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Abstract

We study voluntary disclosure with multiple biased senders who may bear costs for dis-

closing or concealing their private information. Under relevant assumptions, disclosures

are strategic substitutes under a disclosure cost but complements under a concealment

cost. Additional senders thus impede any sender’s disclosure under a disclosure cost but

promote it under a concealment cost. In the former case, a decision maker can be harmed

by additional senders, even when senders have opposing interests. The effects under both

kinds of message costs turn on how a sender, when concealing his information, expects

others’ messages to systematically sway the decision maker’s belief.
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1. Introduction

Decision makers routinely rely on multiple interested parties for information. Judges hear
arguments from opposing counsel; consumers encounter product claims from competing
sources; and legislators receive evidence from various interest groups. In each of these set-
tings, information senders strategically choose what to disclose and what to withhold. How
are one sender’s disclosure incentives affected by the presence of other senders? What are
the implications for the decision maker’s welfare? Does competition among senders promote
the revelation of information—and does the answer depend on whether their interests are
aligned or opposed?

We study these questions in a simple voluntary disclosure game. Biased senders are en-
dowed with certifiable private information—evidence—and choose whether to reveal it. That
is, senders cannot lie but can conceal. Most prior work on multi-sender disclosure assumes
that informed senders have identical information.1 We instead assume imperfectly correlated
information: specifically, conditional on an underlying state that is payoff-relevant to a de-
cision maker (DM), senders draw independent signals. As in Dye (1985), senders may also
be uninformed; this prevents “unraveling” (Grossman and Hart, 1980; Milgrom, 1981). We
allow senders to have either opposing or similar biases, but assume each sender’s payoff is
state-independent and linear (increasing or decreasing) in the DM’s belief.

Our focus is on how strategic disclosure interacts with different types of costs. On the one
hand, preparing and disseminating information may be costly. A firm facing litigation must
hire attorneys to sort through documents, identify relevant materials, and redact appropri-
ately. Certain documents require notarization to prevent fraud. There are also “proprietary
costs” (Verrecchia, 1983): disclosing a beverage’s ingredients may reveal a secret recipe to
competitors; disclosing a firm’s financial information to investors may simultaneously in-
form regulators and rivals. We call costs directly tied to the act of furnishing evidence disclo-
sure costs. On the other hand, suppression of information is also sometimes costly. Beyond
any resource costs, there may be a psychic disutility from concealing information, or conceal-
ment may be discovered ex post—by auditors, whistleblowers, or happenstance—and result
in punishment or reputational damage. For instance, in January 2015, the National Highway
Traffic Safety Administration fined Honda $70 million because “it did not report hundreds of
death and injury claims . . . for the last 11 years” (The New York Times, 2015). Relatedly, there

1 See, among others, Milgrom and Roberts (1986), Lipman and Seppi (1995), Shin (1998), Bourjade and Jullien
(2011), and Bhattacharya and Mukherjee (2013). Two exceptions are Okuno-Fujiwara, Postlewaite, and Suzu-
mura (1990) and Hagenbach, Koessler, and Perez-Richet (2014), who identify conditions for full disclosure and
address different questions than we do.
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is a duty to disclose in various business, financial, and legal contexts. We call costs tied to
not disclosing evidence concealment costs.2 Naturally, both disclosure and concealment costs
can coexist; what is relevant for our paper is the net message cost, which we classify as a
disclosure or concealment cost depending on which dominates.

In the presence of a message cost, each sender must consider how others’ information
disclosure will affect the DM’s posterior belief, and how that varies with his own message.
We leverage our model’s structure and an insight from Kartik, Lee, and Suen (2021) on how
agents with heterogeneous priors expect additional information to affect each other’s beliefs.
We obtain a unified treatment of multi-sender disclosure—regardless of whether senders have
similar or opposing biases, and regardless of the nature of the message cost. In turn, that
yields new insights into the classic question of when competition promotes disclosure.

Results. Our paper’s central logic is as follows. Any sender’s equilibrium disclosure behav-
ior follows a threshold rule of disclosing all sufficiently favorable signals. We first establish
a simple but important benchmark: without a message cost, any sender uses the same dis-
closure threshold as he would in a (hypothetical) single-sender game. In other words, there
is a strategic irrelevance. The intuition is that without a message cost, a sender’s objective is
the same regardless of the presence of other senders: he simply wants to induce the most
favorable “interim belief” in the DM based on his own message, as this will lead to the most
favorable posterior belief based on all senders’ messages.

How do message costs alter the irrelevance result? Consider a concealment cost. In a
single-sender setting, a sender i’s disclosure threshold will be such that the DM’s interpre-
tation of nondisclosure is more favorable than i’s private belief at the threshold—a wedge
necessary to compensate i for the concealment cost. Nondisclosure thus generates an interim
disagreement between the DM’s belief and the threshold type’s private belief. Naturally, dis-
closure produces no such disagreement. Now add a second sender j to the picture. Kartik,
Lee, and Suen’s (2021) theorem on information validates the prior (IVP) provides a key insight:
the threshold type of i predicts that j’s message will, on average, make the DM’s posterior
less favorable than the DM’s interim belief following i’s nondisclosure. Intuitively, sender i
expects the other’s communication to move the DM’s belief towards i’s estimate of the truth,
which is i’s private belief. Consequently, concealment is now less attractive to sender i. IVP
further implies that j’s effect on i is stronger when j discloses more, i.e., when j is more

2 Studies of mandatory disclosure (e.g., Matthews and Postlewaite, 1985; Shavell, 1994; Dahm, Gonzales, and
Porteiro, 2009) can be viewed as dealing with infinitely large concealment costs.
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informative. In sum, senders’ disclosures are strategic complements under a concealment cost.3

The logic reverses under a disclosure cost. In a single-sender setting, the DM’s interpre-
tation of nondisclosure is now less favorable than i’s private belief at the threshold—the gain
from disclosing information must compensate i for the direct cost. Reasoning analogously to
above, IVP now implies that disclosure becomes less attractive when the other sender is more
informative: the threshold type of i expects the other sender’s message to make the DM’s
posterior more favorable to i, reducing the gains from disclosure. Consequently, senders’
disclosures are strategic substitutes under a disclosure cost.

Implications. When there are costs of concealment, a DM always benefits from an addi-
tional sender not only because of the information this sender provides, but also indirectly
because it improves disclosure from other senders. With disclosure costs, however, the strate-
gic substitution result implies that while a DM gains some direct benefit from consulting an
additional sender, the indirect effect on other senders’ behavior is detrimental to the DM. In
general, the net effect is ambiguous; it is not hard to construct examples in which the DM is
made strictly worse off by adding a sender, even if this sender has an opposing bias to that
of an existing sender. Thus, competition between senders need not increase information rev-
elation nor benefit the DM.4 The DM can even be made worse off when the disclosure cost
becomes lower or a sender is more likely to be informed, although either change would help
the DM when facing just one sender.

We interpret the perverse welfare results under disclosure costs as cautionary for appli-
cations. Institutional changes that appear beneficial at first blush may be detrimental. For
example, given the importance of disclosure costs in arbitration and litigation (e.g., Sobel,
1989), our results qualify arguments made in favor of adversarial procedures based on pro-
moting information revelation (e.g., Shin, 1998).

It bears emphasis that our results are driven by two forces: (i) message costs create equilib-
rium disagreement upon nondisclosure between a sender and the DM; and (ii) when others

3 In a different model, Bourjade and Jullien (2011) find an effect related to that we find under concealment
cost. Loosely speaking, “reputation loss” in their model plays a similar role to concealment cost in ours.

4 A number of prior papers offer formal analyses supporting the viewpoint that competition between senders
helps a DM; a sample of the varied settings includes voluntary disclosure with common information (Milgrom
and Roberts, 1986), cheap talk (Krishna and Morgan, 2001; Battaglini, 2002), Bayesian persuasion (Gentzkow
and Kamenica, 2017; Au and Kawai, 2020), and information acquisition (Dewatripont and Tirole, 1999). Carlin,
Davies, and Iannaccone (2012) present a result in which increased competition leads to less voluntary disclosure.
Their model can be viewed as one in which senders bear a concealment cost that is assumed to decrease in the
amount of disclosure by other senders. Elliott, Golub, and Kirilenko (2014) show how a DM can be harmed
by “information improvements” in a cheap-talk setting, but the essence of their mechanism is not the strategic
interaction between senders.
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disclose more, this disagreement and the IVP force combine to produce a systematic shift in
a sender’s own disclosure behavior. The direction of this shift depends only on the direction
of disagreement, which in turn is determined by the nature of message costs. For this rea-
son, it does not matter whether a sender seeks to push the DM’s posterior up or down. That
also clarifies that our central logic is not one of free-riding or pivotality: we can have strate-
gic substitution even when senders have opposing biases, which runs counter to one sender
free-riding on the other’s “contribution” to the same goal; yet we can also have strategic com-
plementarity, which runs counter to reduced pivotality.

Other related literature. Milgrom (2008) and Dranove and Jin (2010) survey the disclosure
literature. Our reduced-form approach to message costs is in line with how disclosure costs
are typically modeled, dating back to Jovanovic (1982) and Verrecchia (1983). Emons and
Fluet (2019) study two senders with opposing biases and disclosure costs; unlike us, they
assume perfectly correlated signals, which leads to strategic interaction effects even without
a message cost (cf. Bhattacharya and Mukherjee (2013) and Appendix A.3).

We are not aware of prior general treatments of concealment costs. However, some recent
work models a cost of concealment in specific ways motivated by their applications. Mari-
novic and Varas (2016) analyze litigation risk in a dynamic setting, showing that the threat
of penalties for nondisclosure can lead a manager to voluntarily disclosing bad news to pre-
empt exogenous news arrival. Dye (2017) also studies a single sender, but in a static model
where concealment may be detected, triggering damages proportional to a buyer’s overpay-
ment. Daughety and Reinganum (2018) study teams of prosecutors facing Brady obligations,
incorporating both formal sanctions and moral costs. In all these papers, the penalties for con-
cealment depend on equilibrium beliefs or endogenous actions. Our reduced-form approach
sacrifices institutional detail but gains generality: it allows us to nest both concealment and
disclosure costs within a unified framework and isolate the (net) cost structure as the key
determinant of how one sender’s information disclosure affects others’ behavior.

As already noted, our analysis relies on Kartik, Lee, and Suen’s (2021) IVP theorem. Agra-
nov and Detkova (2025) experimentally test that result. The current paper leverages the IVP
effect to study how disclosure decisions are affected by message costs. Kartik, Lee, and Suen
(2021) present applications to testing and signaling, while Kartik, Lee, and Suen (2017) study
implications for information acquisition.

