) → 0; or

(2) for any i and almost all si, y
ρ,b
i (si) is bounded.

Proof. Suppose the lemma is false. Then, without loss, there is a number δ > 0 and a

(sub)sequence of (ρ, b) → (0,0) with equilibria σρ,b ∈ E∗(ρ, b) such that: (i) for all (ρ, b)

and i ∈ {A,B}, it holds that Pr(i wins in σρ,b) > δ; and (ii) there exists a bounded set

S ′
A ⊂ R of signals with positive measure such that for every sA ∈ S ′

A, either y
ρ,b
A (sA) → +∞

or yρ,bA (sA) → −∞.

Fix any κ > 0 and ε > 0. By Lemma 3 (applied contrapositively), for (ρ, b) small enough

the set of pairs (sA, sB) ∈ S ′
A × [−κ, κ] such that A ∈ W σρ,b

ε (sA, sB) has arbitrarily small

measure. Hence, by Fubini, there exists a subset S̃A ⊆ S ′
A of positive measure such that for

every sA ∈ S̃A, the set of sB ∈ [−κ, κ] for which A ∈ W σρ,b

ε (sA, sB) has arbitrarily small

measure. Fix any such sA.

Since the distribution of sB | sA does not change with (ρ, b), and since the κ above can

be taken sufficiently large that Pr(|sB| > κ | sA) is small enough, it follows that

for any ξ > 0, if (ρ, b) is small enough then UA(sA;σ
ρ,b,ρ, b) < ξ. (26)
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However, by point (i) above, and because tail-signals have vanishing prior probability, we

can choose a bounded set ŜA ⊂ R such that Pr(sA /∈ ŜA) ≤ δ/2, and hence for any (ρ, b),

Pr(A wins in σρ,b | sA ∈ ŜA) > δ/2.

Consider candidate A with signal sA deviating to a mixed action as follows: he draws ŝA ∈ ŜA

with the distribution of the prior FsA truncated on ŜA, and then follows the equilibrium

prescription yρ,bA (ŝA). Choose k > 0 large enough that Pr(|sB| > k | sA) ≤ δ/4 uniformly

over sA ∈ ŜA ∪ {sA}; this is possible because sB | sA is normally-distributed with variance

independent of sA and mean linear in sA, and ŜA ∪ {sA} is bounded. On {|sB| ≤ k}, the
likelihood ratios of the conditional densities fsB |sA(· | sA) are uniformly bounded for sA ∈
ŜA ∪ {sA}. For each sA ∈ ŜA, the event that A wins when he plays yρ,bA (sA) depends only on

sB, and on {|sB| ≤ k} its probability under s̄A is bounded below by a positive multiple of its

probability under sA. Averaging over sA ∈ ŜA, it follows that the probability with which A

wins at signal sA under the aforementioned deviation is bounded away from zero, uniformly

in (ρ, b). Moreover, since ŜA is bounded, Lemma 3 implies that the deviation’s platforms

are bounded uniformly in (ρ, b), and so as (ρ, b) → (0,0), the policy-utility contribution to

the deviation’s expected payoff vanishes. Hence, the deviation yields candidate A with signal

sA a strictly positive expected payoff bounded away from zero, which given (26) would be a

profitable deviation for small enough (ρ, b). □

Proof of Proposition 9. Let σρ,b
UB be the equilibrium identified in Proposition 8 where,

without loss, we take A to be the candidate who wins with probability one. Let σρ,b ≡
(yρ,bA , yρ,bB , wρ,b

A ) ∈ E∗(ρ, b) be a sequence of welfare-maximizing equilibria as (ρ, b) → (0,0).

Applying Lemma 4 to this sequence, there are two cases:

(a) If Case 1 of Lemma 4 holds, then it is straightforward to verify that v(σρ,b) → v∗(0,0).

Intuitively, for (ρ, b) ≈ (0,0), if i is winning with ex-ante probability approximately zero, then

the voter’s welfare cannot be much higher than if −i wins with ex-ante probability one using

the unbiased strategy, and Proposition 8 ensures that in a welfare-maximizing equilibrium it

is not much lower either.

(b) If Case 2 of Lemma 4 holds, pick any subsequence of σρ,b that converges pointwise

almost everywhere and denote the limit by σ0,0.39 Since payoffs are continuous, standard ar-

39More precisely, letting σ0,0 ≡ (yA, yB , wA), we require that (i) yρ,bi (si) → yi(si) for each i and almost all

si and (ii) wρ,b
A (xA, xB) → wA(xA, xB) for each (xA, xB) ∈ R2. Case 2 of Lemma 4 assures that at least one

subsequence converges in this sense. How each yi is defined on zero-measure sets of signals is irrelevant. Note
also that because the ex-ante probability of {si : si /∈ [−k, k]} can be made arbitrarily small by choosing k > 0
arbitrarily large, it follows that v(σρ,b) → v(σ0,0).
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guments imply that σ0,0 is an equilibrium of the limit pure-office-motivation game (intuitively,

if the voter or a candidate with any signal has a profitable deviation, there would also have

been a profitable deviation from σρ,b for small enough (ρ, b) > (0,0)). This implies that

lim
(ρ,b)→(0,0)

v(σρ,b) = v(σ0,0) ≤ v∗(0,0).

