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Abstract

We develop a result on Bayesian updating. Roughly, when two agents have different pri-

ors, each believes that a (Blackwell) more informative experiment will, on average, bring

the other’s posterior closer to his own prior. We apply the result to two models of strate-

gic communication: verifiable disclosure and costly falsification. Under some conditions,

senders’ information revelation are strategic complements when concealing or falsifying

information is costly, but strategic substitutes when disclosing verifiable information is

costly. In the latter case (but not the others), a receiver can be worse off with additional

senders or better external information.
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1. Introduction

Rational agents revise their beliefs upon receiving new information. From an ex-ante point of
view, however, one cannot expect new information to systematically alter one’s beliefs in any
particular direction. More precisely, a fundamental property of Bayesian updating is that be-
liefs are a martingale: an agent’s expectation of his posterior belief is equal to his prior belief.
But what about an agent’s expectation of another agent’s posterior belief when their current
beliefs are different? Or, intimately related, should agents expect new information to system-
atically affect any existing disagreement? These questions are not only of intrinsic interest,
but tackling them proves useful for analyzing common-prior environments with asymmetric
information.

This paper makes two contributions. First, we provide a result concerning the mutual ex-
pectations of Bayesian agents who disagree on the distribution of a fundamental. Second, we
use this result to derive new insights about some canonical sender(s)-receiver communication
games either with multiple senders or when a receiver obtains external information. We iden-
tify a unified mechanism that drives senders to reveal more information in some economic
settings and less in others; in the latter cases, a receiver can be harmed by having access to
better external information or more senders.

A theorem on Bayesian updating. In Section 2, we develop the following result on Bayesian
updating. (Throughout this introduction, some technical details are suppressed.) Let Ω =

{0, 1} be the possible states of the world. Anne (A) and Bob (B) have mutually-known but
possibly-different priors over Ω, βA ∈ (0, 1) and βB ∈ (0, 1) respectively, where βi is the
probability individual i ascribes to state ω = 1. A signal, s, will be drawn from an information
structure or experiment, E , given by a family of probability distributions, {pω(·)}ω∈Ω, where
pω(s) is the probability of observing signal s when the true state is ω. Anne and Bob agree on
the experiment. Let βi(s) denote i’s posterior (on ω = 1) after observing signal s, derived by
Bayesian updating. Let EE

i [βj(·)] be i’s ex-ante expectation of j’s posterior under experiment
E , where the expectation is taken over signals from i’s point of view.

Consider two experiments E and Ẽ that are comparable in the sense of Blackwell (1951,
1953); specifically, let Ẽ be a garbling of E , or equivalently, E be more informative than Ẽ .1 We
prove (Theorem 1) that for any i, j ∈ {A,B},

βi ≤ (≥) βj =⇒ EE
i [βj(·)] ≤ (≥)EẼ

i [βj(·)]. (1)

1 Throughout, binary comparisons should be understood in the weak sense unless indicated otherwise, e.g.,
“greater than” means “at least as large as.”
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In words: if Anne holds a lower (resp., higher) prior than Bob, then Anne predicts that a
more informative experiment will, on average, reduce (resp., raise) Bob’s posterior by a larger
amount than a less informative experiment. Put differently, Anne expects more information
to further validate her prior in the sense of bringing, on average, Bob’s posterior closer to her
prior. Of course, Bob expects just the reverse. We refer to this result as information validates the
prior, IVP hereafter.

IVP subsumes the familiar martingale property of Bayesian updating. To see this, consider
j = i in Equation 1 and take Ẽ to be an uninformative experiment—which leaves an agent’s
posterior after any signal equal to his prior—and take E to be any experiment. IVP also implies
that an agent expects another agent’s posterior to fall in between their two priors.2

IVP implies an interesting point about disagreement. When the disagreement between be-
liefs βi and βj is quantified by the canonical metric |βi − βj|, a particular signal can lead to
higher posterior disagreement than the prior. (By contrast, as shown by Baliga, Hanany, and
Klibanoff (2013), no signal can lead to polarization: it cannot be that (βi − βi)(βj − βj) < 0.)
Nevertheless, IVP implies (Corollary 1) that both Anne and Bob predict that a more infor-
mative experiment will, on average, reduce their posterior disagreement to a greater extent
than a less informative experiment; in particular, no matter the experiment, they expect lower
posterior disagreement than their prior disagreement. At the extreme, both predict their pos-
terior disagreement to be zero under a fully informative experiment—even though they hold
different expectations about what the other’s posterior belief will be.

Theorem 2 provides a generalization of IVP to non-binary state spaces using suitable
statistics of the agents’ beliefs and likelihood-ratio ordering conditions on the agents’ priors
and on the experiments.

Applications to communication games. IVP is a statistical result. The second part of our
paper shows why it is useful in strategic contexts. The idea is that even in common-prior
environments, private information can lead to one agent—Anne, an informed agent—holding
a different belief about a fundamental than another—Bob, an uninformed agent. Only Anne
knows both their beliefs. Anne’s strategic incentives may depend on how she expects new
information to affect Bob’s belief. This new information can be exogenous or endogenous,
e.g., owing to the strategic behavior of still other agents. The belief difference between Anne
and Bob can occur either on an equilibrium path because of Anne’s “pooling” behavior, or

2 To see this, note that (i) letting U denote an uninformative experiment, EU
i [βj(·)] = βj , and (ii) letting F

denote a fully informative experiment (one in which any signal reveals the state and hence leaves any two
agents with the same posterior no matter their priors), EF

i [βj(·)] = βi. The result follows using Equation 1 and
the fact that any experiment is more informative than U but less informative than F .
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off path because of a deviation by Anne; as usual, even off-path considerations will generally
affect the on-path properties of an equilibrium.

We develop these points in the context of two familiar classes of communication games.

Voluntary disclosure. Section 3 studies a family of voluntary disclosure games, also referred
to as persuasion games. In these games, biased senders’ only instrument of influence on
the decision-maker (DM) is the certifiable or verifiable private information they are endowed
with; see Milgrom (2008) and Dranove and Jin (2010) for surveys. Senders cannot explicitly
lie but can choose what information to disclose and what to withhold. We consider a model
in which senders, if informed, draw signals that are independently distributed conditional on
an underlying binary state that affects the DM’s payoff.3 We allow for senders to either have
opposing or similar biases but assume that a sender’s payoff is state-independent and linear
(increasing or decreasing) in the DM’s belief.

Our focus is on how strategic disclosure interacts with message costs: either disclosure
or concealment of information can entail direct costs for each sender. Disclosure costs are
natural when the process of certifying or publicizing information demands resources such
as time, effort, or hiring an outside expert; there can also be other “proprietary costs.” A
subset of the literature, starting with Jovanovic (1982) and Verrecchia (1983), has modeled
such a cost, although primarily only in single-sender problems. On the flip side, there are
contexts in which it is the suppression of information that requires costly resources. Besides
direct costs, there can also be a psychic disutility to concealing information, or concealment
may be discovered ex-post (by auditors, whistleblowers, or mere happenstance) and result
in negative consequences for the sender through explicit punishment or reputation loss. A
recent example is the $70 million dollar fine imposed by the National Highway Traffic Safety
Administration on Honda Motor in January 2015 because “it did not report hundreds of death
and injury claims . . . for the last 11 years nor did it report certain warranty and other claims
in the same period.” (The New York Times, 2015)

To determine his own disclosure, it is essential for each sender to predict how other
senders’ messages will affect the DM’s posterior belief, and how this depends on his own
message (disclosure or nondisclosure). Our methodological insight is to view senders’ mes-
sages as endogenously-determined experiments and bring the IVP theorem to bear. This ap-
proach allows us to provide a unified treatment—regardless of whether senders have similar

3 We assume that senders are uninformed with some probability; importantly, an uninformed sender cannot
certify that he is uninformed. This modeling device was introduced by Dye (1985) and Shin (1994a,b) to prevent
“unraveling” (Grossman and Hart, 1980; Milgrom, 1981), and serves the same purpose here.
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or opposing biases, and regardless of whether message costs are disclosure or concealment
costs. We thereby uncover new insights into the classic question of when competition pro-
motes disclosure.

Any sender’s equilibrium disclosure behavior follows a threshold rule of disclosing all
sufficiently favorable signals. We establish a simple but important benchmark: without mes-
sage costs, any sender in the multi-sender disclosure game uses the same disclosure threshold
as he would in a single-sender game. In other words, there is a strategic irrelevance. The intu-
ition is that without message costs, a sender’s objective is the same regardless of the presence
of other senders: he simply wants to induce the most favorable “interim belief” in the DM
based on his own message, as this will lead to the most favorable posterior belief based on all
senders’ messages.

How do message costs alter the irrelevance result? Consider a concealment cost. In a
single-sender setting, a sender i’s disclosure threshold will be such that the DM’s interpreta-
tion of nondisclosure is more favorable than i’s private belief at the threshold—this wedge is
necessary to compensate i for the concealment cost. Nondisclosure thus generates an interim
disagreement between the DM’s belief and the threshold type’s private belief. Naturally, dis-
closure produces no such disagreement. Now add a second sender j to the picture. Our IVP
theorem implies that regardless of j’s behavior, the threshold type of i predicts that j’s mes-
sage will, on average, make the DM’s posterior less favorable to i as compared to the DM’s
interim belief following i’s nondisclosure. Consequently, concealment is now less attractive
to sender i. IVP further implies that j’s effect on i is stronger when j disclosure more, i.e.,
when j is more informative. In sum, senders’ disclosures are strategic complements under a
concealment cost.4

The logic reverses under a disclosure cost. In a single-sender setting, the DM’s interpre-
tation of nondisclosure is now less favorable than i’s private belief at the threshold—the gain
from disclosing information must compensate i for the direct cost. Reasoning analogously to
above, IVP now implies that disclosure becomes less attractive when the other sender is more
informative: the threshold type of i expects the other sender’s message to make the DM’s
posterior more favorable to i, reducing the gains from disclosure. Consequently, senders’
disclosures are strategic substitutes under a disclosure cost.

These results have notable welfare implications. In the case of concealment cost, a DM
always benefits from an additional sender not only because of the information this sender

4 In a different model, Bourjade and Jullien (2011) find an effect related to that we find under concealment
cost. Loosely speaking, “reputation loss” in their model plays a similar role to concealment cost in ours.

4



provides, but also because it improves disclosure from other senders. In the case of disclosure
cost, however, the strategic substitution result implies that while a DM gains some direct
benefit from consulting an additional sender, the indirect effect on other senders’ behavior
is deleterious to the DM. In general, the net effect is ambiguous; it is not hard to construct
examples in which the DM is made strictly worse off by adding a sender, even if this sender
has an opposite bias to that of an existing sender. Thus, competition between senders need
not increase information revelation nor benefit the DM.5 The DM can even be made worse
off when disclosure costs become lower or a sender is more likely to be informed, although
either change would help the DM in a single-sender setting.

Costly signaling games. Our IVP theorem is also useful in games of asymmetric informa-
tion even when the information asymmetry is eliminated in equilibrium. We develop such
an application in Section 4. For concreteness, we consider information transmission with ly-
ing costs (Kartik, 2009), but we also discuss how our themes apply to canonical signaling
applications like education signaling (Spence, 1973).

Suppose a sender has imperfect information about a binary state, and can falsify or ma-
nipulate his information by incurring costs. A receiver makes inferences about the state based
on both the sender’s signal and some other exogenous information.6 The sender has linear
preferences over the receiver’s belief about the state. Due to a bounded signal space, there
is incomplete separation across sender types; we focus on equilibria in which “low” types
separate and “high” types pool. What is the effect of better exogenous information (in the
Blackwell sense) on the sender’s signaling?

Even sender types who separate in equilibrium can induce an incorrect interim belief (i.e.,
the receiver’s belief based only on the sender’s signal, before incorporating the exogenous
information) by deviating. We use IVP to establish that better exogenous information reduces
the sender’s expected benefit from falsifying his information to appear more favorable. Intu-
itively, the sender expects any favorable but incorrect interim belief to get neutralized more

5 In quite different settings, Milgrom and Roberts (1986), Dewatripont and Tirole (1999), Krishna and Morgan
(2001), and Gentzkow and Kamenica (2017) offer formal analyses supporting the viewpoint that competition
between senders helps—or at least cannot hurt—a DM. Carlin, Davies, and Iannaccone (2012) present a result
in which increased competition leads to less voluntary disclosure. Their model can be viewed as one in which
senders bear a concealment cost that is assumed to decrease in the amount of disclosure by other senders. Elliott,
Golub, and Kirilenko (2014) show how a DM can be harmed by “information improvements” in a cheap-talk
setting, but the essence of their mechanism is not the strategic interaction between senders.

6 Weiss (1983) is an early paper that introduces exogenous information into a signaling environment; his is
not, however, a model in which signaling has direct costs. See also Feltovich, Harbaugh, and To (2002). More
similar to our setting are Daley and Green (2014) and Truyts (2015); we elaborate on the connections with these
papers at the end of Section 4.
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by better exogenous information. This means that better exogenous information makes costly
deviations less attractive to the sender, which relaxes his incentive constraints. Consequently,
better exogenous information reduces wasteful signaling and enlarges the set of separating
types—every type of the sender is better off and so is the receiver because there is more infor-
mation revealed by the sender. We explain how this result can be also viewed as a strategic
complementary between multiple senders.

Other applications. While our paper applies IVP to two models of strategic communication,
we hope that the result will also be useful in other contexts. Indeed, the logic of IVP underlies
and unifies the mechanisms in a few existing papers that study models with heterogeneous
priors under specific information structures. In particular, see the strategic “persuasion mo-
tive” that generates bargaining delays in Yildiz (2004), motivational effects of difference of
opinion in Che and Kartik (2009) and Van den Steen (2010, Proposition 5), and a rationale for
deference in Hirsch (2016, Proposition 8); in a non-strategic setting, see why minorities expect
lower levels of intermediate bias in Sethi and Yildiz (2012, Proposition 5). We ourselves have
used IVP—specifically invoking Theorem 1 below—to study information acquisition prior to
disclosure (Kartik, Lee, and Suen, 2017). We briefly touch on some implications of IVP for
Bayesian persuasion with heterogeneous priors in the current paper’s conclusion, Section 5.

2. Information Validates the Prior

The backbone of our analysis is a pair of theorems below that relate the informativeness of
an experiment to the expectations of individuals with different beliefs. Theorem 1 is a special
case of Theorem 2, but for expositional clarity, we introduce them separately.

Throughout, we use the following standard definitions concerning information structures
(Blackwell, 1953). Fix any finite state space Ω with generic element ω. An experiment is E ≡
(S,S, {Pω}ω∈Ω), where S is a measurable space of signals, S is a σ-algebra on S, and each Pω

is a probability measure over the signals in state ω. An experiment Ẽ ≡ (S̃, S̃, {P̃ω}ω∈Ω) is a
garbling of experiment E if there is a Markov kernel from (S,S) to (S̃, S̃), denoted Q(·|s),7 such
that for each ω ∈ Ω and every set Σ ∈ S̃ , it holds that

P̃ω(Σ) =

󰁝

S

Q(Σ|s) dPω(s).