Outline. Section 2 presents the model, with only two senders for simplicity. Section 3 devel-
ops the single-sender benchmark. Section 4 establishes our main results on strategic substi-
tutes and complements. Section 5 discusses extensions, including to many senders. Section 6
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concludes. Proofs and some additional discussion are in the Appendix; there is also a Supple-
mentary Appendix with further material.

2. Model

Players. There is an unknown state of the world, ω ∈ {0, 1}. A decision maker, DM here-
after, will form a belief βDM that ω = 1. (Throughout, all beliefs refer to the probability of
state 1.) For much of our analysis, all that matters is the belief that the DM holds. For welfare
evaluation, however, it is useful to view the DM as taking an action a with von-Neumann–
Morgenstern utility function uDM(a, ω). There are two senders, indexed by i ∈ {1, 2}. (Subsec-
tion 5.1 generalizes to many senders.) In a reduced form, each sender i has state-independent
preferences over the DM’s belief given by the von Neumann–Morgenstern utility function
u(βDM , bi) = biβDM , where bi ∈ {−1, 1} captures a sender’s bias. That is, each sender has
linear preferences over the DM’s expectation of the state; bi = 1 means that sender i is biased
upward, and conversely for bi = −1. Senders’ biases are common knowledge. We say that
two senders have similar biases if their biases have the same sign, and opposing biases otherwise.

Information. The DM relies on the senders for information. All players share a common
prior π ∈ (0, 1) over the state. Each sender may receive some private information about the
state. Specifically, following Dye (1985), with independent probability pi ∈ (0, 1), a sender i is
informed and receives a signal si ∈ S; with probability 1− pi, he is uninformed, in which case
we denote si = ϕ. If informed, sender i’s signal is drawn from a distribution that depends
upon the true state, but independently of the other sender’s signal conditional on the state.
Without loss, we equate an informed sender’s signal with his private belief, i.e., a sender’s
posterior on state ω = 1 given only his own signal s ̸= ϕ (as derived by Bayesian updating) is
s. For convenience, we assume the cumulative distributions of an informed sender’s signals
in each state, F (s|ω) for ω ∈ {0, 1}, have common support S := [s, s] ⊆ [0, 1] and admit
respective densities f(s|ω). It would be straightforward to allow F (·) to vary across senders,
but we abstract from such heterogeneity to reduce notation.

Communication. Signals are “hard evidence”; a sender with signal si ∈ S ∪ {ϕ} can send a
message mi ∈ {si, ϕ}. In other words, an uninformed sender only has one message available,
ϕ, while an informed sender can either report his true signal or feign ignorance by sending
the message ϕ.5 We refer to any message mi ̸= ϕ as disclosure and the message mi = ϕ as

5 Due to the senders’ monotonic preferences, standard “skeptical posture” arguments imply that our results
would be unaffected if we were to allow for a richer message space, for example if an informed sender could
report any subset of the signal space that contains his true signal. Likewise, allowing for cheap talk would not
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nondisclosure. When an informed sender chooses nondisclosure, we say he is concealing in-
formation. That senders must either tell the truth or conceal their information is standard; a
justification is that signals are verifiable and large penalties will be imposed on a sender if a
reported signal is discovered to be untrue. Note that being uninformed is not verifiable.

Message costs. A sender i who sends message mi ̸= ϕ bears a known utility cost c ∈ R. We
take this cost to be common across senders for notational simplicity. We refer to c > 0 as a
(net) disclosure cost and c < 0 as a (net) concealment cost; see the introduction for interpretation
and discussion. As is well known, a disclosure cost precludes full disclosure (Jovanovic, 1982;
Verrecchia, 1983). For this reason, our conclusions under c > 0 do not require the assumption
that a sender may be uninformed (i.e., we could allow pi = 1 in that case). We maintain
that assumption to provide a unified treatment of both disclosure cost (c > 0) and no cost or
concealment cost (c ≤ 0). In the latter cases, there would be full disclosure (“unraveling”)
were pi = 1.

Timing. The game unfolds as follows: nature initially determines the state ω and then con-
ditionally (on the realized state) independently draws each sender i’s private information,
si ∈ S ∪ {ϕ}; senders then simultaneously send their respective messages mi to the DM
(whether messages are public or privately observed by the DM is irrelevant); the DM then
forms her belief, βDM , according to Bayes’ rule, whereafter each sender i’s payoff is realized
as

biβDM − c · 11{mi ̸= ϕ}. (1)

All aspects of the game except the state and senders’ signals (or lack thereof) are common
knowledge. Our solution concept is the natural adaptation of perfect Bayesian equilibrium,
which we will refer to simply as “equilibrium.”6 The notion of welfare for any player is ex-
ante expected utility.

3. A Single-Sender Benchmark

As a preliminary step and benchmark, begin by considering a (hypothetical) game between a
single sender i and the DM. Our analysis in this subsection generalizes some existing results
in the literature. For concreteness, suppose the sender is upward biased; straightforward
analogs of the discussion below apply if the sender is downward biased.

affect our results as cheap talk cannot be influential in equilibrium.
6 That is: (1) the receiver forms her belief using Bayes rule on path (note that the messagemi = ϕ is necessarily

on path), treating any off-path message mi ∈ S as proving signal si = mi; and (2) each sender chooses his
message optimally given his information, the other senders’ strategies, and the receiver’s belief updating.
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For any β ∈ [0, 1], define fβ(s) := βf(s|1) + (1− β)f(s|0) as the unconditional density of
signal s given a belief that puts probability β on state ω = 1. Let Fβ be the correspond-
ing cumulative distribution. Since the sender has private belief s upon receiving signal s,
disclosure of signal s will lead to the DM also holding belief s. It follows that given any
nondisclosure belief, i.e., the DM’s posterior belief when there is nondisclosure, the optimal
strategy for the sender—if informed, as otherwise he can only send message ϕ—is a thresh-
old strategy of disclosing all signals above some disclosure threshold, say ŝ, and concealing
all signals below it. Suppose the sender uses a disclosure threshold ŝ. Define the function
η : [0, 1]× (0, 1)× [0, 1] → [0, 1] by

η(ŝ, p, π) :=

(
1− p

1− p+ pFπ(ŝ)

)
︸ ︷︷ ︸

Posterior prob
that uninformed

× π︸︷︷︸
Prior

+

(
pFπ(ŝ)

1− p+ pFπ(ŝ)

)
︸ ︷︷ ︸

Posterior prob
that concealed

× Eπ[s | s < ŝ]︸ ︷︷ ︸
Average

concealed signal

, (2)

where Eπ[·] denotes expectation with respect to Fπ. The function η(ŝ, p, π) is the DM’s poste-
rior following nondisclosure, derived from Bayes’ rule given conjectured threshold ŝ, proba-
bility p that the sender is informed, and prior π.

An increase in the sender’s disclosure threshold has two effects on the nondisclosure be-
lief. First, it raises the likelihood that nondisclosure stems from concealment rather than the
sender being uninformed. Second, conditional on concealment, it raises the expected signal.
As the DM’s belief conditional on concealment is below the prior (because the sender is using
threshold strategy), the two effects work in opposite directions; the second effect dominates
if and only if ŝ > η(ŝ, p, π). On the other hand, holding the disclosure threshold fixed, an in-
crease in the probability of the sender being informed has an unambiguous effect, as it raises
the likelihood that nondisclosure reflects concealment.

Lemma 1. The nondisclosure belief function η(ŝ, p, π) has the following properties:

1. It is strictly decreasing in ŝ when ŝ < η(ŝ, p, π) and strictly increasing when ŝ > η(ŝ, p, π).
Consequently, the unique solution to ŝ = η(ŝ, p, π) is argminŝ η(ŝ, p, π) ∈ (s, π).

2. It is weakly decreasing in p, strictly if ŝ ∈ (s, s).

See Figure 1, which depicts both parts of the lemma and the subsequent results in this
section. The quasiconvexity in part 1 of Lemma 1 will be crucial for our comparative statics.
The lemma’s other properties have appeared previously in Acharya, DeMarzo, and Kremer
(2011, Proposition 1 and subsequent discussion); see also DeMarzo, Kremer, and Skrzypacz
(2019, Proposition 1).
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s
s

si

si si − c

si − c′

η(si, pi, π)

η(si, p
′
i, π)

π

Figure 1. The single-sender game with an upward-biased sender, illustrated with c > 0 > c′ and p′i > pi.
Equilibrium thresholds are given by intersections of η(si, ·) and si − c or si − c′.

It follows that any equilibrium is fully characterized by the sender’s disclosure threshold.
If this threshold is interior, the sender must be indifferent between disclosing the threshold
signal and concealing it. As sender i’s payoff from disclosing signal si is si − c, we obtain the
following characterization.

Proposition 1. Assume there is one sender i who is biased upward.

1. Any equilibrium has a disclosure threshold ŝ0i satisfying one of: (i) ŝ0i is interior and η(ŝ0i , pi, π) =
ŝ0i − c; (ii) ŝ0i = s and π ≤ s− c; or (iii) ŝ0i = s and π ≥ s− c. Conversely, any ŝ0i satisfying (i),
(ii), or (iii) is an equilibrium threshold.

2. If there is no message cost or a concealment cost (c ≤ 0), equilibrium is unique. Moreover, the
equilibrium threshold is interior if there is no message cost (c = 0).

3. If there is a disclosure cost (c > 0), there can be multiple equilibria.

Part 1 of Proposition 1 is straightforward; parts 2 and 3 build on Lemma 1. Multiple equi-
libria can arise under a disclosure cost because, in the relevant domain (to the right of the
fixed point of η(·, pi, π)), the DM’s nondisclosure belief is increasing in the sender’s disclosure
threshold. When there are multiple equilibria, we will focus on the highest and lowest equilib-
ria in terms of the disclosure threshold. As a higher-threshold equilibrium is less (Blackwell)
informative, these extremal equilibria are, respectively, worst and best for the DM’s welfare.
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The ranking of these equilibria is reversed for the sender’s welfare, by linearity of his prefer-
ences. To elaborate: since in expectation the DM’s belief is π in any equilibrium, the sender’s
welfare in an equilibrium with threshold ŝ0i is π − pi(1 − Fπ(ŝ

0
i ))c. Consequently, given that

multiplicity requires c > 0, the sender ex-ante prefers a higher disclosure threshold, as it
implies a lower probability of incurring the disclosure cost.