Finally, the inequality above holds with equality because for all (ρ, b), we have v(σρ,b) ≥
v(σρ,b

UB) as σ
ρ,b is welfare maximizing, and v(σρ,b

UB) → v∗(0,0). □

E. A Beta-Bernoulli Specificaton

Here we repeat the analysis of Subsection 3.2 for the case in which the state follows a Beta

distribution and each candidate gets a binary signal drawn from a Bernoulli distribution; the

feasible set of policies is [0, 1] (or any superset thereof). This statistical structure is a member

of the exponential family with conjugate priors. Aside from illustrating how the incentives to

overreact exist even when the state distribution may not be unimodal and may be skewed,

signals are discrete, etc., it also provides a closer comparison with the setting of Heidhues and

Lagerlof (2003) and Loertscher (2012) than does our leading normal-normal specification.

Assume the prior distribution of θ is Beta(α, β), which is the Beta distribution with pa-

rameters α, β > 0 whose density is given by f (θ) = θα−1(1−θ)β−1

B(α,β)
, where B(·, ·) is the Beta

function.40 Thus θ has support [0, 1] and E[θ] = α
α+β

. For reasons explained at the end of the

section, we assume α ̸= β. (This rules out a uniform prior, which corresponds to α = β = 1.)

Each candidate i ∈ {A,B} observes a private signal si ∈ {0, 1}; conditional on θ, signals are

drawn independently from the same Bernoulli distribution with Pr(si = 1 | θ) = θ. The policy

space is any subset of R containing [0, 1].

It is well-known that the posterior distribution of the state given signal 1 is now Beta (α + 1, β)

(i.e., has density f (θ | si = 1) = θα(1−θ)β−1

B(α+1,β)
); similarly the posterior given signal 0 is Beta (α, β + 1).

It is also straightforward to check that the posterior distribution of the state given two sig-

nals is as follows: if both si = s−i = 1, it is Beta (α + 2, β); if si = 0 and s−i = 1, it is

Beta (α + 1, β + 1); and if si = s−i = 0, it is Beta (α, β + 2) .

It follows that

E [θ | si] =
α + si

α + β + 1
and E [θ | si, s−i] =

α + si + s−i

α + β + 2
.

40 If α and β are positive integers then B (α, β) = (α−1)!(β−1)!
(α+β−1)! .
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The above formulae imply that for any realization (sA, sB),

sign (E[θ | sA, sB]− E [θ]) = sign

(
E [θ | sA] + E [θ | sB]

2
− E [θ]

)
,

|E[θ | sA, sB]− E [θ]| >
∣∣∣∣E [θ | sA] + E [θ | sB]

2
− E [θ]

∣∣∣∣ . (27)

Hence, both the posterior mean given two signals and the average of the individual posterior

means shift in the same direction from the prior mean, but the former does so by more.

Consequently, if candidates were to play unbiased strategies and the voter best responds,

then whenever sA ̸= sB there is one candidate who wins with probability one: the candidate

i with si = 1 (resp., si = 0) when β > α (resp., β < α). Of course, when sA = sB,

both candidates would choose the same platform and win with equal probability. It is worth

highlighting that when sA ̸= sB, it is the candidate with the ex-ante less likely signal who

wins, because ex-ante Pr(si = 1) = E[θ] = α/(α + β). This implies that unbiased strategies

cannot form an equilibrium, but not because candidates would deviate when drawing the ex-

ante less likely signal; rather, they would deviate when drawing the ex-ante more likely signal

to the platform corresponding to the ex-ante less likely signal.41 Notice that this profitable

deviation given signal si is to an (on-path) platform xi such that |xi−E[θ]| > |E[θ | si]−E[θ]|;
hence, it is a profitable deviation through overreaction rather than pandering.

Finally, we observe that there is a symmetric fully revealing equilibrium with overreaction

in which both candidates play

y(1) =
α + 2

α + β + 2
and y(0) =

α

α + β + 2
.

This strategy displays overreaction because

y(0) < E[θ | si = 0] < E[θ] < E[θ | si = 1] < y(1).

It is readily verified that when both candidates use this strategy, E[θ | sA, sB] = y(sA)+y(sB)
2

for

all (sA, sB), and hence each candidate would win with probability 1/2 for all on-path platform

pairs; a variety of off-path beliefs can be used to support the equilibrium.

Note that this overreaction equilibrium would exist even when α = β. However, were

α = β, unbiased strategies would also constitute an equilibrium: for, given unbiased strategies,

41See Che, Dessein and Kartik (2013) for an analog where options that are “unconditionally better-looking”
need not be “conditionally better-looking” .
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both sides of (27) would be equal to each other (in fact, equal to zero) when sA ̸= sB, and

hence the voter could elect both candidates with equal probability no matter their platforms.
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