This definition captures the statistical notion that, on a state-by-state basis, the distribution

7 I.e., (i) the map s 󰀁→ Q(Σ|s) is S-measurable for every Σ ∈ S̃ , and (ii) the map Σ 󰀁→ Q(Σ|s) is a probability
measure on (S̃, S̃) for every s ∈ S.
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of signals in Ẽ can be generated by taking signals from E and transforming them through
the state-independent kernel Q(·). In a sense, Ẽ does not provide any information that is not
contained in E . Indeed, E is also said to be more informative than Ẽ because every expected-
utility decision maker prefers E to Ẽ .

2.1. Binary states

In this subsection, let Ω = {0, 1}, and take all beliefs to refer to the probability of state ω = 1.
There are two individuals, A and B, with respective prior beliefs βA, βB ∈ (0, 1). Given any
experiment, the individuals’ respective priors combine with Bayes rule to determine their
respective posteriors after observing a signal s, denoted βi(s) for i ∈ {A,B}. Let EE

A[βB(·)]
denote the ex-ante expectation of individual A over the posterior of individual B under ex-
periment E . If βA = βB, then because the individuals’ posteriors always agree, it holds that
for any E , EE

A[βB(·)] = βA; this is the martingale or iterated expectations property of Bayesian
updating. For individuals with different priors, we have:

Theorem 1. Let Ω = {0, 1} and experiment Ẽ be a garbling of experiment E . Then, for any i, j ∈
{A,B}:

βi ≤ βj =⇒ EE
i [βj(·)] ≤ EẼ

i [βj(·)];

βi ≥ βj =⇒ EE
i [βj(·)] ≥ EẼ

i [βj(·)];

and min{βA, βB} ≤ EE
i [βj(·)] ≤ max{βA, βB}.

Suppose that individual A is less optimistic than B, i.e., βA < βB. If an experiment Ẽ is
uninformative—no signal realization would change any individual’s beliefs—then EẼ

A[βB(·)] =
βB > βA. On the other hand, if an experiment E is fully informative—every signal reveals the
state—then for any signal s, βA(s) = βB(s), and hence βA = EE

A[βA(·)] = EE
A[βB(·)] < βB,

where the first equality is the previously-noted property of Bayesian updating under any
experiment. In other words, individual A believes a fully informative experiment will, on
average, bring individual B’s posterior perfectly in line with A’s own prior, whereas an un-
informative experiment will obviously entail no such convergence. (Of course, in turn, B
expects A to update to B’s prior under a fully informative experiment.) Theorem 1 general-
izes this idea to monotonicity among Blackwell-comparable experiments: A anticipates that
a more informative experiment will, on average, bring B’s posterior closer to A’s prior. For
short, we will say the theorem shows that information validates the prior, or IVP.

There is a simple proof for Theorem 1, owing to binary states. The key is to recognize
that, because the individuals agree on the experiment and only disagree in their priors over
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the state, each individual’s posterior can be written as a function of both their priors and the
other individual’s posterior; this point does not rely on binary states. This observation is also
used by Gentzkow and Kamenica (2014), Alonso and Câmara (2016), and Galperti (2018) to
different ends. For simplicity, consider an experiment with a discrete signal space in which
every signal is obtained with positive probability in both states. For any signal realization s,
Bayes rule implies that the posterior belief βi(s) for individual i ∈ {A,B} satisfies

βi(s)

1− βi(s)
=

βi

1− βi

P1(s)

P0(s)
,

where Pω(s) is the probability of observing s in state ω. Eliminating the likelihood ratio
P1(s)/P0(s) yields βB(s) = T (βA(s), βB, βA), where

T (βA, βB, βA) :=
βA

βB

βA

βA
βB

βA
+ (1− βA)

1−βB

1−βA

. (2)

It is straightforward to verify that this transformation mapping T (·, βB, βA) is strictly con-
cave (resp., convex) in A’s posterior when βA < βB (resp., βA > βB). Theorem 1 follows
as an application of Blackwell (1953), who showed that a garbling increases (resp., reduces)
an individual’s expectation of any concave (resp., convex) function of his posterior; see also
Rothschild and Stiglitz (1970).

The second part of Theorem 1 is a straightforward consequence of combining the first part
with the facts that any experiment is a garbling of a fully informative experiment while an
uninformative experiment is a garbling of any experiment (and using the properties of these
extreme experiments noted right after the theorem).

Remark 1. The inequalities in the conclusions of Theorem 1 hold strictly if the garbling is
“strict.” In particular, min{βA, βB} < EE

i [βj(·)] < max{βA, βB} for any experiment E that is
neither uninformative nor fully informative. □

Theorem 1 has an interesting corollary. A canonical measure of how much agents A and
B disagree when they hold beliefs βA and βB is |βA − βB|. Under this measure, an experiment
can generate signals for which posterior disagreement is larger than prior disagreement.8 Put
differently, Bayesian agents who agree on the information-generating process can disagree

8 For example, let βA = 1/2, and consider a binary-signal experiment (S = {l, h}) with Pr(l|0) = Pr(h|1) = p.
For any p ∈ (1/2, 1), the posterior disagreement after signal h is larger than the prior disagreement if βB < 1−p.
More generally, it can be shown that whenever βA ∕= βB , there is an experiment such that posterior disagreement
after some signal is larger than prior disagreement.
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more after new information.9 But can they expect, ex-ante, to disagree more? Theorem 1
provides a sharp answer, captured by the following corollary.

Corollary 1. Let Ω = {0, 1} and experiment Ẽ be a garbling of experiment E . Then, for any i ∈
{A,B}:

EE
i [|βA(·)− βB(·)|] ≤ EẼ

i [|βA(·)− βB(·)|] . (3)

Corollary 1 says that both agents expect a more informative experiment to reduce their
disagreement by more. In particular, both predict that any experiment will reduce their dis-
agreement, on average, relative to their prior disagreement. This is the case even though
they generally hold different expectations about each other’s posteriors; for example, given a
fully informative experiment, both anticipate zero posterior disagreement, even though either
agent i expects both agents’ posteriors to be βi.

The proof of Corollary 1 is simple. For any priors βA and βB, and any signal s in any
experiment, it is a consequence of Bayesian updating (e.g., using (2)) that

sign[βA(s)− βB(s)] = sign[βA − βB].

In other words, any information preserves the prior ordering of the agents’ beliefs. Thus, if
(say) βA ≥ βB, then (3) is equivalent to

EE
i [βA(·)− βB(·)] ≤ EẼ

i [βA − βB],

which is implied by Theorem 1 because EE
i [βi(·)] = EẼ

i [βi(·)] = βi.

2.2. Many states

Now consider an arbitrary finite set of states, Ω ≡ {ω1, . . . ,ωL} ⊂ R, with L > 1 and ω1 <

· · · < ωL. We write β(ωl) as the probability ascribed to state ωl by a belief β, with the notation
in bold emphasizing that a belief over Ω is now a vector. We assume that the two individuals’
priors, βA and βB, assign strictly positive probability to every state. We say that a belief β′

likelihood-ratio dominates belief β, written β′ ≥LR β if, for all ω′ > ω,

β′(ω′)β(ω) ≥ β(ω′)β′(ω).

We denote posterior beliefs given a signal s as β(s) ≡ (β(ω1|s), . . . , β(ωL|s)).
9 But agents’ posteriors always move in the same direction from their priors, i.e., after any signal s in any

experiment, sign[βA(s) − βA] = sign[βB(s) − βB ], as can be confirmed using (2). In a sense there cannot be
polarization, a point that is established more generally by Baliga et al. (2013, Theorem 1).
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Definition 1. An experiment E ≡ (S,S, {Pω}ω∈Ω) is an MLRP-experiment if there is a total
order on S, denoted ≽ (with asymmetric relation ≻), such that the monotone likelihood ratio
property holds: s′ ≻ s and ω′ > ω =⇒ p(s′|ω′)p(s|ω) ≥ p(s′|ω)p(s|ω′).

As is well known, the monotone likelihood ratio property (in the non-strict version above)
is without loss of generality when there are only two states: any experiment is an MLRP-
experiment when L = 2.

Let M(β) :=
󰁓

ω∈Ω h(ω)β(ω) represent the expectation of an arbitrary non-decreasing
function h : Ω → R under belief β. The following result generalizes Theorem 1:

Theorem 2. Consider any two likelihood-ratio ordered priors βA and βB, and any two MLRP-
experiments E and Ẽ with Ẽ a garbling of E . Then, for any i, j ∈ {A,B}:

M(βi) ≤ M(βj) =⇒ EE
i [M(βj(·))] ≤ EẼ

i [M(βj(·))] ;

M(βi) ≥ M(βj) =⇒ EE
i [M(βj(·))] ≥ EẼ

i [M(βj(·))] ;

and min
󰀋
M(βA),M(βB)

󰀌
≤ EE

i [M(βj(·))] ≤ max
󰀋
M(βA),M(βB)

󰀌
.

With many states, we can still represent the posterior belief βi(s) of individual i as a trans-
formation mapping of βj(s), but this mapping is neither concave nor convex even when
the prior beliefs of i and j are likelihood-ratio ordered. The proof of Theorem 2 (and of all
subsequent formal results) is provided in Appendix A. For an illustration, suppose M(·) is
the expected state and Bayesian updating takes the canonical linear form of a convex com-
bination of the prior mean and the signal, as is the case for any exponential family of sig-
nals with conjugate prior (e.g., normal-normal). Given a signal s ∈ R under experiment E ,
EE

j [ω|s] = (1− αE)Ej[ω] + αEs for some αE ∈ [0, 1]. Hence,

EE
i

󰀅
EE

j [ω|s]
󰀆
= (1− αE)Ej[ω] + αEEi[ω].

The weight αE is larger the more informative is the experiment E , which implies the conclu-
sions of Theorem 2.

Theorem 2 says that either agent i expects the other’s posterior to be closer to i’s prior
under a more informative experiment, when closeness of beliefs is measured by the distance
between their M(·) statistics. Theorem 1 obtains when Ω = {0, 1} and M(β) is simply the
expected state under β (i.e., h(ω) = ω), because both likelihood-ratio ordering assumptions in
Theorem 2 are without loss of generality with only two states.10 More generally, since M(·)

10 Indeed, the likelihood-ratio ordering of the priors can always be viewed as without loss of generality—the
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is the expectation of any non-decreasing function of the state, Theorem 2 captures the notion
that—subject to the ordering assumptions—information validates the prior not only in the
sense of the expected state, but also, for instance, in the probability of any {ωl, . . . ,ωL}.

The likelihood-ratio ordering assumptions in Theorem 2 are tight in the following respect:
(i) there exist priors βB >LR βA and a non-MLRP-experiment E such that EE

A[M(βB(·))] >
M(βB) > M(βA); and (ii) there exist priors βA ≱LR βB and an MLRP-experiment E such that
EE

A[M(βB(·))] > M(βA) > M(βB). See Appendix B for examples demonstrating these points;
the examples also establish that the likelihood-ratio ordering hypothesis on the priors cannot
be weakened to first-order stochastic dominance.

Theorem 2 has an implication about expected disagreement that generalizes Corollary 1:

Corollary 2. Consider any two likelihood-ratio ordered priors βA and βB, and any two MLRP-
experiments E and Ẽ with Ẽ a garbling of E . Then, for any i ∈ {A,B}:

EE
i [|M(βi(·))−M(βj(·))|] ≤ EẼ

i [|M(βi(·))−M(βj(·))|] .

Corollary 2 says that—subject to the ordering assumptions—more information reduces
expected disagreement when the disagreement between beliefs βA and βB is measured by
|M(βA) −M(βB)|.11 The corollary follows from Theorem 2 for reasons analogous to our dis-
cussion of why Corollary 1 follows from Theorem 1. In particular, information from an MLRP-
experiment preserves the prior likelihood-ratio ordering of the agents’ beliefs and thus also
the ordering in terms of their M(·) statistics; moreover, since M(·) is a linear function, it holds
for any i ∈ {A,B} and any experiment E that EE

i [M(βi(·)] = M(βi).

In the following sections, we use the logic of information validates the prior to study
strategic communication games in which agents begin with a common prior.

3. Multi-Sender Disclosure Games

Our main application is to multi-sender voluntary disclosure of verifiable information. We
build on the classic disclosure models mentioned in the Introduction and use IVP to derive
new insights on when competition promotes disclosure.

states can be re-labeled so that it holds—so long as (i) the MLRP property of an experiment and (ii) the non-
decreasing property of the h(·) function are both understood to be with respect to the ordering of states that
ensures likelihood-ratio ordering of the priors.

11 The distance between expected states—more precisely, the expectations of any non-decreasing function of
the states—is an interesting measure of disagreement, but there are of course others. See Zanardo (2017) for an
axiomatic approach to measuring disagreement; he provides a result in the spirit of Corollary 2 for a family of
disagreement measures that includes the Kullback-Leibler divergence.

11



3.1. The model

Players. There is an unknown state of the world, ω ∈ {0, 1}. A decision maker (DM) will
form a belief βDM that the state is ω = 1. For much of our analysis, all that matters is the
belief that the DM holds. For welfare evaluation, however, it is useful to view the DM as tak-
ing an action a with von-Neumann Morgenstern utility function uDM(a,ω) such that the DM
is strictly better off when there is strictly more information about the state in the Blackwell
sense. There are two senders, indexed by i. (Subsection 3.4 generalizes to many senders.) In a
reduced form, each sender i has state-independent preferences over the DM’s belief given by
the von-Neumann Morgenstern utility function u(βDM , bi) = biβDM , where bi ∈ {−1, 1} cap-
tures a sender’s bias. That is, each sender has linear preferences over the DM’s expectation of
the state; bi = 1 means that sender i is biased upward (i.e., prefers a higher DM’s expectation),
and conversely for bi = −1. Senders’ biases are common knowledge. We say that two senders
have similar biases if their biases have the same sign, and opposing biases otherwise.

Information. The DM relies on the senders for information about the state. All players
share a common prior π over the state. Each sender may exogenously obtain some private
information about the state. Specifically, with independent probability pi ∈ (0, 1), a sender i is
informed and receives a signal si ∈ S; with probability 1− pi, he is uninformed, in which case
we denote si = φ. If informed, sender i’s signal is drawn independently from a distribution
that depends upon the true state. Without loss, we equate an informed sender’s signal with
his private belief, i.e., a sender’s posterior on state ω = 1 given only his own signal s ∕= φ (as
derived by Bayesian updating) is s. For convenience, we assume the cumulative distribution
of an informed sender’s signals in each state, F (s|ω) for ω ∈ {0, 1}, have common support
S = [s, s] ⊆ [0, 1] and admit respective densities f(s|ω). It is straightforward to allow F (·) to
be different for different senders, but we abstract from such heterogeneity to reduce notation.

Communication. Signals are “hard evidence”; a sender with signal si ∈ S ∪ {φ} can send a
message mi ∈ {si,φ}. In other words, an uninformed sender only has one message available,
φ, while an informed sender can either report his true signal or feign ignorance by sending
the message φ.12 We refer to any message mi ∕= φ as disclosure and the message mi = φ

as nondisclosure. When an informed sender chooses nondisclosure, we say he is concealing
information. That senders must either tell the truth or conceal their information is standard;

12 Due to the senders’ monotonic preferences, standard “skeptical posture” arguments imply that our results
would be unaffected if we were to allow for a richer message space, for example if an informed sender could
report any subset of the signal space that contains his true signal. Likewise, allowing for cheap talk would not
affect our results as cheap talk cannot be influential in equilibrium.
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a justification is that signals are verifiable and large penalties will be imposed on a sender if a
reported signal is discovered to be untrue. Note that being uninformed is not verifiable.