A key observation concerns disagreement: the divergence between the sender’s threshold
belief ŝ0i and the DM’s nondisclosure belief η(ŝ0i , ·). When c = 0, these coincide. When c ̸= 0,
they differ in any equilibrium. Specifically, if c > 0, then ŝ0i > η(ŝ0i , ·), i.e., the sender’s
threshold belief exceeds the DM’s nondisclosure belief. If c < 0, the opposite holds. This
disagreement will prove crucial. Note that, consistent with Aumann (1976), the disagreement
is not common knowledge—the sender knows the DM’s belief but not vice versa.

Proposition 1 is stated for an upward-biased sender. For a downward-biased sender, the
analysis is symmetric: he discloses all signals below some threshold. The nondisclosure belief
becomes

1− p

1− p+ p(1− Fπ(ŝ))
π +

p(1− Fπ(ŝ))

1− p+ p(1− Fπ(ŝ))
Eπ [s | s > ŝ] ,

which is strictly quasiconcave in ŝ. The equilibrium condition becomes that this expression
equals ŝ + c, since the sender’s payoff is −s − c if he discloses and minus the nondisclosure
belief if he conceals. As before, equilibrium is unique when c ≤ 0, while there can be multi-
ple equilibria when c > 0. For c ̸= 0, the direction of disagreement is now reversed: with a
downward-biased sender, c > 0 implies the sender’s threshold belief is lower than the DM’s
nondisclosure belief, and conversely for c < 0. Furthermore, a lower threshold now corre-
sponds to less disclosure.

The following comparative statics hold with an upward-biased sender; the modifications
for a downward-biased sender are straightforward in light of the above discussion.

Proposition 2. Assume there is one sender who is upward biased.

1. A higher probability of being informed leads to more disclosure: the highest and lowest equilib-
rium thresholds (weakly) decrease.

2. A higher disclosure cost or a lower concealment cost (in magnitude) leads to less disclosure: the
highest and lowest equilibrium thresholds (weakly) increase.

The logic for the first part follows from Lemma 1: given any conjectured threshold, a
higher pi leads to a lower nondisclosure belief, increasing the sender’s gain from disclosure.

9



For c = 0, this comparative static appears in Jung and Kwon (1988) and Acharya, DeMarzo,
and Kremer (2011). The second part of Proposition 2 is straightforward, as a larger message
cost cmakes disclosure less attractive. Since scaling the magnitude of c is equivalent to scaling
the agent’s bias parameter bi (cf. expression (1)), an equivalent interpretation is that an agent
with a stronger persuasion motive discloses more when c > 0 but less when c < 0. Both parts
of Proposition 2 are seen in Figure 1.7

Although we postpone a formal argument to Section 4, it is worth noting now that the
foregoing comparative statics have direct welfare implications. Since the DM prefers more
disclosure, a lower message cost and/or a higher probability of the sender being informed
(weakly) increases the DM’s welfare in a single-sender setting, subject to an appropriate com-
parison of equilibria (in particular, focusing on the extremal equilibria).

4. Strategic Substitutes and Complements

We are now ready to study the two-sender disclosure game. For concreteness, we will sup-
pose that both senders are upward biased; the modifications needed when one or both senders
are downward biased are straightforward.

Lemma 2. Any equilibrium is a threshold equilibrium, i.e., both senders use threshold strategies.

In light of Lemma 2, we focus on threshold strategies. Conditionally independent signals
mean that the DM’s belief updating is separable in the senders’ messages. In other words,
we can treat it as though the DM first updates from either sender i’s message just as in a
single-sender model, and then uses this updated belief as an interim prior to update again
from the other sender j’s message without any further attention to i’s message. Thus, given
any conjectured pair of disclosure thresholds, (ŝ1, ŝ2), there are three relevant nondisclosure
beliefs for the DM: if only one sender i discloses his signal si while sender j sends message ϕ,
the DM’s belief is η(ŝj, pj, si); if there is nondisclosure from both senders, the DM’s belief is
η(ŝj, pj, η(ŝi, pi, π)).

As discussed earlier, if i discloses his signal then his expectation of the DM’s belief—
viewed as a random variable that depends on j’s message—is si, no matter what strategy j

7 In the figure, η(·) has slope less than one at its largest crossing point with si − c. This makes transparent
that an increase in pi reduces the highest equilibrium threshold. If the slope exceeded one at the highest crossing
point, the largest equilibrium threshold would be s, and a small increase in pi would not alter it. We also
note that the η(·) depicted is valid: it can be shown that for any continuously differentiable ψ : [s, s] → [0, 1]
with ψ(s) = ψ(s) ∈ (0, 1) and sign[s − ψ(s)] = sign[ψ′(s)] (where ψ′ denotes the derivative), there are model
parameters—namely, π ∈ (0, 1), pi ∈ (0, 1), f(s|0), and f(s|1)—such that η(·, p, π) = ψ(·). See the proof of
Proposition 1 (part 3) for details.
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is using.8 On the other hand, if i conceals his signal, then he views the DM as updating from
j’s message based on the interim belief η(ŝi, pi, π) that may be different from si. Denoting an
arbitrary message from j by mj ∈ S ∪ {ϕ}, let β(mj, ŝj, pj, si) denote i’s posterior belief about
the state given mj (with the threshold ŝj and probability of being informed pj required to
interpret mj = ϕ) when i’s own interim belief/signal is si. The DM’s posterior after message
mj is a transformation of i’s own posterior, where the transformation function depends only
on the DM’s and i’s interim beliefs. Specifically, the DM’s posterior after message mj equals
T (β(mj, ŝj, pj, si), η(ŝi, pi, π), si), where for any posterior βi and interim beliefs µDM and µi, the
mapping T is defined by9

T (βi, µDM , µi) :=
βi

µDM

µi

βi
µDM

µi
+ (1− βi)

1−µDM

1−µi

. (3)

It follows that sender i’s expected payoff—his expectation of the DM’s posterior belief—
should he conceal his signal is

U(si, ŝi, pi, ŝj, pj) := Eŝj ,pj

[
T (β(mj, ŝj, pj, si), η(ŝi, pi, π), si) | si

]
, (4)

where Eŝj ,pj denotes that the expectation is taken over mj using the distribution of beliefs
that ŝj and pj jointly induce in i about mj (given si). As it will be particularly relevant to
evaluate U(si, ŝi, ·) when si = ŝi, we will abuse notation and write U(si, pi, ŝj, pj) as shorthand
for U(si, si, pi, ŝj, pj).

We can now study the “best response” of sender i to any disclosure strategy of sender j.
More precisely, let ŝBR

i (ŝj, pi, pj) represent the equilibrium disclosure threshold in a (hypo-
thetical) game between sender i and the DM when sender j is conjectured to mechanically

8 The distribution of the DM’s beliefs as a function of j’s message depends both on j’s strategy and the DM’s
conjecture about j’s strategy. As the two must coincide in equilibrium, we bundle them to ease exposition.

9 To obtain this transformation, consider an arbitrary (Blackwell) experiment and some signal whose likeli-
hood ratio between states 1 and 0 is l ∈ (0,∞). For any prior b0, Bayes’ rule implies that the posterior belief
b(l, b0) satisfies

b(l, b0)

1− b(l, b0)
=

b0
1− b0

l.

Eliminating the likelihood ratio l yields the following relationship for any two priors b0 and b′0:

b(l, b′0) =
b(l, b0)

b′0
b0

b(l, b0)
b′0
b0

+
(
1− b(l, b0)

) 1−b′0
1−b0

.

This observation that with heterogeneous priors, one agent’s posterior can be written as a function of the other
agent’s posterior and the two priors is also used by Gentzkow and Kamenica (2014), Alonso and Câmara (2016),
and Galperti (2019) to different ends.
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adopt disclosure threshold ŝj ; we call this sender i’s best response. The threshold ŝi is a best
response if and only if 

U(ŝi, pi, ŝj, pj) = ŝi − c and ŝi ∈ (s, s); or

U(s, pi, ŝj, pj) ≤ s− c and ŝi = s; or

U(s, pi, ŝj, pj) ≥ s− c and ŝi = s.

(5)

The necessity of condition (5) is clear; sufficiency follows from the argument in the proof of
Lemma 2. In any equilibrium of the overall game, (s∗1, s∗2), condition (5) must hold for each
sender i with ŝi = s∗i when his opponent uses ŝj = s∗j .

The following key observation underlies all our comparative statics.

Lemma 3. Consider any ŝj and pj .

1. (ROTATION) The following implications hold:

si = η(si, pi, π) =⇒ U(si, pi, ŝj, pj) = si,

si > η(si, pi, π) =⇒ η(si, pi, π) ≤ U(si, pi, ŝj, pj) < si,

si < η(si, pi, π) =⇒ si < U(si, pi, ŝj, pj) ≤ η(si, pi, π).

Both weak inequalities in the consequents are strict if and only if ŝj < s.

2. (MONOTONICITY) If p′j ≥ pj and ŝ′j ≤ ŝj , then |U(si, pi, ŝ′j, p′j)− si| ≤ |U(si, pi, ŝj, pj)− si|,
with equality if and only if ŝ′j = ŝj and either p′j = pj or ŝj = s.

Both parts of Lemma 3 are consequences of the IVP theorem in Kartik, Lee, and Suen
(2021, Theorem 1). Part 1 reflects i’s prediction that, on average, j’s message will move the
DM’s posterior belief away from the DM’s interim belief η(·) towards i’s interim belief si.
Part 2 reflects that there is a larger such shift when j’s message is (Blackwell-)more informa-
tive, which—as elaborated in the lemma’s proof—is the case when j uses a lower threshold
(hence discloses more) or has a higher probability of being informed. For some intuition for
these effects, consider two extremes: if j’s message is completely uninformative (i.e., j never
discloses his signal, or ŝj = s), then the DM’s posterior necessarily stays at her interim be-
lief, hence U(·) = η(·); whereas if j’s message were to reveal the state, then from i’s vantage
the DM’s posterior would equal 1 with probability si and 0 with probability 1 − si, hence
U(·) = si.10

10 Note that since j does not observe the state, j’s message cannot actually reveal the state; this explains the
strict inequalities in the consequents of part 1 of Lemma 3.
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Figure 2. Sender i’s “best response” to sender j (both upward biased), illustrated with c > 0 > c′, p′j > pj , and
ŝ′j < ŝj < s.

Lemma 3’s effects are depicted graphically in Figure 2. Part 1 corresponds to comparing
the red (short dashed) curve depicting U(·) with the black (solid) curve depicting η(·); the
former is a rotation of the latter around its fixed point toward the diagonal. Part 2 implies
that this rotation is steeper when pj increases and ŝj decreases; this is depicted as the shift
from the red curve to the blue (long dashed) curve.

It is evident from Figure 2 that j’s information disclosure has very different consequences
for i’s best response depending on the cost structure. When c > 0 (disclosure cost), the small-
est and largest solutions to (5) are respectively larger than the smallest and largest single-
sender thresholds.11 When c < 0 (concealment cost, notated as c′ in the figure), the largest
solution is smaller than the unique single-sender threshold.12 If c = 0, the unique solution
equals the single-sender threshold. These contrasting effects reflect the different nature of
disagreement induced by the sender upon nondisclosure. With a disclosure cost, the thresh-
old type has a higher belief than the DM upon nondisclosure, so an expected shift of the DM’s
posterior toward the threshold belief makes concealment more attractive. By contrast, with a
concealment cost, the threshold type has a lower belief than the DM, so the same shift makes

11 The ordering can reverse for some intermediate solutions, as seen in the figure. As noted later, our key
equilibrium conclusions hold not just for extremal solutions, but for any solution that is dynamically stable.

12 Although not seen in the figure, there can be multiple solutions to (5) even when c < 0.
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concealment less attractive. The logic applies not only to comparisons with the single-sender
benchmark but also to any change in pj or ŝj that makes j’s message more informative, as also
seen in Figure 2.

Since there can be multiple solutions to (5), in general ŝBR
i (·) is a best-response correspon-

dence. We say that i’s best response increases if the largest and smallest elements of ŝBR
i (·)

both increase (weakly). We write ŝiBR(·) > ŝ if the smallest element strictly exceeds ŝ.

Proposition 3. Assume both senders are upward biased. Any sender i’s best response ŝBR
i (ŝj, pi, pj)

is decreasing in pi. Furthermore, let ŝ0i denote the unique (resp., smallest) equilibrium threshold in the
single-sender game with i when c ≤ 0 (resp., c > 0). We have:

1. (INDEPENDENCE) If c = 0, then ŝBR
i (ŝj, pi, pj) = ŝ0i is independent of ŝj and pj .

2. (STRATEGIC COMPLEMENTS) If c < 0, then (i) ŝBR
i (ŝj, pi, pj) ≤ ŝ0i , with equality if and only

if ŝ0i = s or ŝj = s, and (ii) ŝBR
i (ŝj, pi, pj) increases in ŝj and decreases in pj .

3. (STRATEGIC SUBSTITUTES) If c > 0, then (i) ŝBR
i (ŝj, pi, pj) ≥ ŝ0i , with equality if and only if

ŝ0i = s or ŝj = s, and (ii) ŝBR
i (ŝj, pi, pj) decreases in ŝj and increases in pj .

Since each sender’s best response is monotone, existence of an equilibrium follows from
Tarski’s fixed point theorem. When c < 0 (concealment cost), strategic complementarity im-
plies that there is a largest equilibrium, corresponding to the highest thresholds for both
senders. Each sender’s message in the largest equilibrium is a garbling of his message in
any other equilibrium. It follows that the largest equilibrium is the least informative and the
worst for DM welfare. Similarly, the smallest equilibrium—that with the lowest equilibrium
thresholds for both senders—is the most informative and the best in terms of the DM’s wel-
fare.

On the other hand, when c > 0 (disclosure cost), the two disclosure thresholds are strate-
gic substitutes. There is an i-maximal equilibrium that maximizes sender i’s threshold and
also minimizes sender j’s threshold across all equilibria. Likewise, there is a j-maximal equi-
librium that minimizes sender i’s threshold and also maximizes sender j’s threshold across
all equilibria. These two equilibria are not ranked in terms of informativeness and in general
cannot be welfare ranked for the DM; moreover, neither may correspond to either the best or
the worst equilibrium for the DM.13

13 As explained after Proposition 1, the senders’ welfare ranking across equilibria just depends on the prob-
ability of disclosure. When c < 0, both senders’ welfare is lowest in the largest equilibrium and highest in the
smallest equilibrium. When c > 0, sender i’s welfare is highest in the i-maximal equilibrium and lowest in the
j-maximal equilibrium.
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The following result is derived using standard monotone comparative statics. Although
stated for extremal equilibria, the comparative statics also hold for any equilibrium that is
stable in the sense of adaptive dynamics (Echenique, 2002).

Proposition 4. Assume both senders are upward biased. For any i ∈ {1, 2}:

1. If c ≤ 0, an increase in pi or a decrease in c (higher concealment cost) weakly lowers both senders’
thresholds in both the worst and best equilibria.

2. If c > 0, an increase in pi weakly lowers sender i’s threshold and weakly raises sender j’s in both
the i-maximal and j-maximal equilibria. A decrease in c (lower disclosure cost) has ambiguous
effects on equilibrium thresholds.

The intuition for Proposition 4 is as follows. Proposition 2 indicates that both an increase
in pi and a decrease in c lower sender i’s best response, holding fixed the other sender’s strat-
egy. The equilibrium effects then depend on the cost structure. Under concealment cost, the
strategic complementarity established in Proposition 3 implies that a sender’s increased dis-
closure promotes the other’s. Thus, for changes in pi, the direct effect on sender i and the
indirect effect on j reinforce each other. For changes in c, the direct effects on both senders
and the indirect effects all go in the same direction. Under disclosure cost, the strategic sub-
stitution creates a tension: a sender who discloses more crowds out the other’s disclosure.
For changes in pi, which directly affect only sender i’s best response, the direct effect domi-
nates and the equilibrium comparative statics are unambiguous. But since the message cost
is common to both senders, a change in c has a direct effect of shifting both best responses in
the same direction, while inducing offsetting indirect effects, and the net effect on equilibrium
thresholds is ambiguous. In particular, a reduction in the disclosure cost can (strictly) reduce
DM welfare, as illustrated in Appendix A.2.14

One can view the single-sender game with sender i as a two-sender game where the other
sender is never informed (i.e., pj = 0). A comparison of the single-sender and two-sender
games is then a corollary of Proposition 3 and Proposition 4, as follows.

Corollary 1. Assume both senders are upward biased. Let ŝ0i denote the unique (resp., smallest)
equilibrium threshold in the single-sender game with i when c ≤ 0 (resp., c > 0).

1. If c = 0, then (ŝ01, ŝ
0
2) is the unique equilibrium in the two-sender game. The DM’s welfare is

strictly higher in the two-sender game than in either single-sender game.

14 If we had instead allowed for a sender-specific cost ci, then a decrease in the disclosure cost ci > 0 would
have the same unambiguous overall effects as an increase in pi. As symmetric changes in the message cost for
both senders are quite natural (e.g., when message costs are viewed as an institutional or policy parameter), we
think it is interesting that a common decrease in disclosure cost has an ambiguous effect.
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2. If c < 0, then every equilibrium in the two-sender game is weakly smaller than (ŝ01, ŝ
0
2), with

equality if and only if ŝ01 = ŝ02 = s. The DM’s welfare is strictly higher in any equilibrium of the
two-sender game than in either single-sender game.

3. If c > 0, then every equilibrium in the two-sender game is weakly larger than (ŝ01, ŝ
0
2), with

equality if and only if ŝ01 = ŝ02 = s. The DM’s welfare in the best equilibrium of the two-sender
game may be higher or lower than in the best equilibrium of either single-sender game.

Part 1 of Corollary 1 follows from part 1 of Proposition 3. When c = 0, the best response of
each sender is to use the same disclosure threshold as in the single-sender setting, regardless
of the other sender’s strategy. Since the DM receives two messages instead of just one, and
the probability distribution of these messages remain the same as in the single-sender game,
she is better off when facing both senders than when facing either sender alone.

Part 2 of Corollary 1 can be obtained by considering the worst equilibrium of the two-
sender game. When there is a concealment cost (c < 0), let s∗(pi, pj) represent the vector of dis-
closure thresholds in the worst equilibrium. Proposition 4 implies that s∗i (pi, pj) ≤ s∗i (pi, 0) =

ŝ0i and s∗j(pi, pj) ≤ s∗j(0, pj) = ŝ0j . Thus s∗(pi, pj) is weakly smaller than (ŝ0i , ŝ
0
j), and hence every

equilibrium is weakly smaller than (ŝ0i , ŝ
0
j). It follows that the DM’s welfare is higher than in

the unique equilibrium of the single-sender game with either sender. This higher welfare is
due to both a direct effect of receiving information from an additional sender, and an indirect
effect wherein each sender is now disclosing more than in the single-sender setting.

Finally, when there is a disclosure cost (c > 0), let si∗(pi, pj) represent the i-maximal equi-
librium and sj∗(pi, pj) represent the j-maximal equilibrium. In any equilibrium, i’s thresh-
old is at least as large as sj∗i (pi, pj) ≥ sj∗i (pi, 0) = ŝ0i , where the inequality is by part 2 of
Proposition 4. Analogously, sender j’s threshold in any equilibrium is at least as large as
si∗j (pi, pj) ≥ si∗j (0, pj) = ŝ0j . Thus, both senders are (weakly) less informative than in the
DM’s best equilibrium of the single-sender game. The overall welfare comparison between
the two-sender game and the single-sender game is generally ambiguous. While adding a
second sender has a direct effect of increasing the DM’s information, there is an adverse indi-
rect effect due to the strategic substitution in disclosure of the other sender. It is possible the
net effect can (strictly) reduce the DM’s welfare—even when the two senders have opposing
biases, which is often thought to particularly promote information disclosure. We provide an
explicit example with a familiar quadratic loss function for the DM in Appendix A.2.

Discussion. The assumption of conditionally independent signals is important for our ana-
lytical methodology. Without it, we cannot directly apply the IVP result from Kartik, Lee, and
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Suen (2021). If signals were conditionally correlated, then upon nondisclosure, sender i and
the DM would disagree not only on the probability assessment of the states but also on the
experiment corresponding to sender j’s message. A general analysis appears intractable. We
illustrate in Appendix A.3 how our conclusions change under a very different information
structure: perfectly correlated signals.15 Another important assumption to apply the IVP re-
sult is that each sender has linear preferences. Appendix A.4 discusses how our result under
c = 0 extends to non-linear preferences and how our results under c ̸= 0 may or may not hold
under non-linear preferences.