Message costs. A sender i who sends message mi ∕= φ bears a known utility cost c ∈ R.
We refer to the case of c > 0 as one of disclosure cost and c < 0 as one of concealment cost. A
disclosure cost captures the idea that costly resources may be needed to certify or make veri-
fiable the information that one has. A concealment cost captures a resource-related or psychic
disutility from concealing information, or the expectation of a penalty from ex-post detection
of having withheld information (Daughety and Reinganum (2018) and Dye (2017) consider
specific versions). As is well known, a disclosure cost precludes full disclosure (Jovanovic,
1982; Verrecchia, 1983). For this reason, our conclusions under c > 0 do not require the as-
sumption that the sender may be uninformed (pi < 1). We make that assumption to provide
a unified treatment of both disclosure costs (c > 0) and no costs/concealment costs (c ≤ 0).13

In the latter cases, there would be full disclosure or “unraveling” were pi = 1.

Timing. The game is the following: nature initially determines the state ω and then in-
dependently (conditional on the realized state) draws each sender i’s private information,
si ∈ S ∪ {φ}; all senders then simultaneously send their respective messages mi to the DM
(whether messages are public or privately observed by the DM is irrelevant); the DM then
forms her belief, βDM , according to Bayes rule, whereafter each sender i’s payoff is realized as

biβDM − c · 11{mi ∕=φ}. (4)

All aspects of the game except the state and senders’ signals (or lack thereof) are common
knowledge. Our solution concept is the natural adaptation of perfect Bayesian equilibrium,
which we will refer to simply as “equilibrium.”14 The notion of welfare for any player is
ex-ante expected utility.

13 When c = 0 our setting is related to Jackson and Tan (2013) and Bhattacharya and Mukherjee (2013). Jackson
and Tan (2013) assume a binary decision space, which makes their senders’ payoffs non-linear in the DM’s pos-
terior and shifts the thrust of their analysis. They are ultimately interested in comparing different voting rules,
which is effectively like changing the pivotal DM’s preferences; we instead highlight how the presence of disclo-
sure or concealment costs affects the strategic interaction between senders holding fixed the DM’s preferences.
Bhattacharya and Mukherjee (2013) assume that informed senders’ signals are perfectly correlated but allow for
senders to have non-monotonic preferences over the DM’s posterior.

14 That is: (1) the receiver forms her belief using Bayes rule on path (note that the message mi = φ is necessarily
on path), and treating any off-path message mi ∈ S as proving signal si = mi; and (2) each sender chooses his
message optimally given his information, the other senders’ strategies, and the receiver’s belief updating.
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3.2. A single-sender benchmark

As a preliminary step and to set a benchmark, begin by considering a (hypothetical) game be-
tween a single sender i and the DM. Our analysis in this subsection generalizes some existing
results in the literature. For concreteness, suppose the sender is upward biased; straightfor-
ward analogs of the discussion below apply if the sender is downward biased.

For any β ∈ [0, 1], define fβ(s) := βf(s|1) + (1− β)f(s|0) as the unconditional density of
signal s given a belief that puts probability β on state ω = 1. Let Fβ be the cumulative dis-
tribution of fβ . Since the sender has private belief s upon receiving signal s, disclosure of
signal s will lead to the DM also holding belief s. It follows that given any nondisclosure be-
lief, i.e., the DM’s posterior belief when there is nondisclosure, the optimal strategy for the
sender (if informed) is a threshold strategy of disclosing all signals above some disclosure
threshold, say ŝ, and concealing all signals below it. If the sender is uninformed, his only
available message is φ. Suppose the sender uses a disclosure threshold ŝ. Define the function
η : [0, 1]× (0, 1)× [0, 1] → [0, 1] by

η(ŝ, p, π) :=
1− p

1− p+ pFπ(ŝ)
π +

pFπ(ŝ)

1− p+ pFπ(ŝ)
Eπ[s|s < ŝ], (5)

where Eπ[·] refers to an expectation taken with respect to the distribution Fπ. The function
η(ŝ, p, π) is the posterior implied by Bayes rule in the event of nondisclosure given a conjec-
tured disclosure threshold ŝ, a probability p of the sender being informed, and prior π.

An increase in the sender’s disclosure threshold has two effects on the DM’s nondisclosure
belief: first, it increases the likelihood that nondisclosure is due to the sender concealing his
signal rather than being uninformed; second, conditional on the sender in fact concealing
his signal, it causes the DM to expect a higher signal. As the DM’s belief conditional on
concealment is lower than the prior (since the sender is using a threshold strategy), these two
effects work in opposite directions. Moreover, the second effect is stronger than the first if and
only if ŝ > η(ŝ, p, π). On the other hand, holding the disclosure threshold fixed, an increase in
the probability that the sender is informed has an unambiguous effect because it increases the
probability that nondisclosure is due to concealed information rather than no information.

Lemma 1. The nondisclosure belief function, η(ŝ, p, π), has the following properties:

1. It is strictly decreasing in ŝ when ŝ < η(ŝ, p, π) and strictly increasing when ŝ > η(ŝ, p, π). Con-
sequently, there is a unique solution to ŝ = η(ŝ, p, π), which is the interior point argminŝ(ŝ, p, π).

2. It is weakly decreasing in p, strictly if ŝ ∈ (s, s).

14



All but the first sentence of part 1 has appeared previously in Acharya, DeMarzo, and Kre-
mer (2011, Proposition 1 and subsequent discussion); see also Demarzo, Kremer, and Skrzy-
pacz (2018, Proposition 1). The strict quasi-convexity of η(·, p, π) in part 1 of the lemma will
prove crucial for comparative statics.

It follows from the foregoing discussion that any equilibrium is fully characterized by
the sender’s disclosure threshold. If this threshold is interior, the sender must be indifferent
between disclosing the threshold signal and concealing it. As sender i’s payoff from disclosing
any signal si is si − c, we obtain the following equilibrium characterization.

Proposition 1. Assume there is only one sender i, and this sender is biased upward.

1. Any equilibrium has a disclosure threshold ŝ0i such that: (i) ŝ0i is interior and η(ŝ0i , pi, π) = ŝ0i−c;
or (ii) ŝ0i = s and π ≤ s− c; or (iii) ŝ0i = s and π ≥ s− c. Conversely, for any ŝ0i satisfying (i),
(ii), or (iii), there is an equilibrium with disclosure threshold ŝ0i .

2. There is a unique equilibrium if there is no message cost or a concealment cost (c ≤ 0). Moreover,
the equilibrium disclosure threshold is interior if there is no message cost (c = 0).

3. There can be multiple equilibria if there is a disclosure cost (c > 0).

Part 1 of Proposition 1 is straightforward; parts 2 and 3 build on Lemma 1. Multiple
equilibria can arise under a disclosure cost because, in the relevant domain (to the right of the
fixed point of η(·, pi, π)), the DM’s nondisclosure belief is increasing in the sender’s disclosure
threshold. In such cases, we will focus on properties of the highest and lowest equilibria
in terms of the disclosure threshold. As an equilibrium with a higher disclosure threshold
is less (Blackwell) informative, these extremal equilibria are respectively the worst and best
equilibria in terms of the DM’s welfare. On the other hand, the ranking of these equilibria is
reversed for the sender’s welfare. To see this, note that because the sender’s preferences are
linear in the DM’s belief and we evaluate welfare at the ex-ante stage, the sender’s welfare
in an equilibrium with threshold ŝ0i is π − pi(1 − Fπ(ŝ

0
i ))c. Thus, when c > 0, the sender’s

welfare is higher when the disclosure threshold is higher: he cannot affect the DM’s belief in
expectation and prefers a lower probability of incurring the disclosure cost.

When c = 0, the sender’s belief if he receives the threshold signal is identical to the DM’s
equilibrium nondisclosure belief. When c ∕= 0 these two beliefs will differ in any equilib-
rium: if c > 0, the sender’s threshold belief, ŝ0i , is higher than the DM’s nondisclosure belief,
η(ŝ0i , pi, π), and the opposite is true when c < 0. This divergence of equilibrium beliefs when
the sender withholds information—which, for brevity, we shall refer to as disagreement—will
prove crucial. Note that when there is disagreement, the sender knows the DM’s belief but not
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vice-versa; consistent with Aumann (1976), the beliefs under disgareement are not common
knowledge in this game with a common prior.

Proposition 1 is stated for an upward biased sender. If the sender is instead downward
biased, he reveals all signals below some threshold. The DM’s nondisclosure belief function
changes from (5) to

1− p

1− p+ p(1− Fπ(ŝ))
π +

p(1− Fπ(ŝ))

1− p+ p(1− Fπ(ŝ))
Eπ[s|s > ŝ].

This expression is single-peaked in ŝ. The condition for an interior equilibrium is that it must
equal ŝ + c, since the sender’s payoff is now −βDM − c. As with an upward biased sender,
equilibrium is unique when c ≤ 0 while there can be multiple equilibria when c > 0. Note that
for any c ∕= 0, the direction of disagreement between the sender and the DM is now reversed:
for a downward biased sender, c > 0 implies the sender’s threshold belief is lower than the
DM’s nondisclosure belief, and conversely for c < 0. Furthermore, a lower threshold now
corresponds to revealing less information.

The following comparative statics hold with an upward biased sender; the modifications
for a downward biased sender are straightforward in light of the above discussion.

Proposition 2. Assume there is only one sender, and this sender is upward biased.

1. A higher probability of being informed leads to more disclosure: the highest and lowest equilib-
rium disclosure thresholds (weakly) decrease.

2. An increase in disclosure cost or a reduction in concealment cost leads to less disclosure: the
highest and lowest equilibrium disclosure thresholds (weakly) increase.

The logic for the first part follows from Lemma 1: given any conjectured threshold, a
higher pi leads to a lower nondisclosure belief, which increases the sender’s gain from disclo-
sure over nondisclosure of any signal. For the case of c = 0, this comparative static has also
been noted by other authors, e.g., Jung and Kwon (1988) and Acharya et al. (2011). The second
part of Proposition 2 is straightforward, as a higher c makes disclosure less attractive. Since
scaling the magnitude of c is equivalent to scaling the agent’s bias parameter bi (cf. expression
(4)), an equivalent interpretation is that an agent with a stronger persuasion motive discloses
more when c > 0 but less when c < 0.

Figure 1 summarizes the results of this subsection.15

15 In the figure, η(·) has slope less than one when it crosses si − c at the highest crossing point. This makes
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si

si − c
si

π si − c '

Figure 1. The single-sender game with an upward biased sender, illustrated with parameters c > 0 > c′ and
p′i > pi. Equilibrium disclosure thresholds are given by the intersections of η(si, ·) and si − c or si − c′.

Although we postpone a formal argument to Subsection 3.3, it is worth observing now
that the comparative statics on disclosure have direct welfare implications. Since the DM al-
ways prefers more disclosure, a lower message cost and/or a higher probability of the sender
being informed (weakly) increases the DM’s welfare in a single-sender setting, subject to an
appropriate comparison of equilibria, in particular, focussing on the extremal equilibria.

3.3. Strategic substitutes and complements

We are now ready to study the two-sender disclosure game. For concreteness, we will sup-
pose that both senders are upward biased; the modifications needed when one or both senders
are downward biased are straightforward.

Lemma 2. Any equilibrium is a threshold equilibrium, i.e., both senders use threshold strategies.

In light of Lemma 2, we focus on threshold strategies. A useful simplification afforded
by the assumption of conditionally independent signals is that the DM’s belief updating is
separable in the senders’ messages. In other words, we can treat it as though the DM first
updates from either sender i’s message just as in a single-sender model, and then uses this

transparent that an increase in pi leads to a reduction in the highest equilibrium threshold. If the slope of η(·)
were larger than one at the highest crossing point, then the highest equilibrium threshold would be s, and a
small increase in pi would not alter this threshold. We also note that the η(·) depicted in the figure is valid: it
can be shown that for any continuously differentiable function, ψ : [s, s] → [0, 1] with ψ(s) = ψ(s) ∈ (0, 1) and
sign[s−ψ(s)] = sign[ψ′(s)] (where ψ′ denotes the derivative), there are parameters of the model—viz., π ∈ (0, 1),
pi ∈ (0, 1), f(s|0), and f(s|1)—such that the nondisclosure belief η(si, p,π) = ψ(si) for all si.
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updated belief as an interim prior to update again from the other sender j’s message without
any further attention to i’s message. Thus, given any conjectured pair of disclosure thresh-
olds, (ŝ1, ŝ2), there are three relevant nondisclosure beliefs for the DM: if only one sender i

discloses his signal si while sender j sends message φ, the DM’s belief is η(ŝj, pj, si); if there is
nondisclosure from both senders, the DM’s belief is η(ŝj, pj, η(ŝi, pi, π)).

Suppose the DM conjectures that sender i is using a disclosure threshold ŝi. As discussed
earlier, if i discloses his signal then his expectation of the DM’s belief—viewed as a random
variable that depends on j’s message—is si, no matter what strategy j is using.16 On the other
hand, if i conceals his signal, then he views the DM as updating from j’s message based on
a prior of η(ŝi, pi, π) that may be different from si. Denote j’s disclosure threshold by ŝj and
any particular message sent by j as mj ∈ S ∪ {φ}. Let β(I; q) denote the posterior belief given
an arbitrary information set I and prior belief q. Then, sender i’s posterior belief about the
state given j’s message and his own signal can be written as β(mj; si). The transformation (2)
implies that i’s expected payoff—equivalently, his expectation of the DM’s posterior belief—
should he conceal his signal is given by

U(si, pi, ŝj, pj) := Eŝj ,pj [T (β(mj; si), η(ŝi, pi, π), si)],

where Eŝj ,pj denotes that the expectation is taken over mj using the distribution of beliefs that
ŝj and pj jointly induce in i about mj (given si).

It is useful to study the “best response” of sender i to any disclosure strategy of sender
j. More precisely, let ŝBR

i (ŝj; pi, pj) represent the equilibrium disclosure threshold in a (hypo-
thetical) game between sender i and the DM when sender j is conjectured to mechanically
adopt disclosure threshold ŝj ; we call this sender i’s best response. The threshold ŝi is a best
response if and only if it satisfies any one of the following:

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

U(ŝi, pi, ŝj, pj) = ŝi − c and ŝi ∈ (s, s); or

U(s, pi, ŝj, pj) ≤ s− c and ŝi = s; or

U(s, pi, ŝj, pj) ≥ s− c and ŝi = s.

(6)

The necessity of condition (6) is clear; sufficiency follows from the argument given in the
proof of Lemma 2. In any equilibrium of the overall game, (s∗1, s∗2), condition (6) must hold for
each sender i with ŝi = s∗i when his opponent uses ŝj = s∗j .

16 The distribution of the DM’s beliefs as a function of j’s message depends both on j’s strategy and the DM’s
conjecture about j’s strategy. As the two must coincide in equilibrium, we bundle them to ease exposition.
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si
si − c

π si − c '

si

Figure 2. The “best response” of sender i to sender j (both upward biased), illustrated with parameters c > 0 >
c′, p′j > pj , and ŝ′j < ŝj < s.