5. Extensions

5.1. Many Senders

Our results readily generalize to any finite number of senders. Suppose in addition to senders
i and j, there are K other senders, all of whom receive conditionally independent signals and
simultaneously send messages to the DM. Let m represent the collection of these K mes-
sages. Then, sender i’s posterior belief given his own signal si, sender j’s message mj , and
the K other senders’ messages m is β(mj,m, si) = β(mj, β(m, si)), where we abuse notation
and use β(·, µi) to denote i’s posterior from updating belief µi on any collection of messages,
suppressing the parameters needed to interpret those messages. The foregoing equality re-
flects that updating on mj and m jointly is equivalent to updating first on m and then on
mj . The DM’s belief given the K senders’ messages m and given nondisclosure by sender i
is η(ŝi, pi, β(m, π)). Thus, by the law of iterated expectations, the expected payoff for sender i
from concealing his signal is

E
[
Eŝj ,pj

[
T (β(mj, β(m, si)), η(ŝi, pi, β(m, π)), β(m, si)) | m

]]
,

where the inside conditional expectation (given m) is taken over the distribution of mj , while
the outside expectation is taken over the distribution of m generated from the equilibrium
strategies of the K senders.

Given any message profile m, the transformation T (·) is the same as that in the two-sender
case, with the common prior π replaced by β(m, π). Moreover, because the order of updating
on m and on i’s nondisclosure can be interchanged, the direction of disagreement between

15 Bhattacharya and Mukherjee (2013) and Emons and Fluet (2019) both study multi-sender disclosure with
perfectly correlated signals. Bhattacharya and Mukherjee (2013) assume no message costs (c = 0) and find that
adding senders can reduce DM welfare, but only if senders have non-monotonic preferences. Emons and Fluet
(2019) assume a disclosure cost (c > 0) and find that the DM can sometimes benefit from barring one sender.
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sender i’s belief and the DM’s nondisclosure belief is the same for every realization of m.
Since our results hold for any π, the logic of strategic substitution or strategic complementarity
continues to apply. In particular, when c < 0, sender i’s expectation of the DM’s posterior
conditional on m increases in ŝj and decreases in pj for any m. Consequently, i’s expected
payoff from nondisclosure also increases in ŝj and decreases in pj . Thus disclosures by any
two senders are strategic complements. Similarly, with a disclosure cost (c > 0), disclosures
are strategic substitutes.

It follows from these observations that when there is either no message cost or a conceal-
ment cost (c ≤ 0), the DM always benefits from having more senders to supply her with
information. When there is a disclosure cost (c > 0), on the other hand, an increase in the
number of senders has ambiguous effects on each sender’s disclosure threshold, and can lead
to either an increase or decrease in the DM’s welfare.

5.2. Sequential Reporting

The key insight from our analysis of simultaneous disclosure extends to sequential disclosure.
For concreteness, consider a two-sender game in which both senders are upward biased but
disclosure is sequential: sender 1 reports first and his message m1 is made public to both the
DM and sender 2 before sender 2 submits his report. Sender 2 now effectively faces a single-
sender problem in which he and the DM share a common prior, say β(m1, π), which is an
equilibrium object. Proposition 2 implies that sender 2 will adopt a disclosure threshold ŝ02

that decreases in p2.

Consider now the disclosure decision of sender 1 when the DM conjectures that he is
using a disclosure threshold ŝ1, with corresponding nondisclosure belief η(ŝ1, p1, π). If sender
1 discloses his signal s1, his expectation of the DM’s posterior belief is simply s1. If he chooses
nondisclosure, his expectation is Eŝ02,p2

[T (β(m2, s1), η(ŝ1, p1, π), s1)]. Since sender 2 discloses
more when he is better informed, a higher p2 makes the message m2 more informative, both
directly through a higher probability of sender 2 getting a signal and indirectly through a
lower disclosure threshold ŝ02. IVP implies that sender 1 expects the DM’s belief to move
away from η(ŝ1, p1, π) toward s1. The same logic that establishes Proposition 4 therefore gives
the following result, whose proof is omitted.

Proposition 5. Consider sequential disclosure and assume sender 1, the first mover, is upward biased.
If c > 0 (resp., c < 0), a higher p2 weakly increases (resp., weakly reduces) the equilibrium disclosure
threshold of sender 1 in the equilibria with the highest and lowest thresholds for sender 1.

An immediate corollary to Proposition 5 is that, given a concealment cost, the first sender
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discloses more than he does in a single-sender setting. As a result, the DM is always better off
in a sequential game than with the first sender alone. On the other hand, a welfare comparison
between the sequential- and simultaneous-move games is generally ambiguous.

We also note that if c = 0 the irrelevance result still holds for sender 1: his disclosure
threshold under sequential reporting coincides with that from his single-sender problem. The
disclosure threshold chosen by the second sender, however, depends on sender 1’s message;
as it depends nonlinearly on the belief induced by that message, it can be higher or lower—
even on average, ex ante—than sender 2’s single-sender disclosure threshold.

5.3. Changes in Signal Precision

Our main results—Proposition 3 and Proposition 4—consider changes in a sender’s informa-
tiveness via the probability of being informed, pi. We now explain how these insights extend
to the intensive margin: the quality of a sender’s information conditional on being informed.

Suppose that when informed, sender i’s signal or private belief is drawn from a distri-
bution indexed by a precision parameter ρ ∈ R. It is convenient to now characterize the
information structure directly by the unconditional distribution of beliefs, F ρ(s) with density
fρ(s). Combined with the prior π, Bayes’ rule uniquely determines the state-contingent signal
distributions. We assume differentiability of F ρ and fρ in ρ, and that higher precision yields
a rotation of the signal distribution around the prior in the sense of Johnson and Myatt (2006):
sign [∂F ρ(s)/∂ρ] = sign [π − s]. This implies, in particular, that a higher ρ corresponds to a
mean-preserving spread of F ρ (and hence more information in the Blackwell sense).

The comparative statics of precision on strategic behavior operates through the same chan-
nel as the probability of being informed. Recall that by Proposition 2, an increase in the prob-
ability of being informed, pi, makes sender i disclose more (lowers i’s equilibrium threshold,
given upward bias); this is because increasing pi makes the nondisclosure belief less favorable,
making concealment less attractive. If increasing sender i’s precision has the same directional
effect on the nondisclosure belief, then that logic carries over, and consequently the compar-
ative statics of Proposition 3 and Proposition 4 also follow. So, the key question is: does
increasing precision lower the nondisclosure belief?

We can study that by considering the effects of local changes in precision. Adapting the
nondisclosure belief from Equation 2—dropping the dependence on π and pi to ease notation,
and instead adding the dependence on ρ—and differentiating, we obtain

sign

[
∂

∂ρ
η(ŝ, ρ)

]
= sign

[
(ŝ− η(ŝ, ρ))

∂

∂ρ
F ρ(ŝ)−

∫ ŝ

s

∂

∂ρ
F ρ(s)ds

]
. (6)
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(Remark 1 in the Appendix details the derivation.) The integral on the right-hand side of
Equation 6 is nonnegative by the mean-preserving spread of a higher ρ. So it is the other term
that needs attention.

Consider first a concealment cost (c < 0). We know that in this case sender i’s equilibrium
disclosure threshold ŝi satisfies ŝi < η(ŝi, ·), and hence by Lemma 1, ŝi < π. Consequently,
the first term on the right-hand side of (6) is negative because ∂

∂ρ
F ρ(ŝi) > 0 by the rotation

property. Both terms of the right-hand side of (6) thus work in the same direction: increasing
precision lowers the nondisclosure belief. The logic of strategic complements under conceal-
ment cost therefore extends.

Turning to a disclosure cost (c > 0), sender i’s equilibrium threshold now satisfies ŝi >
η(ŝi, ρ). If ŝi > π (as is assured, for example, if c is large enough) then the rotation property
implies ∂

∂ρ
F ρ(ŝi) < 0, and it follows that (6) is negative. However, in general it is possible

that ŝi < π. Then ∂
∂ρ
F ρ(ŝi) > 0 and so (ŝ− η(ŝi, ρ))

∂F ρ(ŝ)
∂ρ

> 0, which means we have offset-
ting effects in the right-hand side of (6). A further assumption is needed to ensure that the
nondisclosure belief decreases. It is sufficient that the improvement in precision satisfies a
decreasing likelihood ratio property on the lower half of the private-belief space: for s < s′ < π,
the ratio fρ(s′)/fρ(s) is decreasing in ρ. This property holds in common parametric families
of distributions.16 Intuitively, it ensures that an increase in precision shifts probability mass
relatively more towards extreme signals/beliefs rather than ones near the threshold ŝi, and so
the downward pull of the integral term on the right-hand side of (6) outweighs the upward
pull of the first term when ŝi < π; see Remark 2 in the Appendix for a formal verification.
Increasing precision then lowers the nondisclosure belief no matter the disclosure threshold,
and consequently, the logic of strategic substitutes under disclosure cost extends.

5.4. Uncertain Bias

Our main themes about strategic complements or substitutes also hold when senders’ biases
are not common knowledge. Let us sketch why.

Suppose that each sender’s direction of bias is drawn independently and is his private

16 For example, with a symmetric Beta distribution of beliefs (so the prior π = 1/2) with parameter 1/ρ > 0,
we have fρ(s) ∝ [s(1− s)]1/ρ−1, and hence

fρ (s′)

fρ(s)
=

[
s′ (1− s′)

s(1− s)

]1/ρ−1

.

For s < s′ < 1/2, the term in square brackets exceeds 1, which implies the desired monotonicity in ρ. One can
also check that the monotonicity holds for the distribution of beliefs derived from an underlying Normal signal
structure, i.e., where the belief s(y) is computed from a primitive signal y = ω + ε, with ε ∼ N (0, 1/ρ).

20



information: with probability λ a sender is upward biased (bi = 1), a U -type, and with proba-
bility 1− λ is downward biased (bi = −1), a D-type. The parameter λ is common knowledge;
it is straightforward to allow it to be a sender-specific λi at the cost of more notation. The rest
of the model is unchanged from Section 2.

Consider first the single-sender benchmark. The U -type uses a threshold su, disclosing sig-
nals above su, while the D- type uses a threshold sd, disclosing signals below sd. Let η(su, sd)
denote the DM’s nondisclosure belief, which depends on both thresholds.17 The indifference
conditions (assuming interior thresholds, for simplicity) are:

su − c = η(su, sd) and − sd − c = −η(su, sd).

Together these imply su = sd + 2c, and equilibrium reduces to a fixed point of one variable.
When c > 0, we have su > sd, implying an interval (sd, su) of signals that neither type dis-
closes; when c < 0, we have su < sd, and the disclosure regions overlap on (su, sd).

Now consider what happens when the DM receives some exogenous information simul-
taneously, or subsequently, to the single sender’s disclosure. This conveys the key intuition
of the effects of a second sender. The IVP logic driving Lemma 3 still applies, but with a
twist: each sender type expects a different direction of DM’s belief revision, yet both types’
incentives move in the same direction. Specifically, consider first a disclosure cost (c > 0).
As the U -type has su > η, IVP implies that the threshold U -type expects information to pull
the DM’s nondisclosure belief upward toward su. Conversely, the threshold D-type expects
a downward revision towards sd. Crucially though, given their opposing biases, this means
that both types expect the additional information after concealment to generate (on average)
a favorable revision. Consequently, concealment becomes more attractive for each type, while
there is no change in the expected payoff from disclosure. This is the logic underlying strate-
gic substitutes in our baseline model.

With a concealment cost (c < 0), matters flip. Now, since su < η(su, sd) and sd > η(su, sd),
the U -type expects the additional information to pull the DM’s nondisclosure belief down-
ward, while the D-type expects an upward revision. So both types expect unfavorable re-
visions upon nondisclosure, making concealment less attractive for each. This is the logic
underlying strategic complements in the baseline model.

17 Analogously to Equation 2, we now have

η(su, sd) :=
(1− p)π + λpFπ(su)Eπ[s | s < su] + (1− λ)p(1− Fπ(sd))Eπ[s | s > sd]

(1− p) + λpFπ(su) + (1− λ)p(1− Fπ(sd))
.
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The upshot is that despite uncertainty about a sender’s bias, the cost structure determines
the impact of strategic interaction just as earlier—even though the two sender types expect
the DM’s belief revision to go in opposite directions after nondisclosure.

6. Conclusion

This paper has studied multi-sender persuasion when senders can reveal or conceal private
information at a cost. Our central insight is that the nature of these costs—whether they
are, on net, attached to disclosure or to concealment—fundamentally shapes the strategic
interaction among senders.

When concealment is costly, senders’ disclosures are strategic complements: each sender
discloses more aggressively when others do the same. When disclosure is costly, disclosures
are instead strategic substitutes. The common mechanism owes to disagreement between
the threshold sender type and the DM upon nondisclosure, and that each sender expects (on
average) others’ messages to reduce that disagreement gap. Under a concealment cost, the
threshold sender type has a less favorable belief than the DM’s nondisclosure belief; the gap
offsets the cost of concealment. This type thus expects additional senders’ messages to move
the DM’s nondisclosure belief less favorably, which makes concealment less attractive. The
logic reverses under a disclosure cost, making disclosure less attractive.

These findings imply that in the model we study, the conventional wisdom that competi-
tion among information sources promotes disclosure and benefits decision makers holds un-
der no message costs or concealment costs, but can fail under disclosure costs. With disclosure
costs, adding senders can actually reduce DM welfare. Similarly, lowering those costs—while
beneficial in a single-sender setting—can reduce DM welfare with multiple senders. While
these welfare effects may be reminiscent of free-rider considerations, the current logic is dis-
tinct and stems from how the DM interprets silence; the contrast with free-riding is sharpened
by noting the DM’s indirect benefit from additional senders under concealment cost. The up-
shot is that policymakers seeking to enhance information provision should attend not just
to the number of information sources but to the underlying cost structure governing their
communication.

Disclosure costs are likely prominent when information provision requires significant prepa-
ration or legal review, or when it risks revealing proprietary knowledge; salient contexts in-
clude litigation discovery or financial disclosures that may inform competitors. Concealment
costs may dominate when suppression risks ex-post penalties or reputational damage, or
when legal duties to disclose apply; relevant settings include Brady obligations in prosecu-
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tion, fiduciary duties in financial advising, or duty-to-disclose regimes in securities and real
estate. Our analysis suggests that expanding the number of information sources is unambigu-
ously beneficial in the latter settings but may backfire in the former.

Finally, while we have framed our discussion in terms of multiple strategic senders, our
analysis applies just as well if there is only one strategic sender and the DM receives addi-
tional information from an arbitrary other source (cf. Subsection 5.4). So, for instance, when
the sender bears a disclosure cost, the DM can be hurt by the option to freely acquire a limited
amount of information; she may prefer to tie her hands ex ante to not do so.

A. Appendix

A.1. Proofs

Proof of Lemma 1. Partially differentiating (2) with respect to the first argument yields

∂η(ŝ, p, π)

∂ŝ
=

−p(1− p)fπ(ŝ)

(1− p+ pFπ(ŝ))2
(π − Eπ[s | s < ŝ]) +

pFπ(ŝ)

1− p+ pFπ(ŝ)

fπ(ŝ)

Fπ(ŝ)
(ŝ− Eπ[s | s < ŝ])

=
pfπ(ŝ)

1− p+ pFπ(ŝ)

(
−(1− p)

1− p+ pFπ(ŝ)
(π − Eπ[s | s < ŝ]) + (ŝ− Eπ[s | s < ŝ])

)
=

pfπ(ŝ)

1− p+ pFπ(ŝ)
(ŝ− η(ŝ, p, π)) .

Hence, sign [∂η(ŝ, p, π)/∂ŝ] = sign [ŝ− η(ŝ, p, π)]. Part 1 of the lemma follows from the obser-
vation that for any p and π, we have η(s, p, π) = η(s, p, π) = π ∈ (s, s).

Partially differentiating (2) with respect to the second argument and simplifying yields

∂η(ŝ, p, π)

∂p
=
Fπ(ŝ) (Eπ[s | s < ŝ]− π)

(1− p+ pFπ(ŝ))
2 ,

which proves part 2 because Eπ[s | s < ŝ] < π if and only if ŝ < s, and Fπ(ŝ) > 0 if and only if
ŝ > s.

Proof of Proposition 1. We prove each part in turn.

Part 1: Consider an interior threshold ŝ0i ∈ (s, s). The sender with signal ŝ0i must be indif-
ferent between disclosing (with payoff ŝ0i−c) and concealing (with payoff η(ŝ0i , pi, π)), yielding
condition (i). Now consider the boundary case ŝ0i = s. Then the nondisclosure belief is the
prior π, and since even the lowest type is willing to disclose, we must have π ≤ s − c. In
the other boundary case, ŝ0i = s, the nondisclosure belief is again the prior π, and since even
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the highest type is willing to conceal, we must have π ≥ s − c. Conversely, any threshold
satisfying these conditions constitutes an equilibrium by standard verification.

Part 2: Assume c ≤ 0. Then the boundary s cannot be an equilibrium threshold, as π <

s − c. So equilibrium thresholds are either interior or s. If s − c < π = η(s, pi, π), then any
equilibrium must have an interior threshold ŝ and hence satisfy η(ŝ, pi, π) = ŝ − c ≥ ŝ. Since
η(·, pi, π) is strictly decreasing in the region where η(s, pi, π) ≥ s (by Lemma 1), and the line
s− c is increasing in s, there is only one solution to η(ŝ, pi, π) = ŝ− c. If instead s− c ≥ π, then
s is an equilibrium threshold; moreover, s > s implies s− c > η(s, pi, π)—because η(·, pi, π) is
quasiconvex by Lemma 1 and η(s, pi, π) = η(s, pi, π)—and hence there is no other equilibrium.
Finally, when c = 0, we have s− c = s < π, so the unique equilibrium is interior; it is the fixed
point of η(·, pi, π).

Part 3: When c > 0, an interior equilibrium threshold ŝ requires η(ŝ, pi, π) = ŝ − c < ŝ,
placing solutions in the region where η is strictly increasing (by Lemma 1). As noted in the
“validity” claim in fn. 7, parameters can be chosen so that η(·, pi, π) has slope exceeding one
at some points in this region; for sufficiently small c > 0, the line s − c then crosses η(s, pi, π)
multiple times, as illustrated in Figure 1. It remains to explain the validity claim in fn. 7.
Given any such quasiconvex function ψ, set π = ψ(s). The nondisclosure belief formula
(2) then becomes a first-order ordinary differential equation in Fπ with boundary condition
Fπ(s) = 0; quasiconvexity of ψ ensures the solution is monotone. The probability p is chosen
to scale the solution so that Fπ(s) = 1.

Proof of Proposition 2. We prove only the first part of the proposition; the second part is
analogous and omitted. Fix any pi > p̃i and let ŝ0i and s̃0i denote the corresponding high-
est equilibrium thresholds. Suppose, to contradiction, that ŝ0i > s̃0i . Since s̃0i is the highest
equilibrium threshold at p̃i, it holds for any ŝ > s̃0i that η(ŝ, p̃i, π) < ŝ − c. But η(ŝ, p, π) is
weakly decreasing in p (Lemma 1), so for any ŝ > s̃0i , we have η(ŝ, pi, π) < ŝ− c. This implies
ŝ0i ≤ s̃0i , a contradiction. A similar argument establishes the result for the lowest equilibrium
threshold.

Proof of Lemma 2. Fix any equilibrium and any sender i. Let j ̸= i. It suffices to show that
the difference in i’s expected payoff from disclosing versus concealing is strictly increasing in
si. The expected payoff from disclosing is si−c, because the expected posterior of the DM after
i discloses si is si. Denote the expected payoff from concealing as E[βDM(mj,mi = ϕ)], where
βDM(mj,mi = ϕ) is the DM’s equilibrium belief following any message mj and nondisclosure
by i, and the expectation is over mj given i’s beliefs under si. Because mj is uncorrelated with
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si conditional on the state, and i’s belief about the state given signal si is si, we have

E
[
βDM(mj,mi = ϕ)

]
= siE

[
βDM(mj,mi = ϕ) | ω = 1

]
+ (1− si)E

[
βDM(mj,mi = ϕ) | ω = 0

]
.

The derivative of the right-hand side above with respect to si is strictly less than one because
E
[
βDM(mj,mi = ϕ) | ω = 1

]
< 1, as beliefs lie in [0, 1] and mj cannot perfectly reveal the state.

Therefore, the payoff difference (si − c)− E
[
βDM(mj,mi = ϕ)

]
is strictly increasing in si.

Proof of Lemma 3. Given any pj , pi, and ŝj , Equation 4 tells us that U(si, pi, ŝj, pj)—which,
recall, is shorthand for U(si, si, pi, ŝj, pj)—is i’s expectation of the DM’s belief under interim
beliefs si for i and η(si, pi, π) for the DM.

Part 1 of the lemma follows directly from the IVP theorem of Kartik, Lee, and Suen (2021,
Theorem 1). Note that the theorem’s ordering assumptions—likelihood-ratio ordered priors
and MLRP experiments—are automatically satisfied with a binary state, as in the current
model. The strict inequalities in the consequents of part 1 hold because j’s message is not
fully informative of the state. The weak inequalities are strict if and only if j’s message is
informative, i.e., if and only if ŝj < s.