Lemma 3. For any ŝj and pj ,

si = η(si, pi, π) =⇒ U(si, pi, ŝj, pj) = si,

si > η(si, pi, π) =⇒ η(si, pi, π) ≤ U(si, pi, ŝj, pj) < si,

si < η(si, pi, π) =⇒ η(si, pi, π) ≥ U(si, pi, ŝj, pj) > si.

Moreover, both weak inequalities above are strict if and only if ŝj < s.

Lemma 3 is a direct consequence of Theorem 1 (and Remark 1); it reflects that i expects j’s
information disclosure to bring the DM’s posterior belief closer to si, which is i’s belief based
on his own signal. Graphically, this is seen in Figure 2 by comparing the red (short dashed)
curve that depicts U(·) with the black (solid) curve depicting η(·). The former is a rotation of
the latter curve around its fixed point toward the diagonal.

It is evident from Figure 2 that j’s information disclosure has very different consequences
for the best response of i depending on whether there is a cost of disclosure or a cost of
concealment. If c > 0 (disclosure cost) then the smallest and largest solutions to (6) will be
respectively larger than the smallest and largest single-sender disclosure thresholds. If c < 0

(concealment cost, depicted as c′ in Figure 2) the largest solution will be smaller than the
unique single-sender threshold.17 If c = 0, the unique solution is the same as the single-
sender threshold. These contrasting effects are due to the different nature of disagreement

17 Although not seen in the figure, there can be multiple solutions to (6) even when c < 0.
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induced by the sender. When there is a disclosure cost, the threshold type in any single-sender
equilibrium has a higher belief than the DM upon nondisclosure, and hence an expected shift
of the DM’s posterior toward the threshold belief makes concealment more attractive. By
contrast, when there is a concealment cost, the threshold type has a lower belief than the DM
upon nondisclosure, and hence an expected shift of the DM’s posterior toward the threshold
belief makes concealment less attractive.

Theorem 1 implies that these insights are not restricted to comparisons with the single-
sender setting. More generally, the same points hold whenever we compare any (ŝj, pj) with
(ŝ′j, p

′
j) such that ŝ′j ≤ ŝj and p′j ≥ pj . The latter experiment is more informative than the

former because sender j is more likely to be informed and discloses more conditional on
being informed. More precisely, notice that for any message m′

j under (ŝ′j, p′j), one can garble
it to produce message mj as follows:

mj =

󰀻
󰀿

󰀽
φ if m′

j = φ or m′
j ∈ [ŝ′j, ŝj),

m′
j with prob. pj/p′j or φ with prob. 1− pj/p

′
j if m′

j ≥ ŝj.

In each state of the world, the distribution of mj as just constructed is the same as the distri-
bution of sender j’s message under (ŝj, pj). Thus, the message produced under (ŝj, pj) is a
garbling of that produced under (ŝ′j, p′j).

The effect of sender j’s message becoming more informative is depicted in Figure 2 as
a shift from the red (short dashed) curve to the blue (long dashed) curve. Whether sender
i’s best response is to disclose less or more of his own information turns on whether c > 0

or c < 0; the logic is the same as discussed earlier. For any given ŝj , there can be multiple
solutions to (6), hence ŝBR

i (·) is a best-response correspondence. We say that sender i’s best
response increases if the largest and the smallest element of ŝBR

i (·) both increase (weakly); we
say that the best response is strictly greater than some ŝ, written ŝi

BR(·) > ŝ, if the smallest
element of ŝBR

i (·) is strictly greater than ŝ.

Proposition 3. Assume both senders are upward biased. Any sender i’s best-response disclosure
threshold ŝBR

i (ŝj; pi, pj) is decreasing in pi. Furthermore, let ŝ0i denote the unique (resp., smallest)
equilibrium threshold in the single-sender game with i when c ≤ 0 (resp., c > 0).

1. (Independence). If c = 0, then ŝBR
i (ŝj; pi, pj) = ŝ0i is independent of ŝj and pj .

2. (Strategic complements). If c < 0, then (i) ŝBR
i (ŝj; pi, pj) ≤ ŝ0i , with equality if and only if

ŝ0i = s or ŝj = s, and (ii) ŝBR
i (ŝj; pi, pj) increases in ŝj and decreases in pj .

3. (Strategic substitutes). If c > 0, then (i) ŝBR
i (ŝj; pi, pj) ≥ ŝ0i , with equality if and only if ŝ0i = s

20



or ŝj = s, and (ii) ŝBR
i (ŝj; pi, pj) decreases in ŝj and increases in pj .

Since each sender’s best response is monotone, existence of an equilibrium in the two-
sender game follows from Tarski’s fixed point theorem. When c < 0 (concealment cost), the
strategic complementarity in disclosure thresholds implies that there is a largest equilibrium,
which corresponds to the highest equilibrium thresholds for both senders. Each sender’s
message in the largest equilibrium is a garbling of his message in any other equilibrium. It
follows that the largest equilibrium is the least informative and the worst in terms of the DM’s
welfare. Similarly, the smallest equilibrium—that with the lowest equilibrium thresholds for
both senders—is the most informative and the best in terms of the DM’s welfare. On the other
hand, when c > 0 (disclosure cost), the two disclosure thresholds are strategic substitutes.
There is an i-maximal equilibrium that maximizes sender i’s threshold and also minimizes
sender j’s threshold across all equilibria. Likewise, there is a j-maximal equilibrium that mini-
mizes sender i’s threshold and also maximizes sender j’s threshold across all equilibria. These
two equilibria are not ranked in terms of (Blackwell) informativeness and in general cannot
be welfare ranked for the DM; moreover, neither of these equilibria may correspond to either
the best or the worst equilibrium for the DM.18

The following result is derived using standard monotone comparative statics arguments.
Although the formal statement refers to extremal equilibria, the comparative statics also ob-
tain for any equilibrium that is stable in the sense of adaptive dynamics; see Echenique (2002).

Proposition 4. Assume both senders are upward biased. For any i ∈ {1, 2}:

1. If c ≤ 0, then an increase in pi or a decrease in c (a higher concealment cost) weakly lowers the
disclosure thresholds of both senders in both the worst and the best equilibria.

2. If c > 0, then an increase in pi weakly lowers sender i’s disclosure threshold and weakly raises
sender j’s disclosure threshold in both the i-maximal and the j-maximal equilibria. A decrease
in c (a lower disclosure cost) has ambiguous effects on the two senders’ equilibrium disclosure
thresholds in both the i- and j-maximal equilibria.

One can view the single-sender game with i as a two-sender game where sender j is never
informed, i.e., pj = 0. With this in mind, a comparison of the single-sender game and the
two-sender game can be obtained as a corollary to Proposition 3 and Proposition 4.

18 As explained after Proposition 1, the senders’ welfare ranking across equilibria just depends on the prob-
ability of disclosure. When c < 0, both senders’ welfare is lowest in the largest equilibrium and highest in the
smallest equilibrium. When c > 0, sender i’s welfare is highest in the i-maximal equilibrium and lowest in the
j-maximal equilibrium.
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Corollary 3. Assume both senders are upward biased and let ŝ0i denote the unique (resp., smallest)
equilibrium threshold in the single-sender game with i when c ≤ 0 (resp., c > 0).

1. If c = 0, equilibrium in the two-sender game is unique and is equal to (ŝ01, ŝ02). The DM’s welfare
is strictly higher in the two-sender game than in a single-sender game with either sender.

2. If c < 0, every equilibrium in the two-sender game is weakly smaller than (ŝ01, ŝ
0
2), with equality

if and only if ŝ01 = ŝ02 = s. The DM’s welfare is strictly higher in any equilibrium of the two-
sender game than in a single-sender game with either sender.

3. If c > 0, every equilibrium in the two-sender game is weakly larger than (ŝ01, ŝ
0
2), with equality

if and only if ŝ01 = ŝ02 = s. The DM’s welfare in the best equilibrium of the two-sender game may
be higher or lower than in the best equilibrium of the single-sender game with sender i or sender
j alone.

Part 1 of Corollary 3 follows from part 1 of Proposition 3. When c = 0, the best response of
each sender is to use the same disclosure threshold as in the single-sender setting, regardless
of the other sender’s strategy. Since the DM receives two messages instead of just one, and
the probability distribution of these messages remain the same as in the single-sender game,
she is better off when facing both senders than when facing either sender alone.

Part 2 of Corollary 3 can be obtained by considering the worst equilibrium of the two-
sender game. For the case of concealment cost (c < 0), let s∗(pi, pj) represent the vector of dis-
closure thresholds in the worst equilibrium. Proposition 4 implies that s∗i (pi, pj) ≤ s∗i (pi, 0) =

ŝ0i and s∗j(pi, pj) ≤ s∗j(0, pj) = ŝ0j . Thus s∗(pi, pj) is weakly smaller than (ŝ0i , ŝ
0
j), and hence every

equilibrium is weakly smaller than (ŝ0i , ŝ
0
j). It follows that the DM’s welfare is higher than in

the unique equilibrium of the single-sender game with either sender. This higher welfare is
due to both a direct effect of receiving information from an additional sender, and an indirect
effect wherein each sender is now disclosing more than in the single-sender setting.

Finally, for the case of disclosure cost (c > 0), let si∗(pi, pj) represent the i-maximal equi-
librium and sj∗(pi, pj) represent the j-maximal equilibrium. In any equilibrium, i’s thresh-
old is at least as large as sj∗i (pi, pj) ≥ sj∗i (pi, 0) = ŝ0i , where the inequality is by part 2 of
Proposition 4. Analogously, sender j’s threshold in any equilibrium is at least as large as
si∗j (pi, pj) ≥ si∗j (0, pj) = ŝ0j . Thus, both senders are (weakly) less informative than in the
DM’s best equilibrium of the single-sender game. The overall welfare comparison between
the two-sender game and the single-sender game is generally ambiguous. While adding a
second sender has a direct effect of increasing the DM’s information, there is an adverse indi-
rect effect due to the strategic substitution in disclosure of the other sender. It is possible the
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net effect can (strictly) reduce the DM’s welfare—even when the two senders have opposite
biases, which is often thought to particularly promote information disclosure. An example
with a familiar quadratic loss function for the DM is available from the authors on request.

It is appropriate to compare our welfare results with Bhattacharya and Mukherjee (2013).
They study a related model to ours, allowing senders to have single-peaked preferences over
the DM’s posterior, but they assume c = 0 (no message costs) and perfectly correlated signals.
They show that an increase in the probability of a sender being informed can reduce the DM’s
welfare. However, a necessary condition for this to happen in their model is that at least one
sender must have non-monotonic preferences over the DM’s posterior, which in turn implies
(because senders have single-peaked preferences) that the senders share the same ranking
over decisions on a subset of the decision space. In this sense, their result requires that senders
are not in “pure conflict,” whereas our setup allows senders to have diametrically opposing
preferences. More broadly, our results on equilibrium behavior and welfare for c ∕= 0 are
orthogonal and complementary to their treatment of non-monotonic preferences.

The assumption that senders’ signals are conditionally independent is clearly important
for our analytical methodology, as without it we cannot apply Theorem 1. If the signals are
conditionally correlated, then upon nondisclosure sender i and the DM disagree not only on
the probability assessment of the states, but also on the experiment corresponding to sender
j’s message. Relaxing the conditional independence assumption to obtain a general analysis
appears intractable. We illustrate in Supplementary Appendix C.1 how some of our substan-
tive economic conclusions would change under a significantly different information structure:
perfectly correlated signals. Another assumption that is important in applying Theorem 1 is
that each sender has linear preferences. Supplementary Appendix C.2 discuses how our re-
sult under c = 0 extends to non-linear preferences and how our results under c ∕= 0 may or
may not hold under non-linear preferences.

3.4. Many senders

Our results readily generalize to any finite number of senders. Suppose in addition to senders
i and j, there are K other senders, all of whom simultaneously send messages to the DM. Let
m represent the collection of these K messages. Then, sender i’s posterior belief given his
own signal si, sender j’s message mj , and the K other senders’ messages m is β(mj,m; si) =

β(mj; β(m; si)). The DM’s belief given the K senders’ messages m and given nondisclosure
by sender i is η(ŝi, pi, β(m; π)). Thus, the transformation mapping from (2) and the law of
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iterated expectations imply that the expected payoff for sender i from concealing his signal is

E
󰀅
Eŝj ,pj [T (β(mj; β(m; si)), η(ŝi, pi, β(m; π)), β(m; si)) | m]

󰀆
.

The inside conditional expectation (given m) is taken over the distribution of mj , while the
outside expectation is taken over the distribution of m generated from the equilibrium strate-
gies of the K senders. Given any m, the transformation T (·) in the multi-sender case is the
same as that in the two-sender case, with the common prior π replaced by β(m; π). Since our
results hold for any π, the logic of strategic substitution or strategic complementarity contin-
ues to apply in the multi-sender case. In particular, when c < 0, Eŝj ,pj [T (·) | m] increases in ŝj

and decreases in pj for any m. Consequently, sender i’s expected payoff from nondisclosure,
E
󰀅
Eŝj ,pj [T (·) | m]

󰀆
also increases in ŝj and decreases in pj . Thus disclosure by any two senders

are strategic complements. Similarly, in the case of disclosure cost (i.e., c > 0), disclosure by
any two senders are strategic substitutes.

It follows from these observations that when there is either no message cost or a conceal-
ment cost (c ≤ 0), the DM always benefits from having more senders to supply her with
information. When there is disclosure cost (c > 0), on the other hand, an increase in the num-
ber of senders has ambiguous effects on each sender’s disclosure threshold, and can lead to
either an increase or decrease in the DM’s welfare.

3.5. Sequential reporting

The key insight from our analysis of simultaneous disclosure extends to sequential disclosure.
For concreteness, consider a two-sender game in which both senders are upward biased but
disclosure is sequential: sender 1 reports first and his message m1 is made public to both the
DM and sender 2 before sender 2 submits his report. Sender 2 now effectively faces a single-
sender problem where he and the DM share a common prior, say β(m1; π), which is a function
to be determined in equilibrium. Proposition 2 implies that sender 2 will adopt a disclosure
threshold ŝ02 which depends negatively on p2.

Consider now the disclosure decision of sender 1 when the DM conjectures that he is
using a disclosure threshold ŝ1, with corresponding nondisclosure belief η(ŝ1, p1, π). If sender
1 discloses his signal s1, his expectation of the DM’s posterior belief is simply s1. If he chooses
nondisclosure, his expectation is Eŝ02,p2

[T (β(m2; s1), η(ŝ1, p1, π), s1)]. Since sender 2 discloses
more when he is better informed, a higher p2 makes the message m2 more informative, both
directly through a higher probability of sender 2 getting a signal and indirectly through a
lower disclosure threshold ŝ02. IVP implies that the DM’s belief is expected to move away
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from η(ŝ1, p1, π) toward s1. The same logic that establishes Proposition 4 therefore gives the
following result, whose proof is omitted.

Proposition 5. Consider sequential disclosure and assume sender 1, the first mover, is upward biased.
If c > 0 (resp., c < 0), a higher p2 weakly increases (resp., weakly lowers) the equilibrium disclosure
threshold of sender 1 in the 1-maximal and 2-maximal equilibria.