For part 2 of the lemma, observe that the message under (ŝj, pj) is a garbling of the message
under (ŝ′j, p

′
j) whenever p′j ≥ pj and ŝ′j ≤ ŝj . To see this, note that any message m′

j under
(ŝ′j, p

′
j) can be garbled to produce message mj as follows:

mj =

ϕ if m′
j = ϕ or m′

j ∈ [ŝ′j, ŝj),

m′
j with prob. pj/p′j or ϕ with prob. 1− pj/p

′
j if m′

j ≥ ŝj.

In each state, the distribution of mj as constructed is the same as the distribution of sender
j’s message under (ŝj, pj). The IVP theorem (Kartik, Lee, and Suen, 2021, Theorem 1) then
implies that i’s expected posterior under the more informative (ŝ′j, p′j) is closer to si than under
(ŝj, pj). Equality holds if and only if the two messages are equally informative, which occurs
when ŝ′j = ŝj and either p′j = pj or ŝj = s.

Proof of Proposition 3. Recall the transformation T (βi, µDM , µi) from (3). It is increasing in
µDM . Lemma 1 shows that η(si, pi, π) is decreasing in pi. Hence, sender i’s payoff from con-
cealing any candidate threshold signal si (with the threshold correctly anticipated by the DM)
is

U(si, pi, ŝj, pj) = Eŝj ,pj

[
T (β(mj, ŝj, pj, si), η(si, pi, π), si) | si

]
,
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which is decreasing in pi. The payoff from disclosure, si−c, does not depend on pi. Therefore,
an increase in pi makes concealment less attractive at any candidate threshold. Following the
same argument as in the proof of Proposition 2, if a threshold is not a best response at some
pi, then it is not at any higher pi, and hence the largest and smallest best-response thresholds
must decrease in pi.

We next turn to the enumerated parts of the proposition. Let ŝ0i be the unique (if c ≤ 0) or
smallest (if c > 0) equilibrium threshold in the single-sender game with i.

Part 1: Consider c = 0. Then ŝ0i is the fixed point of η(·, pi, π). Lemma 3 (part 1) implies
U(ŝ0i , pi, ŝj, pj) = ŝ0i , and so ŝ0i ∈ ŝBR

i (ŝj, pi, pj). We claim there is no other best-response
threshold. Suppose, to contradiction, that ŝ′ > ŝ0i and ŝ′ ∈ ŝBR

i (ŝj, pi, pj). Lemma 1 implies
η(ŝ′, pi, π) < ŝ′, and then Lemma 3 (part 1) implies U(ŝ′, pi, ŝj, pj) < ŝ′. Therefore, sender i
strictly prefers disclosure at signal ŝ′, a contradiction. A symmetric argument shows ŝ′ < ŝ0i

implies ŝ′ /∈ ŝBR
i (ŝj, pi, pj).

Part 2: Now consider c < 0. For any si > ŝ0i , the single-sender equilibrium condition
implies η(si, pi, π) < si − c. So U(si, pi, ŝj, pj) ≤ max{si, η(si, pi, π)} < si − c, where the first
inequality is by Lemma 3 (part 1). Hence si /∈ ŝBR

i (ŝj, pi, pj). Moreover, ŝ0i ∈ ŝBR
i (ŝj, pi, pj)

if and only if ŝ0i = s or ŝj = s; for otherwise, ŝ0i < U(ŝ0i , pi, ŝj, pj) < η(ŝ0i , pi, π) = ŝ0i − c

(the inequalities are by part 1 of Lemma 3, and the equality by the single-sender equilibrium
condition), which contradicts ŝ0i ∈ ŝBR

i (ŝj, pi, pj). This proves part 2(i) of the proposition. For
part 2(ii), note that for any si ∈ ŝBR

i (ŝj, pi, pj), we have si ≤ ŝ0i (as just shown), and hence
η(si, pi, π) > si by Lemma 1 and the single-sender equilibrium condition. By Lemma 3 (part
2), an increase in ŝj or a decrease in pj raises |U(si, pi, ŝj, pj)−si| = U(si, pi, ŝj, pj)−si, i.e., raises
sender i’s nondisclosure payoff. Following the same argument as in the proof of Proposition 2,
the largest and smallest best-response thresholds must increase.

Part 3: The proof for c > 0 is entirely symmetric to the previous part, once we note that si <
ŝ0i implies si − c < η(si, pi, π) because ŝ0i is defined as the smallest single-sender equilibrium
threshold.

Proof of Proposition 4. Consider first c ≤ 0. For each sender i, define

wp1,p2,c
i (ŝj) := min{ŝi | U(ŝi, pi, ŝj, pj) ≤ ŝi − c}.

(The minimum exists by continuity of U .) That is, wp1,p2,c
i (·) gives the smallest best response:

the smallest element of ŝBR
i (ŝj, pi, pj). Let wp1,p2,c := (wp1,p2,c

1 , wp1,p2,c
2 ), where wp1,p2,c

1 depends
on ŝ2 and wp1,p2,c

2 depends on ŝ1. By Proposition 3, wp1,p2 is increasing on [s, s]2. By Tarski’s
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fixed point theorem, the smallest fixed point

s∗(p1, p2, c) := min{(ŝ1, ŝ2) | wp1,p2,c(ŝ1, ŝ2) ≤ (ŝ1, ŝ2)}

exists. We show that s∗(p1, p2, c) is the smallest equilibrium threshold pair, i.e., the smallest
fixed point of the best-response correspondence (ŝBR

i , ŝBR
j ). Let s be any equilibrium. Since

each sender’s threshold is a best response, we have w(s) ≤ s. Monotonicity of w implies
w(s∗ ∧ s) ≤ w(s) ≤ s and w(s∗ ∧ s) ≤ w(s∗) ≤ s∗, where s ∧ s′ := (min{s1, s′1},min{s2, s′2}).
Thus w(s∗ ∧ s) ≤ s∗ ∧ s. The definition of s∗ as a minimum implies s∗ ≤ s∗ ∧ s, which implies
s∗ ≤ s.

By Proposition 3, each wp1,p2,c
i is decreasing in p1 and in p2 and increasing in c. Stan-

dard monotone comparative statics (e.g., Milgrom and Roberts, 1990, Theorem 6) imply that
s∗(p1, p2, c) is decreasing in p1 and p2 and increasing in c. A parallel argument to that above,
now using wp1,p2,c

i (ŝj) := sup{ŝi | U(ŝi, pi, ŝj, pj) ≥ ŝi − c} in place of wp1,p2,c
i , shows that the

largest equilibrium s∗(p1, p2, c) is also decreasing in each pi and increasing in c.

For c > 0, let yj := −ŝj and define w̃pi,pj ,c as a self-map on [s, s]× [−s,−s] by

w̃pi,pj ,c(ŝi, yj) := (w
pi,pj ,c
i (−yj),−w

pi,pj ,c
j (ŝi)).

By Proposition 3, wpi,pj ,c
i and wpi,pj ,c

j are both decreasing in each of their arguments; combined
with the sign changes in the definition of w̃pi,pj ,c, this implies w̃pi,pj ,c is monotone increasing.
The smallest fixed point of w̃pi,pj ,c minimizes (ŝi, yj) ≡ (ŝi,−ŝj), i.e., it minimizes ŝi while
maximizing ŝj , so it is the j-maximal equilibrium. Proposition 3 established that wpi,pj ,c

i is
decreasing in pi, while wpi,pj ,c

j is increasing in pi; hence both components of w̃pi,pj ,c are de-
creasing in pi. Monotone comparative statics imply the smallest fixed point decreases in pi.
The argument for the i-maximal equilibrium is symmetric, interchanging the roles of i and j.

Finally, we note that the effect of lower disclosure cost c > 0 on equilibrium thresholds is
ambiguous: it lowers both wpi,pj ,c

i and wpi,pj ,c
j , so the first component of w̃pi,pj ,c decreases while

the second increases. Example 2 in the Supplementary Appendix shows that either effect can
dominate, and that the implications for DM welfare can also go either way.

Remark 1. Here is the derivation of Equation 6. Differentiating (2) with respect to ρ yields
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(adopting the notational adjustments mentioned before Equation 6):

∂

∂ρ
η(ŝ, ρ) =

p

1− p+ pF ρ(ŝ)

[∫ ŝ

s

s
∂

∂ρ
fρ(s)ds− η(ŝ, ρ)

∂

∂ρ
F ρ(ŝ)

]
=

p

1− p+ pF ρ(ŝ)

∫ ŝ

s

(s− η(ŝ, ρ))
∂

∂ρ
fρ(s)ds (7)

=
p

1− p+ pF ρ(ŝ)

[
(ŝ− η(ŝ, ρ))

∂

∂ρ
F ρ(ŝ)−

∫ ŝ

s

∂

∂ρ
F ρ(s)ds

]
,

where the second equality uses ∂
∂ρ
F ρ(ŝ) =

∫ ŝ

s
∂
∂ρ
fρ(s)ds, and the third uses integration by parts

and F ρ(s) = 0. ⋄

Remark 2. Let us show formally that the decreasing likelihood ratio property ensures that (6)
is negative when ŝ ≡ ŝi ∈ (s, π). Let Lρ(ŝ) := EF ρ [s | s < ŝ] and observe that

sign

[
∂

∂ρ
η(ŝ, ρ)

]
= sign

[∫ ŝ

s

(s− η(ŝ, ρ))
∂

∂ρ
fρ(s)ds

]
= sign

[∫ ŝ

s

(s− Lρ(ŝ))
∂

∂ρ
fρ(s)ds+ (Lρ(ŝ)− η)

∂

∂ρ
F ρ(ŝ)

]
= sign

[
F ρ(ŝ)

∂

∂ρ
Lρ(ŝ) + (Lρ(ŝ)− η(ŝ, ρ))

∂

∂ρ
F ρ(ŝ)

]
, (8)

where the first equality is from (7) in Remark 1, the second equality adds and subtracts Lρ(ŝ)

and uses ∂
∂ρ
F ρ(ŝ) =

∫ ŝ

s
∂
∂ρ
fρ(s)ds, and the third equality follows from computing ∂

∂ρ
Lρ(ŝ). As

ŝ < π, we have ∂
∂ρ
F ρ(ŝ) > 0 (by the rotation property) and Lρ(ŝ) < π (by the definition of

Lρ). The latter inequality implies Lρ(ŝ) < η(ŝ, ρ), since the nondisclosure belief is a weighted
average of Lρ(ŝ) and π. Hence, (Lρ(ŝ)− η(ŝ, ρ)) ∂

∂ρ
F ρ(ŝ) < 0. So (8) is negative if ∂

∂ρ
Lρ(ŝ) < 0.