An immediate corollary to Proposition 5 is that, in the case of concealment cost, the first
sender discloses more than he does in a single-sender setting. As a result, the DM is always
better off in a sequential game than with sender 1 alone. On the other hand, a welfare compar-
ison between the sequential game and the simultaneous move game is generally ambiguous.

We also note that if c = 0 the irrelevance result still holds for sender 1: the first sender
adopts the same disclosure threshold under sequential reporting as the disclosure threshold
in the single-sender problem. The disclosure threshold chosen by the second sender, however,
depends on the message sent by sender 1; it may be higher or lower than sender 2’s disclosure
threshold were he the only sender.

4. Costly Signaling

A key feature of the multi-sender disclosure game of Section 3 is that message costs induce
equilibrium disagreement between a sender and the receiver. Since a sender needs to predict
how the receiver reacts to the message from another sender, whose informativeness is itself an
equilibrium object, our IVP result is particularly pertinent because it provides a useful general
tool regarding expectations about beliefs when individuals disagree.

In this section, we illustrate in a costly-signaling application how IVP is useful even when
there may be no disagreement in equilibrium (because of separation); rather, its usefulness
comes from considerations of how disagreement off the equilibrium path would be affected by
new information. The application also illustrates how IVP is applicable even with just one
sender and an exogenous information source.

4.1. The model

We consider a communication game with lying costs, a variation of Kartik (2009). A sender
and a receiver share a common prior belief about a state ω ∈ Ω = {0, 1}. The sender has type
t ∈ [0, 1], which is drawn from a distribution F (·|ω) with corresponding density f(·|ω). As in
Section 3, we assume without loss of generality that t is the sender’s private belief that ω = 1.
For simplicity, we assume f(t|ω) > 0 for all t ∈ (0, 1) and ω. We sometimes refer to t as the
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“truth.” The sender sends a message m ∈ [0, 1] that entails a cost c(m, t), elaborated below.
The receiver forms a belief based on both m and an additional signal s ∈ [0, 1] that, conditional
on the state ω, is drawn independently of t or m from a distribution G(·|ω) with density
g(·|ω). Without loss, we assume that the signal s satisfies the weak monotone likelihood ratio
property. The signal s can either be the receiver’s private information or it can be publicly
observed, but only after the sender has chosen his message m. We assume that no realization
of s perfectly reveals ω. Denote the receiver’s posterior expectation of the state by E[ω|m, s].
The sender’s payoff is linear in the receiver’s expectation; specifically, his payoff is

E[ω|m, s]− c(m, t),

That is, the sender is upward biased and prefers a higher posterior belief in the receiver. (Our
analysis carries over to a downward bias with straightforward modifications.)

The receiver’s belief updating process can be analyzed in two steps: based on the message
m from the sender, she forms an interim belief π(m) about the state (all beliefs about the state
refer to Pr[ω = 1]) and then uses this interim belief to further update from the signal s to form
a posterior belief β(s; π(m)). By Bayes rule,

β(s; π) =
πg(s|1)

πg(s|1) + (1− π)g(s|0) .

The expected payoff of a type-t sender from sending message m is thus

Es|t[β(s; π(m))]− c(m, t),

where Es|t denotes the type-t sender’s expectation over the signal s. An important observation
is that the first term in the above display is strictly increasing in π(m): the sender prefers the
receiver to hold a higher interim belief.

As in Kartik (2009), assume the cost function c(·) is smooth with ∂c(t, t)/∂m = 0 for all t,
i.e., the marginal cost of lying when one is telling the truth is zero. Furthermore, the marginal
cost of sending a higher message is increasing in m and decreasing in t, i.e., ∂2c(m, t)/∂m2 >

0 > ∂2c(m, t)/∂m∂t.

A single-crossing condition. Unlike in a setting without exogenous information for the re-
ceiver, the above cost assumptions do not assure a suitable single-crossing property of the
sender’s indifference curves. The indifference curves of interest are those in the space of the
sender’s message m and the receiver’s interim belief π. These indifference curves are upward-
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sloping for m > t: sending a higher message than the truth requires compensation through a
higher interim belief. The single-crossing property we require is that these indifference curves
are flatter for higher types, meaning that higher types are more willing to send higher mes-
sages (among those above the truth) to induce a given increase in interim belief. It turns out
that this property is assured by the following assumption which we will maintain:

For m > t:
∂2c(m, t)/∂m∂t

∂c(m, t)/∂m
≤ − 1

1− t
. (7)

Condition (7) can be interpreted as saying that higher types have a sufficiently large
marginal lying cost advantage relative to marginal lying costs.19 An example of a lying cost
function that satisfies all our requirements is c(m, t) = (m− t)2.

Lemma 4.
∂c(m, t)/∂m

∂Es|t[β(s; π)]/∂π
strictly decreases in t for t < m.

Another interpretation. Although our model is posed as a communication game, we may
also interpret it as a variation of the standard Spence (1973) signaling model. In this interpre-
tation, a worker possesses a private trait/characteristic, his type t (e.g., intelligence), which is
indicative of whether his job productivity will be high or low, but a potential employer may
also observe a signal s about his productivity (e.g., through the job interview process). The
wage of a worker depends on the employer’s posterior of the worker’s productivity, given
the schooling level m chosen by the worker and the employer’s own signal s. The marginal
cost of schooling is decreasing in the characteristic t (∂2c(m, t)/∂m∂t < 0). The constraint that
m ∈ [0, 1] introduces an upper bound on the signaling level m, but this assumption can be
relaxed. Further, while we suppose that higher-type workers intrinsically prefer acquiring
more education (∂c(t, t)/∂m = 0 for all t), our analysis also applies under the more traditional
assumption that all workers prefer less education (∂c(m, t)/∂m > 0 for all m, t). See the dis-
cussion after Proposition 6. We also note that the model can be reformulated with discrete
types with little change in the subsequent analysis, except for possible mixing by some type.

4.2. Equilibrium and comparative statics

A fully separating outcome is not supportable as a (weak perfect Bayesian) equilibrium, for
reasons similar to those discussed in Kartik (2009). We focus on low types separate and high

19 Similarly, in Daley and Green (2014), a marginal cost advantage of the higher type does not guarantee single
crossing of “belief indifference curves” in the action-interim belief space; rather, single crossing requires the
marginal cost advantage to be sufficiently large.
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types pool—hereafter LSHP—equilibria. That is, we will look for equilibria in which there is a
cutoff t ∈ [0, 1] such that the sender’s (pure) strategy, µ : [0, 1] → [0, 1], satisfies:

1. Riley condition: µ(0) = 0.
2. Separation at bottom: µ(·) is strictly increasing on [0, t).
3. Pooling at top: µ(t) = 1 for all t > t.

This class of equilibria extends the standard least cost separating equilibrium logic to a bounded
signal space. See Kartik (2009) for more detailed discussion and justification of LSHP equilib-
ria, albeit when there is no exogenous information for the receiver.

In an LSHP equilibrium, the receiver can infer the sender’s type if his message m belongs
to the interval [0, µ(t)). For such m, her interim belief upon observing m is simply π(m) =

µ−1(m). If m = 1, the receiver infers that t > t; so π(1) = πP (t) := E[ω|t > t], where the
superscript P is mnemonic for “pooled.” We note that πP (t) ∈ (t, 1).

The equilibrium strategy µ(·) for t < t is determined by the following differential equation:

∂c(µ(t), t)

∂m
µ′(t) =

∂Es|t [β(s; t)]

∂π
, (8)

with boundary condition µ(0) = 0. Equation 8 is obtained from the binding local upward
incentive compatibility constraints. The left-hand-side is the marginal cost for type t of mim-
icking a slightly higher type; the right-hand-side is the marginal benefit, which comes from
inducing a higher interim belief in the receiver. Note that the benefit is affected by the sender’s
belief about the exogenous signal s. Since µ′(t) > 0 and the right-hand-side is strictly positive,
we must have µ(t) > t for all t > 0. Thus, the solution µ(·) to the boundary-value problem
will hit 1 at some interior t, i.e., µ(t) = 1 for some t ∈ (0, 1). The cutoff t ∈ [0, t) must satisfy:

t > 0 =⇒ Es|t
󰀅
β(s; πP (t))

󰀆
− c(1, t) = Es|t [β(s; t)]− c(µ(t), t), (9)

t = 0 =⇒ Es|0
󰀅
β(s; πP (0))

󰀆
− c(1, 0) ≥ Es|0 [β(s; 0)]− c(0, 0). (10)

Condition (9) requires that if t is interior, then type t must be indifferent between sending
message m = 1 (pooling with types above him) and sending message µ(t) (revealing his true
type). In this case µ(·) is discontinuous at t = t. If (10) holds, then every type prefers to pool
than separate, so there is complete pooling.

We have explained why local incentive compatibility in an LSHP equilibrium implies the
differential equation (8) with boundary condition µ(0) = 0, and conditions (9) and (10) for
the cutoff type t. The assumption of (7), which yields the single-crossing property stated in
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Lemma 4, guarantees that these conditions are also sufficient for global incentive compatibil-
ity. We can thus use these conditions to establish:

Lemma 5. There is a unique LSHP equilibrium.

In proving Lemma 5, we assign the off-path belief π(m) = t for m ∈ (µ(t), 1), and show
that no type t has incentive to deviate from µ(t). It can be shown that this off-path belief
satisfies the natural adaptation of the D1 refinement (Cho and Sobel, 1990) to our setting.

Lemma 5 identifies a unique cutoff type t above which pooling occurs. The information
the receiver gets about the sender’s type is fully characterized by the cutoff: a higher cut-
off corresponds to a more (Blackwell) informative equilibrium. The following result will be
crucial in understanding how changes in the receiver’s exogenous information affects the
sender’s equilibrium signaling strategy.

Lemma 6. If s̃ is drawn from a more informative experiment than s, then for any t < 1,

1. ∂Es̃|t [β(s̃; t)] /∂π ≤ ∂Es|t [β(s; t)] /∂π.

2. Es̃|t
󰀅
β(s̃; πP (t))

󰀆
≤ Es|t

󰀅
β(s; πP (t))

󰀆
.

Roughly, Lemma 6 says that the sender’s gain from inducing a higher interim belief than
the truth is lower when the exogenous signal is more informative. For part 1 of the lemma,
note that for any type t < 1 and any small ε > 0, inducing an interim belief t + ε creates
disagreement: type t views this interim belief as higher than the truth. IVP implies that t
expects a more informative exogenous signal to correct this interim belief more, so that t’s
expected utility gain from inducing that interim belief is lower under a more informative
experiment. More precisely, when s̃ is more informative than s, Theorem 1 implies that

Es̃|t [β(s̃; t+ ε)]− Es̃|t [β(s̃; t)] ≤ Es|t [β(s; t+ ε)]− Es|t [β(s; t)] ,

where we have used Es̃|t[β(s̃; t)] = Es|t[β(s; t)] = t. Dividing both sides of the above inequality
by ε and taking ε → 0 proves part 1 of Lemma 6. Part 2 of the lemma also follows from
Theorem 1, since πP (t) > t.

Part 1 of Lemma 6 implies that a more informative exogenous signal reduces the right-
hand side of Equation 8. Since each type expects a smaller marginal benefit from inducing
a higher belief in the receiver, the solution µ to the differential equation (8) with boundary
condution µ(0) = 0 is pointwise lower. Furthermore, part 2 of Lemma 6 implies that a more
informative signal reduces the left-hand side of the consequent in (9), while the right-hand
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side is increased because µ(t) is lower. Thus, type t of the sender now strictly prefers revealing
his type to pooling with higher types. Consequently, the equilibrium cutoff type increases
when the receiver has access to a more informative signal. In summary:

Proposition 6. Let s̃ be drawn from a more informative experiment than s. The LSHP equilibrium is
more informative under s̃ than s: ts̃ ≥ ts. Furthermore, in the LSHP equilibrium, every type bears a
lower signaling cost under s̃ than under s.

Since Proposition 6 applies to arbitrary experiments, we can readily adapt the foregoing
analysis to study a multi-sender signaling game in which each sender gets a conditionally
independent signal about the state. For concreteness, suppose there are two upward biased
senders, and each adopts an LSHP strategy.20 Then, from one sender’s perspective, the other
sender’s message is an endogenous experiment. Furthermore, the informativeness of that
experiment is increasing in the other sender’s cutoff. The logic of Proposition 6 can be used
to deduce that the two senders’ cutoffs are strategic complements: each sender reveals more
and bears a lower signaling cost when the other sender reveals more. If any sender’s cost—
relative to the persuasion incentive—increases in a suitable sense (for example, if sender i’s
cost is kic(m, t) and ki > 0 increases) then all senders become more informative.

It bears emphasis that the second part of Proposition 6 holds even when there is no pooling
at the top. Consider, for example, a canonical model à la Spence (1973) with an unbounded
signal space, m ∈ [0,∞), and differentiable cost function kC(m, t) where k > 0, ∂C/∂m > 0,
∂2C/∂m2 > 0, and ∂2C/∂m∂t < 0. In this setting, (the analog of) the familiar least cost separat-
ing equilibrium is given by the solution to Equation 8 with the boundary condition µ(0) = 0.
Given condition (7), Lemma 6 (in particular, part 1) still holds: the benefit from mimicking
a marginally higher type is lower when the receiver has access to better information. The
right-hand side of Equation 8 is thus lower for each type. Consequently, there will still be full
separation, but every type bears a lower signaling cost.

Although it is intuitive that more informative exogenous information reduces the sender’s
gain from misrepresenting his type, and therefore reduces the sender’s incentive to incur mis-
representation costs, we emphasize that Proposition 6 relies on the logic of IVP. Supplemen-
tary Appendix C.3 contains examples showing that if the sender’s payoff is not linear in the
receiver’s belief, or if the receiver’s exogenous information is not from an MLRP-experiment
(in a multi-state extension of this section’s model), then the sender’s marginal benefit from

20 Any combination of biases can be accommodated, so long as one focus on appropriate equilibria; in partic-
ular, a downward biased sender deflates rather than inflates his messages.
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mimicking a higher type can be higher when the receiver has access to more information,
which leads to higher equilibrium signaling costs when the receiver is better informed.

Frank (1985, Section III) also suggests that better exogenous information can reduce dis-
sipative signaling. Weiss (1983) studies when exogenous information allows for separating
equilibria even when there is no heterogeneity in the direct costs of signaling; his focus is
not comparative statics in the quality of exogenous information. Daley and Green (2014) em-
phasize the stability of non-separating equilibria when the marginal cost advantage of higher
types is insufficiently large relative to the accuracy of exogenous information; this leads to a
“double crossing” of appropriate indifference curves, contrary to our single-crossing assump-
tion (cf. fn. 19). Truyts (2015) shows that under noisy signaling—rather than the noiseless case
more commonly studied, including here—better exogenous information can exacerbate dis-
sipative signaling.

5. Conclusion

To recap, this paper makes three contributions. First, it provides a fundamental result that
“information validates the prior” (IVP, Theorem 2): in an appropriate sense, Anne expects
more information to bring Bob’s posterior closer to Anne’s prior. This result can also be in-
terpreted in terms of their expected disagreement (Corollary 2). Second, it demonstrates how
this statistical result concerning agents with heterogenous priors can be fruitfully applied to
familiar common-prior environments with asymmetric information—specifically, to disclo-
sure and costly signaling games (Section 3 and Section 4, respectively). Third, it offers new
substantive insights into these economic problems. For example, in the disclosure context,
the nature of message costs are critical: disclosure costs induce strategic substitutes between
senders’ disclosure; concealments costs induce strategic complements. In the former scenario,
but not the latter, a receiver can be worse off when there are more senders.

While we have focussed on two applications with asymmetric information in this paper,
we believe IVP is instructive more broadly. Consider sender-receiver persuasion via informa-
tion design (Kamenica and Gentzkow, 2011). Alonso and Câmara (2016) develop an elegant
general analysis under heterogeneous priors; see also Galperti (2018). When the sender’s
preferences are state-independent and concave in the receiver’s expectation of the state, there
is no scope for beneficial persuasion under common priors. Alonso and Câmara (2016, Sec-
tion 4.3) show that this observation does not hold generically with heterogenous priors when
there are more than two states. Our Theorem 2 delivers additional insights. For instance,
if the priors are likelihood-ratio ordered and only MLRP-experiments are available, then the
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sender does not benefit from persuasion if the receiver’s prior is favorable in the sense that
the receiver’s prior dominates (resp., is dominated by) the sender’s when the sender’s utility
is increasing (resp., decreasing) in the receiver’s posterior expectation.

We close by highlighting that IVP only speaks to the ex-ante expectation of the posterior—
more precisely, certain statistics of the posterior, such as the posterior mean. The ex-ante
expectation is, of course, a salient property, and also relevant in various economic problems.
Nevertheless, it does restrict the direct applicability of IVP; in particular, our applications
assumed certain linearity of utility functions. Future research might explore how more in-
formation affects other statistics of one agent’s ex-ante belief about another agent’s posterior,
and how to deploy such results.
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Appendices

A. Proofs

Proof of Theorem 1. This is a special case of Theorem 2 below, because with two states, any
pair of priors are likelihood-ratio ordered and any experiment is an MLRP-experiment.

Proof of Theorem 2. For simplicity, we write the proof assuming that experiments have sig-
nal distributions with (Radon-Nikodym) densities—subsuming probability mass functions—
in each state.

Suppose M(βB) ≥ M(βA). Since the priors are likelihood-ratio ordered, the previous
inequality is equivalent to βB dominating βA in the likelihood-ratio order. Let p(s|ω) represent
the density function of s in state ω under experiment E , and let p̃(s̃|ω) represent the density
function under experiment Ẽ . By the definition of garbling, there exists a non-negative kernel
density q(s̃|s) with

󰁕
s̃
q(s̃|s) ds̃ = 1 for all s, such that for any state ω,

p̃(s̃|ω) =
󰁝

s

q(s̃|s)p(s|ω) ds.

In the following, for k = A,B, we let pk(s) :=
󰁓

ω p(s|ω)βk(ω) and p̃k(s̃) :=
󰁓

ω p̃(s̃|ω)βk(ω).
The posterior density function over S conditional on s̃ and with prior belief βk is given by

q̂k(s|s̃) =
q(s̃|s)pk(s)

p̃k(s̃)
.

Therefore,
q̂B(s|s̃)
q̂A(s|s̃)

=
p̃A(s̃)

p̃B(s̃)

pB(s)

pA(s)
.

Because E is an MLRP-experiment and βB likelihood-ratio dominates βA, the ratio pB(s)/pA(s)

increases in s. Therefore, for any s̃, q̂B(·|s̃) likelihood-ratio dominates q̂A(·|s̃).

Since M (βB(s)) increases in s, the likelihood-ratio dominance of q̂B(·|s̃) over q̂A(·|s̃) im-
plies

EE
B [M (βB(s)) | s̃] ≥ EE

A [M (βB(s)) | s̃] . (11)

For any realization s̃ from experiment Ẽ ,

EE
B [M (βB(s)) | s̃] = M (βB(s̃)) , (12)

because, by the law of iterated expectation, B’s expectation of any linear function of B’s pos-
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terior generated by experiment E is B’s belief prior to that experiment. Combining (11) and
(12) and taking the expectation over s̃ (using the prior βA) gives

EẼ
A [M (βB(s̃))] ≥ EẼ

A

󰀅
EE

A [M (βB(s)) | s̃]
󰀆

=

󰁝

s̃

󰀕󰁝

s

M (βB(s)) q̂A(s|s̃) ds
󰀖
p̃A(s̃) ds̃

=

󰁝

s

M (βB(s))

󰀕󰁝

s̃

q(s̃|s)
p̃A(s̃)

p̃A(s̃) ds̃

󰀖
pA(s) ds

= EE
A [M (βB(s))] .

Given that the priors are likelihood-ratio ordered, the above inequality would be reversed if
and only if M(βA) ≥ M(βB).

Finally, any experiment E is a garbling of the fully informative experiment F that reveals
the true state ω, whereas the uninformative experiment U that provides no information is a
garbling of E . It holds that

EF
A [M (βB(s))] = M

󰀃
βA

󰀄
and EU

A [M (βB(s))] = M
󰀃
βB

󰀄
.

For M(βB) ≥ M(βA), the experiments F and U respectively provide the lower bound and the
upper bound in the second part of the theorem; for M(βB) ≤ M(βA), the experiment F gives
the upper bound and U gives the lower bound.

Proof of Lemma 1. Partially differentiating (5) with respect to the first argument yields

∂η(ŝ, p, π)

∂ŝ
=

−p(1− p)fπ(ŝ)

(1− p+ pFπ(ŝ))2
(π − Eπ[s|s < ŝ]) +

pFπ(ŝ)

1− p+ pFπ(ŝ)

fπ(ŝ)

Fπ(ŝ)
(ŝ− Eπ[s|s < ŝ])

=
pfπ(ŝ)

1− p+ pFπ(ŝ)

󰀕
−(1− p)

1− p+ pFπ(ŝ)
(π − Eπ[s|s < ŝ]) + (ŝ− Eπ[s|s < ŝ])

󰀖

=
pfπ(ŝ)

1− p+ pFπ(ŝ)
(ŝ− η(ŝ, p, π)).

Hence, sign [∂η(ŝ, p, π)/∂ŝ] = sign [ŝ− η(ŝ, p, π)]. Part 1 of the lemma follows from the obser-
vation that for any p and π, η(s, p, π) = η(s, p, π) = π.

Partially differentiating with respect to the second argument and simplifying yields

∂η(ŝ, p, π)

∂p
=

Fπ(ŝ) (Eπ[s|s < ŝ]− π)

(1− p+ pFπ(ŝ))2
,
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which proves part 2 of the lemma because Eπ[s|s < ŝ] < π if and only if ŝ < s, and Fπ(ŝ) > 0

if and only if ŝ > s.

Proof of Proposition 1. The first part is straightforward and omitted. The second part fol-
lows from the fact that for any p ∈ (0, 1) and π, η(·, p, π) is strictly decreasing on the domain
[0, ŝ], where ŝ is the fixed point of η(·, p, π), which is interior (Lemma 1). The third part fol-
lows because parameters can be chosen so that c > 0 and there are multiple solutions in s to
s − c = η(s, pi, π), as depicted in Figure 1. This can be seen by fixing all parameters except c
and pi and then considering pi → 1 with a suitable choice of c; details are available from the
authors on request.

Proof of Proposition 2. Fix any pi > p̃i and let ŝ0i and s̃0i denote the corresponding highest
equilibrium disclosure thresholds. Suppose by way of contradiction that ŝ0i > s̃0i . Since s̃0i is
the highest equilibrium threshold at p̃i, it follows that for any ŝ > s̃0i , η(ŝ, p̃i, π) < ŝ−c. But the
fact that η(ŝ, p, π) is weakly decreasing in p (Lemma 1) implies that for any ŝ > s̃0i , we have
η(ŝ, pi, π) < ŝ− c, which implies that ŝ0i ≤ s̃0i , a contradiction. A similar argument can be used
to establish the result for the lowest equilibrium threshold. We omit the proof of the second
part as it follows the same logic as the first part.

Proof of Lemma 2. Fix any equilibrium and any sender i and sender j ∕= i. It suffices to
show that the difference in the expected payoff for i from disclosing versus concealing is
strictly increasing in si. Denote the expected payoff from concealing as E[βDM(mj,mi = φ)],
where βDM(mj,mi = φ) denotes the DM’s equilibrium belief following any message mj and
nondisclosure by i, and the expectation is taken over mj given i’s beliefs under si. Because mj

is uncorrelated with si conditional on the state, and i’s belief about the state given si is just si,

E[βDM(mj,mi = φ)] = siE[βDM(mj,mi = φ)|ω = 1] + (1− si)E[βDM(mj,mi = φ)|ω = 0].

The derivative of the right-hand-side of the above equation with respect to si is strictly less
than one because E[βDM(mj,mi = φ)|ω = 1] < 1, as beliefs lie in [0, 1] and mj cannot perfectly
reveal the state. Therefore, the payoff difference, E[βDM(mj,mi = φ)] − (si − c) is single-
crossing in si.

Proof of Lemma 3. For any pj , pi, ŝi, and si, U(si, pi, ŝj, pj) is i’s expectation of the DM’s belief
(viewed as random variable whose realization depends on j’s message) under a prior si for i
and η(si, pi, π) for the DM. It follows immediately from Theorem 1 that:
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1. si = η(si, pi, π) =⇒ U(si, pi, ŝj, pj) = si,

2. si > η(si, pi, π) =⇒ η(si, pi, π) ≤ U(si, pi, ŝj, pj) ≤ si,

3. si < η(si, pi, π) =⇒ η(si, pi, π) ≥ U(si, pi, ŝj, pj) ≥ si.

Because pj < 1, the last inequalities in items 2 and 3 above are in fact strict, as an equality
in either case requires j’s message to be fully informative of the state (cf. Remark 1). Finally,
the other inequalities in items 2 and 3 are also strict if and only if ŝj < s, as j’s message is
uninformative if and only if ŝj = s.

Proof of Proposition 3. The transformation T (βA, βB, βA) defined in (2) is increasing in βB.
Lemma 1 shows that η(ŝi, pi, π) is decreasing in pi. Hence, sender i’s payoff from concealing
signal si given a correct conjecture by the DM,

U(si, pi, ŝj, pj) = Eŝj ,pj [T (β(mj; si), η(si, pi, π), si)],

decreases in pi for any signal si, while his payoff from disclosure does not depend on pi.
Following the same argument as in the proof of Proposition 2, the largest and smallest best-
response disclosure thresholds must decrease in pi.

Let ŝ0i be the smallest equilibrium threshold in the single-sender with i; recall that this is
the unique equilibrium threshold if c ≤ 0.

Consider first c = 0. It follows from Part 1 of Lemma 3 that sender i is indifferent be-
tween nondisclosure and disclosure when his signal is ŝ0i ; hence, ŝ0i ∈ ŝBR

i (ŝj; pi, pj). Next,
we claim there exists no other best-response disclosure threshold. Suppose, to contradiction,
that ŝ′ > ŝ0i and ŝ′ ∈ ŝBR

i (ŝj; pi, pj). By Lemma 1, η(ŝ′, pi, π) < ŝ′. Lemma 3 then implies
that U(ŝ′, pi, ŝj, pj) < ŝ′. Therefore, sender i strictly prefers disclosure to nondisclosure when
his signal is ŝ′, contradicting ŝ′ ∈ ŝBR

i (ŝj; pi, pj). A similar argument establishes that ŝ′ < ŝ0i

implies ŝ′ /∈ ŝBR
i (ŝj; pi, pj).

Now consider c < 0. If si > ŝ0i , then si − c > η(si, pi, π). Since Lemma 3 implies that
U(si, pi, ŝj, pj) ≤ max{si, η(si, pi, π)}, it follows that U(si, pi, ŝj, pj) < si − c, and hence si /∈
ŝBR
i (ŝj; pi, pj). Furthermore, if ŝj < s, then ŝ0i < η(ŝ0i , pi, π) and Lemma 3 together imply
U(ŝ0i , pi, ŝj, pj) > η(ŝ0i , pi, π), and hence ŝ0i ∈ ŝBR

i (ŝj; pi, pj) if and only if ŝ0i = s. Conversely,
it is obvious that ŝ0i = ŝBR

i (ŝj; pi, pj) if ŝj = s, because sender j’s message is uninformative.
This proves part (i) of the result for c < 0. To prove part (ii), we first note from part (i) that
if si ∈ ŝBR

i (ŝj; pi, pj), then si ≤ ŝ0i and hence η(si, pi, π) > si. Theorem 1 then implies that any
garbling of sender j’s message decreases U(si, pi, ŝj, pj). Thus, an increase in ŝj or a decrease
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in pj—both of which represent garblings—lowers sender i’s nondisclosure payoff without
affecting his disclosure payoff at signal si. Following the same argument as in the proof of
Proposition 2, the largest and smallest best-response disclosure thresholds must increase.

We omit the proof for c > 0 as it follows a symmetric argument to that for c < 0; the
only point to note is that here the definition of ŝ0i as the smallest equilibrium threshold in the
single-sender game is used to ensure that si < ŝ0i implies si − c < η(si, pi, π).

Proof of Proposition 4. Consider first the case c ≤ 0. For each sender i, define the function

wi(ŝi, ŝj; pi, pj) := inf{ŝi | U(ŝi, pi, ŝj, pj) ≤ ŝi − c}.

That is, wi(·) gives the smallest element of ŝBR
i (ŝj; pi, pj). Let w = (wi, wj), and define

s∗(pi, pj) := inf{(ŝi, ŝj) | w(ŝi, ŝj; pi, pj) ≤ (ŝi, ŝj)}.

By Proposition 3, w(·; pi, pj) is monotone increasing. Hence, s∗(pi, pj) is its smallest fixed
point. It remains to be shown that s∗(pi, pj) is the smallest fixed point of the best-response
correspondence (ŝBR

i , ŝBR
j ). Let s be any other fixed point of the correspondence. Since w is

monotone, we have w(s∗ ∧ s) ≤ w(s) ≤ s and w(s∗ ∧ s) ≤ w(s∗) ≤ s∗. (We follow the notation
that s ∧ s′ ≡ (min{s1, s′1},min{s2, s′2}).) Thus, w(s∗ ∧ s) ≤ s∗ ∧ s. By the definition of s∗, this in
turn implies that s∗ ≤ s∗ ∧ s, which is possible only if s∗ ≤ s, as required. Thus, this argument
establishes that the smallest fixed point of the minimal best response is also the smallest fixed
point among all best responses. In other words, s∗(pi, pj) is the smallest equilibrium. Proposi-
tion 3 establishes that w is decreasing in pi. It follows from standard monotone comparative
statics that the smallest fixed point of w decreases in pi. It is also straightforward to see from
the definition of wi that w is increasing in c. Hence the best equilibrium increases in c. A
parallel argument shows that the worst equilibrium also decreases in pi and increases in c.

For the case c > 0, we keep the sign of ŝi but flip the sign of ŝj in the definition of w so that
it is monotone in (ŝi,−ŝj). The smallest fixed point of w then corresponds to the j-maximal
equilibrium. By Proposition 3, a higher pi decreases sender i’s best response but increases
sender j’s best response. Hence, in a j-maximal equilibrium, (ŝi,−ŝj) is decreasing in pi. The
same conclusion holds for an i-maximal equilibrium.

Proof of Lemma 4. The sender’s marginal rate of substitution between m and π is given by

∂c(m, t)/∂m

∂Es|t[β(s; π)]/∂π
= π(1− π)

∂c(m, t)/∂m

Es|t[β(s; π)(1− β(s; π))]
.
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For t < m, the marginal rate of substitution is strictly decreasing in sender’s type t if

∂2c(m, t)/∂m∂t

∂c(m, t)/∂m
<

Es|1[β(s; π)(1− β(s; π))]− Es|0[β(s; π)(1− β(s; π))]

tEs|1[β(s; π)(1− β(s; π))] + (1− t)Es|0[β(s; π)(1− β(s; π))]
.

Since Es|1[β(s; π)(1−β(s; π))] > 0, the right-hand side of the above inequality is strictly greater
than

0− Es|0[β(s; π)(1− β(s; π))]

0 + (1− t)Es|0[β(s; π)(1− β(s; π))]
= − 1

1− t
.

So, if condition (7) holds, the marginal rate of substitution strictly decreases in t for t < m.

Proof of Lemma 5. For brevity, we denote α(π, t) := Es|t[β(s; π)].

We first establish uniqueness of the cutoff t. Suppose, by way of contradiction, that t < t′

are both equilibrium cutoffs. From (9) and (10),

α(πP (t), t)− α(t, t) ≥ c(1, t)− c(µ(t), t).

Since πP (t′) > πP (t), we obtain

α(πP (t′), t)− α(t, t) > c(1, t)− c(µ(t), t).

This implies that type t would deviate to m = 1 from the t′ equilibrium, a contradiction.

Next, we show that no type has incentive to deviate from µ(·).

Case (i). t ≤ t. For any t′ ∈ (t, t], Equation 8 and Lemma 4 imply

µ′(t′) =
∂α(t′, t′)/∂π

∂c(µ(t′), t′)/∂m
>

∂α(t′, t)/∂π

∂c(µ(t′), t)/∂m
.

The inequality is due to Lemma 4, which applies because µ(t′) > t′ > t. The above inequality
can be written as

∂α(t′, t)

∂π
− ∂c(µ(t′), t)

∂m
µ′(t′) < 0.

This inequality is true for any t′ ∈ (t, t]. For any t̂ in the same interval, integrating the inequal-
ity over t′ from t to t̂ gives

α(t̂, t)− c(µ(t̂), t) < α(t, t)− c(µ(t), t).
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Thus, type t has no incentive to deviate upward to mimic type t̂ ∈ (t, t].

Further, by (9) and Lemma 4, for any t < t,

α(πP (t), t)− c(1, t) = α(t, t)− c(µ(t), t) =⇒ α(πP (t), t)− c(1, t) < α(t, t)− c(µ(t), t).

Since we have already shown that type t < t has no incentive to mimic type t, type t has no
incentive to mimic types higher than t by deviating to m = 1 either.

Now, let t′ < t be such that t′ ≥ µ−1(t). Then, an analogous argument establishes that

∂α(t′, t)

∂π
− ∂c(µ(t′), t)

∂m
µ′(t′) > 0

for any t′ ∈ [µ−1(t), t). We can apply Lemma 4 for t′ > µ−1(t) because µ(t′) > t. The above
also holds for t′ = µ−1(t) because ∂c(t,t)

∂m
= 0. For any t̂ in the same interval, integrating the

inequality over t′ from t̂ to t gives

α(t, t)− c(µ(t), t) > α(t̂, t)− c(µ(t̂), t).

Thus, type t ≤ t has no incentive to deviate downward to mimic type t̂ ∈ [µ−1(t), t).

For any t̂ < µ−1(t), we have α(t̂, t) < α(µ−1(t), t) and c(µ(t̂), t) > c(µ(µ−1(t)), t) = 0. Since
type t has no incentive to mimic type µ−1(t), type t has no incentive to mimic type t̂ < µ−1(t)

either.

Case (ii). t ∈ (t, µ(t)]. By (9) and Lemma 4, for any t > t,

α(πP (t), t)− c(1, t) = α(t, t)− c(µ(t), t) =⇒ α(πP (t), t)− c(1, t) > α(t, t)− c(µ(t), t).

Thus, type t strictly prefers m = 1 to m = µ(t).

Take any t̂ ∈ [µ−1(t), t). In case (i), we have shown that type t has no incentive to deviate
downward to mimic t̂:

α(t, t)− c(µ(t), t) > α(t̂, t)− c(µ(t̂), t).

By condition (7), this inequality implies

α(t, t)− c(µ(t), t) > α(t̂, t)− c(µ(t̂), t)

for t ∈ (t, µ(t̂)]. Since type t has no incentive to deviate to mimic type t, type t has no incentive
to mimic type t̂ ∈ [µ−1(t), t) either.
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The same argument as in case (i) shows that type t ∈ (t, µ(t)] has no incentive to deviate
to any type lower than µ−1(t).

Case (iii). t > µ(t). Let π̂ > t be the interim belief such that type t is indifferent between
m = t and m = 1:

α(πP (t), t)− c(1, t) = α(π̂, t)− c(t, t).

Since t > µ(t) > t,
α(πP (t), t)− c(1, t) > α(πP (t), t)− c(1, t)

By condition (7), this implies

α(πP (t), t)− c(1, t) > α(π̂, t)− c(t, t) > α(t, t)− c(µ(t), t).

Thus, type t strictly prefers m = 1 to m = µ(t). The same argument as in case (i) shows that
type t has no incentive to deviate to types lower than t either.

Finally, it remains to be shown that no type has an incentive to deviate to some m ∈
(µ(t), 1) which is not used in equilibrium. We assign the off-equilibrium belief π(m) = t for
such m. In cases (i) and (ii), we show that type t ≤ µ(t) has no incentive to deviate to mimic
t. Since c(µ(t), t) < c(m, t) for off-equilibrium m, this type has no incentive to deviate to m

either. In case (iii), we show that type t > µ(t) prefers belief-message pair (πP (t), 1) to (π̂, t),
where π̂ > t. This type must prefer (π̂, t) to (t,m) because c(t, t) ≤ c(m, t).

Proof of Proposition 6. We first show that the function µ(t), defined by Equation 8, is point-
wise (weakly) decreasing in the informativeness of the experiment.

If we show that µ(t) decreases pointwise when the right-hand-side of Equation 8 decreases
for all t, the result then follows from Lemma 6. Accordingly, let µ̃(t) and µ(t) be two solutions
to Equation 8, with µ̃(0) = µ(0) = 0, where µ̃ solves Equation 8 with a pointwise lower right-
hand-side. (These are defined over some respective domains [0, t̃] and [0, t]. The argument
establishes that t̃ ≥ t.) For any t > 0, if µ̃(t) = µ(t) then µ′(t) ≥ µ̃′(t) > 0. This implies that at
any touching point, µ must touch µ̃ from below. Consequently, by continuity,

µ(t′) ≥ µ̃(t′) for t′ > 0 =⇒ µ(t) ≥ µ̃(t) for all t ≥ t′.

Now suppose, by way of contradiction, that for some t̂ > 0, µ̃(t̂) > µ(t̂). Then, it must be
the case that µ̃(t) > µ(t) for all t ∈ (0, t̂). Since ∂2c/∂m2 > 0 and µ̃ corresponds to a lower
right-hand-side of Equation 8, it follows from Equation 8 that µ̃′(t) < µ′(t) for all t ∈ (0, t̂).
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But then

µ̃(t̂)− µ(t̂) =

󰁝 t̂

0

[µ̃′(t)− µ′(t)] dt < 0,

a contradiction.

Next, we prove that ts̃ ≥ ts. The result is trivial if ts = 0, so assume ts > 0. Under the more
informative experiment s̃ and the corresponding function µ̃, type ts will (weakly) prefer to
separate than pool with the top. There are two reasons, both working in the same direction:
(i) separation cost is lower with µ̃ than with µ (as shown above), i.e., the right-hand-side of
the consequent in (9) increases; and (ii) the benefit of pooling is lower (part 2 of Lemma 6), i.e.,
the left-hand-side of the consequent in (9) decreases. Since ts̃ ≥ ts ≥ ts, and ts̃ strictly prefers
to pool with [ts̃, 1] rather than separate (same message cost, better inference), by continuity
there will be some cutoff ts̃ ≥ ts, and this cutoff is unique by Lemma 5.

The second statement of the proposition follows because all types are sending lower sig-
nals in the new equilibrium (and each type t’s signal is larger than t in both equilibria).

B. Discussion of Theorem 2

This appendix establishes that the conclusion of Theorem 2—viz., that agent i expects agent
j’s posterior to be closer to i’s prior, in the sense of their M(·) statistics, under a more infor-
mative experiment—can fail with a non-MLRP experiment (Example 1) or if the priors are
ordered by first-order stochastic dominance (FOSD) rather than by likelihood ratio (Exam-
ple 2). In both examples, M(·) denotes the simple expectation operator, i.e., we take h(ω) = ω.

Example 1. Let Θ = {0, 1, 2}. Consider the following experiment E with a binary signal space
{sl, sh}:

󰀥
Pr(sl|θ = 0) Pr(sl|θ = 1) Pr(sl|θ = 2)

Pr(sh|θ = 0) Pr(sh|θ = 1) Pr(sh|θ = 2)

󰀦
=

󰀥
0 1 0

1 0 1

󰀦
.

This experiment does not satisfy MLRP. Consider the priors βB = (0, 0.2, 0.8) and βA =

(0.9, 0.1, 0); the former likelihood-ratio dominates the latter. A direct calculation gives

M(βA) = 0.1 < M(βB) = 1.8 < EE
A[M(βB(·))] = 1.9,

contrary to Theorem 2’s conclusion that EE
A[M(βB(·))] ∈ [M(βA),M(βB)] when M(βA) <

M(βB). □
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The priors in Example 1 violate our maintained assumption of full support, but the exam-
ple would go through (with more elaborate calculations) if we replaced βB(0) and βA(2) with
a small ε > 0 instead of 0. This example is similar to Alonso and Câmara (2016, pp. 674–675),
who use their example to illustrate how a “skeptic” can design information to persuade a
“believer.”

Example 2. Let Θ = {0, 1, 8}. Consider the following MLRP experiment E with signal space
{sl, sm, sh}: 󰀵

󰀹󰀷
Pr(sl|θ = 0) Pr(sl|θ = 1) Pr(sl|θ = 8)

Pr(sm|θ = 0) Pr(sm|θ = 1) Pr(sm|θ = 8)

Pr(sh|θ = 0) Pr(sh|θ = 1) Pr(sh|θ = 8)

󰀶

󰀺󰀸 =

󰀵

󰀹󰀷

1
2

0 0
1
4

1
2

0
1
4

1
2

1

󰀶

󰀺󰀸 .

Consider the priors βB = (2/3, 0, 1/3) and βA = (0, 2/3, 1/3). The prior βA dominates βB in
the sense of FOSD, but not in likelihood ratio. Direct calculations establish the following:

1. The posteriors afters signal sh, βB(·|sh) and βA(·|sh), are not ordered by FOSD, because
βA(0|sh) = 0 < βB(0|sh) = 1/3 while

󰁓
θ∈{0,1}

βA(θ|sh) = 1/2 >
󰁓

θ∈{0,1}
βB(θ|sh) = 1/3.

2. M(βB) = 8/3 < M(βA) = 10/3 < EE
A[M(βB(·))] = 32/9.

The first point shows that posteriors may not be ranked by FOSD even when priors are and
the experiment satisfies MLRP. The second point is contrary to Theorem 2’s conclusion that
EE

A[M(βB(·))] ∈ [M(βB),M(βA)] when M(βB) < M(βA). □

The priors in Example 2 violate our maintained assumption of full support, but the ex-
ample would go through (with more elaborate calculations) if we replaced βB(1) and βA(0)

with a small ε > 0 instead of 0. This example implies that even when priors are first-
order-stochastically ordered, a sender with a linear—or, by continuity, even strictly convex—
utility function over the receiver’s posterior mean could prefer persuading a “skeptic” via a
partially-revealing experiment than a fully-revealing one. Theorem 2 implies that this can-
not arise under likelihood-ratio ordered priors, as also noted by Alonso and Câmara (2016,
Proposition 6.1).
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C. Supplementary Appendix (Not for Publication)

The first two parts of this supplementary appendix provide additional results and discussion
for the disclosure application in Section 3. The final part deals with the role of linearity and
MLRP in the signaling application of Section 4.

C.1. Perfectly correlated signals in the disclosure application

Consider the extreme case where informed senders’ signals are perfectly correlated and for
simplicity, c = 0. In other words, there is a single signal s drawn from a distribution F (s|ω),
and each sender i is independently either informed of s with probability pi or remains unin-
formed. This setting is effectively identical to the “extreme agenda” case of Bhattacharya and
Mukherjee (2013).21 If both senders are biased in the same direction then this model can be
mapped to a single-sender problem where the sender is informed with probability pi+pj−pipj ,
which is larger than max{pi, pj}.22 Proposition 2 then implies that each sender discloses more
when there is an additional sender; hence, the DM is always better off with two senders than
one.

It is instructive to consider why the irrelevance result no longer holds. For simplicity, sup-
pose both senders are upward biased and symmetric (pi = pj = p). Let ŝ0 denote the common
single-sender threshold, so that the nondisclosure belief satisfies η(ŝ0, p, π) = ŝ0. The essential
observation is that when sender j is added to the picture, say with the hypothesis that he too
discloses all signals weakly above ŝ0, type ŝ0 of sender i no longer expects the DM’s belief to
be ŝ0 should he conceal his signal, in contrast to the case of conditionally independent signals.
Rather, he expects the DM’s belief to be strictly lower: if j is informed the DM’s belief will be
ŝ0, and if j is uninformed the DM’s belief will be strictly lower because of nondisclosure from
two senders rather than just one. This makes type ŝ0 of sender i strictly prefer disclosure.
From the perspective of Theorem 1, the point is that under conditionally correlated signals,
when an informed sender i does not disclose his signal, i and the DM do not agree on the
experiment generated by j’s message; thus, even if the DM’s nondisclosure belief agrees with
i’s belief (over the state), i’s expectation of the DM’s posterior belief can be different.

Interestingly, welfare conclusions under perfectly correlated signals are very different
when the senders are opposite biased. For simplicity continue to consider c = 0. The follow-
ing proposition shows that when senders are opposite biased, each sender discloses strictly
less than he does in his single-sender game.

Proposition 7. Assume perfectly correlated signals, c = 0, and that the two senders are opposite
biased. Then, each sender discloses strictly less than what he does in his single-sender game.

21 Note that they allow for the senders’ utility functions to be non-linear; the ensuing discussion does not
depend on linearity either because our single-sender analysis does not require linearity.

22 Perfect correlation implies that there is only one relevant nondisclosure belief, viz., when both senders don’t
disclose. So senders who are biased in the same direction must use the same equilibrium disclosure threshold.
Given any such threshold, the nondisclosure belief is then computed just as in (5) (assuming the bias is upward),
but with 1− p replaced by the probability that both senders are uninformed, i.e., (1− pi)(1− pj).
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Proof of Proposition 7. We prove it for the upward biased sender; the argument is symmetric
for the other sender. Let sender 1 be upward biased and sender 2 be downward biased. Let
ŝ01 denote the single-sender threshold, i.e., η(ŝ01) = ŝ01. Write η(ŝ1, ŝ2) as the nondisclosure
belief (in the event both senders do not disclose) in the two-sender game when the respective
thresholds are ŝ1 and ŝ2. Even though the DM’s updating is not separable as in our baseline
model, it is clear that η(ŝ1, ŝ2) ≥ η(ŝ1), with equality if and only if ŝ2 = s. This follows from
the simple observation that the nondisclosure event can be viewed as the union of two events:
(i) m1 = m2 = φ and s2 = φ; and (ii) m1 = m2 = φ and s2 > ŝ2. Conditional on the first event,
the DM’s posterior is η(ŝ1), whereas conditional on the second event, the posterior is larger
than η(ŝ1) (strictly if and only if ŝ2 > s). It follows that for any ŝ2 > s, because η(ŝ1) ≥ ŝ1 for
all ŝ1 ≤ s01, if the DM conjectures thresholds (ŝ1, ŝ2), sender 1 with signal s1 = ŝ1 will strictly
prefer nondisclosure to disclosure, given that if sender 2 discloses, he necessarily discloses s1.
Therefore, since sender 2 will use a threshold strictly larger than s in any equilibrium, any
equilibrium involves sender 1’s threshold being strictly larger than ŝ01.

Thus, despite the increased availability of information, the overall disclosure of informa-
tion in the two-sender setting is not more informative than under either single-sender prob-
lem. Consequently, for either sender i, there exist preferences of the DM such that she would
strictly prefer to face sender i alone rather than the two senders simultaneously. An implica-
tion is that the welfare conclusion in Corollary 2 of Bhattacharya and Mukherjee (2013) can be
reversed under alternative DM preferences.

In general, for an arbitrary c, an interior equilibrium (ŝ1, ŝ2) requires

Pr[m2 ∕= φ|s1 = ŝ1, ŝ2]ŝ1 + Pr[m2 = φ|s1 = ŝ1, ŝ2]η(ŝ1, ŝ2) = ŝ1 − c,

or
(ŝ1 − η(ŝ1, ŝ2)) =

c

Pr[m2 = φ|s1 = ŝ1, ŝ2]
.

Thus, when c ≥ 0, using η(ŝ1, ŝ2) > η(ŝ1) (strictness by interiority of ŝ2), it follows that ŝ1 >
η(ŝ1). Furthermore, for any c ≥ 0, there is an equilibrium in which ŝ1 is weakly larger than
the largest single-sender equilibrium. When c < 0, the comparison is ambiguous.

C.2. Non-linear utility functions in the disclosure application

Another assumption that is important in applying Theorem 1 is that each sender has linear
preferences. Suppose, more generally, that a sender i’s utility is given by some function,
Vi(βDM). The comparative statics of sender i’s disclosure depends on the comparative statics
of

E[Vi(T (βi, βDM , βi))]− E[Vi(βi)] (13)

across Blackwell-comparable experiments, where the expectation is taken over the posterior
βi using i’s beliefs and T (·) is the transformation of (2). When Vi(·) is linear, one can ignore the
second term in expression (13) as it is constant across experiments and Theorem 1 tells us that
the sign of the change in the first term is determined by the sign of βi − βDM . Unambiguous
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comparative statics of expression (13) cannot be obtained for arbitrary specifications of Vi(·).
However, because T (βi, x, x) = βi for any βi and x, the logic behind our irrelevance result
extends generally. In particular:

Proposition 8. If c = 0 and Vi(·) is strictly monotone, then no matter j’s disclosure strategy, the best
response disclosure threshold for i is the same as when he is a single sender.

Proof of Proposition 8. Denote r ≡ 1−βDM

βDM

βi

1−βi
, and define W (β, r) := Vi(T (β, r)) − Vi(β),

where T (β, r) = β
β+(1−β)r

is a shorthand for the T (β, βDM , βi) transformation defined in (2).
When Vi(·) is strictly monotone and c = 0, i’s best response threshold must be such that
E[W (·, r)] = 0 when r is determined by i’s threshold type and the DM’s nondisclosure belief.

Observe that when r = 1, then for any β, T (β, 1) = β and hence W (β, 1) = 0. Furthermore,
because T (β, r) is strictly decreasing in r for all interior β, it follows that for any non-perfectly-
informative experiment, E[W (·, r)] = 0 if and only if r = 1. Thus, no matter j’s disclosure
strategy (so long as it is not perfectly informative of the state, which it cannot be since pj < 1),
i’s best response threshold is such that r = 1, i.e., the DM’s nondisclosure belief is the same as
i’s threshold type. But this is the same condition as in the single-sender game.

When c ∕= 0, there are non-linear specifications for Vi(·) under which our themes about
strategic complementarity under concealment cost or substitutability under disclosure cost
do extend, and there are other specifications which make conclusions ambiguous or even
reversed. Below, we show through a family of exponential utility functions how our con-
clusions are affected by departures from linearity of Vi(·). To this end, define W (β, r) :=
Vi(T (β, r)) − Vi(β), as in the proof of Proposition 8. Thus, under a disclosure cost (c > 0) the
relevant case is r > 1 if the sender is upward biased and r < 1 if the sender is downward
biased; under a concealment cost (c < 0) the relevant case is r < 1 if the sender is upward
biased and r > 1 if the sender is downward biased.

In the following proposition, we say that an upward biased sender i’s disclosure is a
strategic substitute (resp., complement) to j’s if whenever j’s message is more Blackwell-
informative, i’s largest and smallest best response disclosure thresholds increase (resp., de-
crease).

Proposition 9. Assume Vi(β) = γβα, where either γ,α > 0 or γ,α < 0, so that sender i is upward
biased. Then, i’s disclosure is:

1. a strategic substitute to j’s under disclosure cost if 0 < α ≤ 1 and γ > 0.

2. a strategic substitute to j’s under concealment cost if α < 0 and γ < 0.

3. a strategic complement to j’s under disclosure cost if α ≤ −1 and γ < 0.

Part 1 of Proposition 9 is a generalization of Part 2 of Proposition 3 to some non-linear
preferences; on the other hand, Parts 2 and 3 of Proposition 9 show how our main findings
of strategic complementary under concealment cost and strategic substitutability under dis-
closure cost can actually be reversed for other non-linear preferences. Note that one has to be
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careful with the analog of Proposition 9 for the case of a downward biased sender, because
the direction of disagreement between i and the DM reverses. Thus, if Vi(β) = −γβα, then in
each part of Proposition 9 one should replace “disclosure cost” with “concealment cost” and
vice-versa.

Given the discussion preceding Proposition 9, and invoking Blackwell’s results as in dis-
cussion in the text after Theorem 1, Proposition 9 is a straightforward consequence of the
following lemma.

Lemma 7. If Vi(β) = βα then G(β, r) is:

1. convex in β if 0 < α ≤ 1 and r > 1;

2. concave in β if α < 0 and r < 1;

3. convex in β if α < −1 and r > 1;

Proof of Lemma 7. Denoting partial derivatives with subscripts as usual, we obtain that Wββ(·)
is equal to

V ′′
i

󰀕
β

β + (1− β)r

󰀖󰀕
r2

(β + (1− β)r)4

󰀖
+ V ′

i

󰀕
β

β + (1− β)r

󰀖󰀕
2r(r − 1)

(β + (1− β)r)3

󰀖
− V ′′

i (β).

Plugging in Vi(β) = βα and doing some algebra shows that Wββ(·) has the same sign as:

α

󰀗
(1− α) +

r(2β(r − 1)− r(1− α))

(β + (1− β)r)α+2

󰀘
=: H(β,α, r).

Observe that H(0,α, r) = α(1−α)(1−r−α), and hence if α < 1 and α ∕= 0 then sign[H(0,α, r)] =
sign[r − 1]. Differentiating yields

Hβ(·) =
α(α + 1)(r − 1)r(αr + 2β(r − 1))

(β + (1− β)r)α+3
.

We now consider four cases:

1. Suppose 0 < α ≤ 1 and r > 1. Then H(0,α, r) ≥ 0 and Hβ(·) > 0, and hence H(β,α, r) >
0 for all β ∈ (0, 1).

2. Suppose −1 ≤ α < 0 and 0 ≤ r < 1. Then H(0,α, r) < 0 and Hβ(·) ≤ 0, and hence
H(β,α, r) < 0 for all β ∈ (0, 1).

3. Suppose α < −1 and r > 1. Then H(0,α, r) > 0 and H(1,α, r) = α(r − 1)(α − 1 + r(1 +
α)) > 0. We will show that Hβ(β,α, r) = 0 implies H(β,α, r) > 0, which combines with
the previous two inequalities to imply that H(·) > 0. Accordingly, assume Hβ(β,α, r) =
0, which occurs when β = αr

2(1−r)
, which implies α ∈ (−2,−1) and r ≥ 2

2+α
(because

β ≤ 1 and α < −1) . Furthermore,

H

󰀕
αr

2(1− r)
,α, r

󰀖
= α

󰀥
1− α− r2

󰀕
2

r(α + 2)

󰀖α+2
󰀦
.
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The derivative of the above expression with respect to r is α
󰀃

2
α+2

󰀄α+2
r−α−1, which is

strictly positive given α ∈ (−2,−1) and r > 2
α+2

> 2. Moreover, when evaluated with
r = 2, the expression reduces to 1 − α − 4

(α+2)2
, which is strictly positive given α ∈

(−2,−1). Therefore, H
󰀓

αr
2(1−r)

,α, r
󰀔
> 0, as was to be shown.

4. Suppose α < −1 and 0 ≤ r < 1. Then H(0,α, r) < 0 and H(1,α, r) = α(r − 1)(α − 1 +
r(1 + α)) < 0. As argued in the previous case, Hβ(β,α, r) = 0 requires α ∈ (−2,−1)
and r ≥ 2

2+α
> 2, which is not possible given that we have assumed r < 1. Thus, Hβ(·)

has a constant sign in the relevant domain, which implies that H(·) < 0 in the relevant
domain.

C.3. The role of linearity and MLRP in the signaling application

Recall that in an LSHP equilibrium, the strategy µ(·) for types that separate is determined by
the initial condition µ(0) = 0 and the differential equation (8):

∂c(µ(t), t)

∂m
µ′(t) =

∂Es|t [β(s; t)]

∂π
.

Part 1 of Lemma 6 established that

∂Es̃|t [β(s̃; t)]

∂π
≤

∂Es|t [β(s; t)]

∂π
(14)

when signal s̃ is more informative (i.e., drawn from a more informative experiment) than sig-
nal s. Inequality (14) implies that the solution to the aforementioned initial-value problem is
pointwise lower under the more informative experiment, and hence the equilibrium signaling
level µ(t) is lower for every type when the receiver has access to s̃ rather than s.

We show below how the conclusion can be altered by dropping either linearity of the
sender’s payoff in the receiver’s posterior (Example 3) or the MLRP property of the receiver’s
experiments (Example 4).

Example 3. Letting V (β) ≡ β/(1− β), suppose the sender’s payoff is

V (β)− c(m, t),

which is convex in β. Assumption (7) in Section 4 continues to imply the relevant single-
crossing condition for this modified objective. Using Bayes rule, we compute

Es|t[V (β(s; π))] =
π

1− π
Es|t

󰀗
g(s|1)
g(s|0)

󰀘
.

Differentiating and evaluating at π = t,

∂Es|t[V (β(s; t))]

∂π
=

1

t(1− t)
Es|t

󰀗
β(s; t)

1− β(s; t)

󰀘
.
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The term inside the expectation operator on the right-hand side above is a convex function of
β(·). It follows that

∂Es̃|t[V (β(s̃; t))]

∂π
≥

∂Es|t[V (β(s; t))]

∂π
,

by contrast to inequality (14). That is, the convexity in V (·) is strong enough to ensure that the
marginal benefit from inducing a higher interim belief π (locally, at π = t) is higher when the
exogenous signal is more informative. It follows that in an LSHP equilibrium, all types bear
a higher (at least weakly) signaling cost when the exogenous signal is more informative.23 □

Example 4. To see the role of MLRP-experiments, we have to modify the signaling model
of Section 4 by introducing more states, because any experiment in a two-state model is an
MLRP-experiment.

Assume a full-support common prior about the state ω ∈ Ω = {0, 1, 2}. The sender re-
ceives some private information, indexed by t ∈ [0, 1], which updates his belief about the
state to (z, 1 − z(1 + t), zt), where each element of this vector is the probability assigned to
the corresponding state. The parameter z ∈ (0, 1/2) is a commonly known constant. We refer
to t as the sender’s type. Letting M(β) ≡

󰁓
ω ωβ(ω) be the receiver’s expectation of the state

when she holds belief β, the sender’s payoff is

M(β)− c(m, t).

Let s represent the outcome of an uninformative experiment, and let β(s; t̂) represent the
posterior of the receiver after observing s when she puts probability one on the sender’s type
t̂. It clearly holds that

Es|t
󰀅
M(β(s; t̂))

󰀆
= M(β(s; t̂)) = 1− z + zt̂.

Now, consider an experiment Ẽ with a binary signal space, s̃ ∈ {sl, sh}. Let g(s̃|ω) denote
the probability of the signal realization in each state, specified as follows:

󰀗
g(sl|0) g(sl|1) g(sl|2)
g(sh|0) g(sh|1) g(sh|2)

󰀘
=

󰀗
0 1 0
1 0 1

󰀘
.

This experiment is the same as that used in Example 1 of Appendix B; it is not an MLRP-
experiment. Note also that s̃ is more informative than s.

Suppose the receiver ascribes probability one to the sender’s type t̂. By Bayes rule, if the
signal realization is sl, the receiver’s posterior belief about the state is β(sl; t̂) = (0, 1, 0), and

23 On the other hand, if V (β) ≡ log[β/(1 − β)], then the local marginal benefit of inducing a higher interim
belief is independent of the exogenous experiment. The reason is that now V (β(s,π)) = log

󰀓
π

1−π

󰀔
+log

󰀓
g(s|1)
g(s|0)

󰀔

and hence ∂Es|t[V (β(s; t))]/∂π does not vary with the experiment. Note that in this example, V (·) is neither
convex nor concave.
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therefore M(β(sl; t̂)) = 1. For signal realization sh,

β(sh; t̂) =

󰀕
1

1 + t̂
, 0,

t̂

1 + t̂

󰀖
,

and therefore

M(β(sh; t̂)) =
2t̂

1 + t̂
.

The sender of type t’s expectation is

Es̃|t
󰀅
M(β(s̃; t̂))

󰀆
= (1− z(1 + t))M(β(sl; t̂)) + z(1 + t)M(β(sh; t̂)).

The derivative of the above expression with respect to t̂, evaluated at t̂ = t, is

∂Es̃|t [M(β(s̃; t))]

∂ t̂
=

2z

1 + t
≥ z =

∂Es|t [M(β(s; t))]

∂ t̂
. (15)

This inequality is opposite to inequality (14), even though s̃ is more informative than s.

In this example, Es|t[M(β(s; t̂))] and Es̃|t[M(β(s̃; t̂))] are both (weakly) supermodular in
the sender’s type t. The assumption that cmt(m, t) < 0 ensures that indifference curves in the
space of (m, t̂) for different types are single-crossing. As local incentive compatibility then
implies global incentive compatibility, inequality (15) implies that all types incur higher (at
least weakly) signaling costs when the receiver has access to more information. □
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