This inequality is assured by the decreasing likelihood ratio property, because that implies the
conditional distribution of signals on [s, ŝ] is stochastically dominated (in the first-order sense)
when ρ increases. Indeed, it is sufficient for higher ρ to yield reverse hazard rate domination
on [s, π], as that is equivalent to conditional stochastic dominance for all thresholds in the
relevant range (Shaked and Shanthikumar, 2007, (1.B.43) on page 37). ⋄

A.2. Welfare Examples

This appendix section substantiates Corollary 1 (part 3) and Proposition 4 (part 2) with two
examples when there is a disclosure cost. Example 1 demonstrates that the DM can be strictly
worse off facing two senders than facing either sender alone, while Example 2 demonstrates
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that when facing two senders, the DM’s welfare can be nonmonotonic in the disclosure cost.
Details verifying the claims for these examples are in the Supplementary Appendix.

Example 1. The prior is π = 1/2. The information structure is parametrized by γ ∈ (1/2, 1)

and δ ∈ (0, 1). There are four signals,18 with conditional probabilities in each state given by:

s sl sh s

ω = 0 1− δ γδ (1− γ)δ 0

ω = 1 0 (1− γ)δ γδ 1− δ

.

There is a cost of disclosure, c > 0. The DM chooses an action a ∈ [0, 1] to maximize −(a−ω)2.

As we equate signals with their posteriors on state 1,

s = 0 < sl = 1− γ < 1/2 < sh = γ < s = 1.

Because of the example’s discrete signals, a threshold sender strategy may now entail ran-
domization at one signal; with that caveat, equilibria must still be in threshold strategies.
Observe that—regardless of whether there are one or two senders, and regardless of whether
they are upward or downward biased—any sender must withhold the two signals that are
least favorable to him (i.e., s and sl if upward biased, and sh and s if downward biased) in
any equilibrium; this is because sl < π < sh. Also observe that by symmetry of the problem,
the DM’s payoff in the best equilibrium with a single sender does not depend on the direction
of that sender’s bias.

We now specialize to the parameters γ = 0.7, δ = 0.7, p1 = p2 = 0.8 ≡ p, and c = 0.36.

Claim 1.1. With a single upward-biased sender, the DM’s best equilibrium has the sender
disclosing sh and s and concealing s and sl. The DM’s expected payoff in this equilibrium is
−0.1864.

Claim 1.2. With two opposite-biased senders, the unique equilibrium has each sender dis-
closing his most favorable signal and concealing the other three signals. The DM’s expected
payoff in this equilibrium is −0.19.

Thus, the DM’s welfare in the best single-sender equilibrium is strictly higher than in the
unique equilibrium with two opposite-biased senders. ⋄

18 Although this violates our maintained assumption of continuous signals, one can perturb the example to
make it continuous while preserving the conclusion.
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Example 2. Now modify Example 1 to a higher cost c = 0.38, keeping all other parameters
the same.

Claim 2.1. When c = 0.38 (all other parameters unchanged from Example 1), there is an equi-
librium in which the DM’s welfare equals that of her best equilibrium from the single-sender
benchmark. Thus, a higher disclosure cost can improve DM welfare in the best equilibrium
with two senders.

Plainly, if the cost c is raised sufficiently high, then the only equilibrium involves no dis-
closure from either agent, which would yield the DM a lower welfare than in the two-sender
equilibrium from Example 1. The upshot is that the DM’s welfare (in her best equilibrium)
with two senders can be nonmonotonic in the disclosure cost. ⋄

Finally, although we omit the verification, we note that Example 1’s parameters can be
modified to demonstrate that the DM can be strictly worse off facing two similarly-biased
senders than facing either sender alone. That can be verified with parameters γ = 0.8, δ = 0.7,
p1 = p2 = 0.4, c = 0.385. The takeaway is that the message of Example 1 does not depend on
senders being biased in opposite directions.

A.3. Perfectly correlated signals

The assumption that senders have conditionally independent signals is important for our
analysis, as it permits us to apply the IVP result from Kartik, Lee, and Suen (2021).

Consider now the polar opposite case in which informed senders’ signals are perfectly
correlated and, for simplicity, there is no message cost (c = 0). Specifically, there is a single
signal s drawn from distribution F (s|ω), and each sender i is independently either informed
of s with probability pi or remains uninformed. This setting is effectively identical to the
“extreme agenda” case of Bhattacharya and Mukherjee (2013).19

If both senders are biased in the same direction, the model can be mapped to a single-
sender problem where the sender is informed with probability p1 + p2 − p1p2 > max{p1, p2}.20

19 They allow senders’ utility functions to be non-linear; the following discussion does not depend on lin-
earity. Note that Bhattacharya and Mukherjee (2013) assume, as we do, that whether a sender is informed is
independent of the other sender; see Bhattacharya, Goltsman, and Mukherjee (2018) for correlated information
endowments.

20 Perfect correlation implies there is only one relevant nondisclosure belief, viz., when both senders don’t
disclose. Senders with the same bias must use the same equilibrium threshold. Given any such threshold, the
nondisclosure belief is computed as in (2) (assuming upward bias), but with 1 − p replaced by the probability
that both senders are uninformed, i.e., (1− p1)(1− p2).

30



Proposition 2 then implies that each sender discloses more when there is an additional sender;
hence, the DM is always better off with two senders.

It is instructive to understand why our irrelevance result (Proposition 3, part 1) no longer
holds. Suppose both senders are upward biased and symmetric (p1 = p2 ≡ p). Let ŝ0 denote
the common single-sender threshold, so that η(ŝ0, p, π) = ŝ0. When sender j is added with
the hypothesis that he too discloses all signals weakly above ŝ0, type ŝ0 of sender i no longer
expects the DM’s belief to be ŝ0 should he conceal. Rather, he expects the DM’s belief to be
strictly lower: if j is informed, the DM’s belief will be ŝ0, but if j is uninformed, the DM’s
belief will be strictly lower because of nondisclosure from two senders rather than one. This
makes type ŝ0 strictly prefer disclosure. From the perspective of applying Kartik, Lee, and
Suen (2021)’s IVP result as in Lemma 3, the point is that under correlated signals, when an
informed sender i conceals, sender i and the DM do not agree on the experiment generated
by j’s message. Thus, even if the DM’s nondisclosure belief equals i’s belief (over the state),
i’s expectation of the DM’s posterior can differ.

Interestingly, welfare conclusions under perfectly correlated signals are very different
when senders have opposing biases. The following proposition shows that each sender dis-
closes strictly less than in his single-sender game.

Proposition 6. Assume perfectly correlated signals, no message cost, and that the two senders have
opposing biases. Each sender then discloses strictly less than in his single-sender game.

Proof. We prove it for the upward-biased sender; the argument is symmetric for the other
sender. Let sender 1 be upward biased and sender 2 be downward biased. Let ŝ01 denote
the single-sender threshold, i.e., η(ŝ01) = ŝ01, where we have suppressed the dependence of η
on p1. Write η(ŝ1, ŝ2) as the nondisclosure belief (in the event neither sender discloses) in the
two-sender game when the respective thresholds are ŝ1 and ŝ2. Although the DM’s updating
is not separable, it is clear that η(ŝ1, ŝ2) ≥ η(ŝ1), with equality if and only if ŝ2 = s. This
follows because the nondisclosure event is the union of: (i) m1 = m2 = ϕ and s2 = ϕ; and
(ii) m1 = m2 = ϕ and s2 > ŝ2. Conditional on the first event, the DM’s posterior is η(ŝ1);
conditional on the second, the posterior is larger (strictly if ŝ2 > s). Since η(ŝ1) ≥ ŝ1 for all
ŝ1 ≤ s01, it follows that for any ŝ2 > s, if the DM conjectures thresholds (ŝ1, ŝ2), then sender
1 with signal s1 = ŝ1 strictly prefers nondisclosure to disclosure. Therefore, since sender 2
uses a threshold strictly larger than s in any equilibrium, any equilibrium involves sender 1’s
threshold being strictly larger than ŝ01.

Thus, despite no message costs and the increased availability of information, overall dis-
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closure is not more informative in the Blackwell sense than under either single-sender prob-
lem. Consequently, there exist DM preferences such that she strictly prefers to face either
sender alone rather than both simultaneously. This implies that the welfare conclusion in
Corollary 2 of Bhattacharya and Mukherjee (2013) can be reversed under alternative DM pref-
erences.

In general, for an arbitrary message cost c, an interior equilibrium (ŝ1, ŝ2) requires

Pr[m2 ̸= ϕ | s1 = ŝ1, ŝ2]ŝ1 + Pr[m2 = ϕ | s1 = ŝ1, ŝ2]η(ŝ1, ŝ2) = ŝ1 − c,

or equivalently,
(ŝ1 − η(ŝ1, ŝ2)) =

c

Pr
[
m2 = ϕ | s1 = ŝ1, ŝ2

] .
Thus, when c ≥ 0, using η(ŝ1, ŝ2) > η(ŝ1) (strict by interiority of ŝ2), it follows that ŝ1 > η(ŝ1).
Furthermore, for any c ≥ 0, there is an equilibrium in which ŝ1 is weakly larger than the
largest single-sender equilibrium; this is consistent with Emons and Fluet’s (2019) finding
that with a disclosure cost (c > 0), the DM might be better off by barring one sender. With a
concealment cost (c < 0), the comparison between equilibrium thresholds with two senders
versus one sender is ambiguous.

A.4. Non-linear utility functions

Another important assumption to straightforwardly apply the IVP result from Kartik, Lee,
and Suen (2021) is that each sender has linear preferences. Suppose, more generally, that
sender i’s utility is given by some function Vi(βDM). The comparative statics of sender i’s
disclosure depend on how

E
[
Vi(T (βi, µDM , µi))

]
− E

[
Vi(βi)

]
(9)

varies across Blackwell-comparable experiments, where the expectation is over the posterior
βi using i’s beliefs and T (·) is the transformation in (3). When Vi(·) is linear, the second term
in (9) is constant across experiments, and the IVP result tells us that the sign of the change
in the first term is determined by the sign of µi − µDM , i.e., the disagreement in the interim
beliefs. Unambiguous comparative statics of (9) cannot be obtained for arbitrary Vi(·). How-
ever, because T (βi, µ, µ) = βi for any βi and µ, the logic behind our irrelevance result extends
quite generally:

Proposition 7. If c = 0 and Vi(·) is strictly monotone, then no matter j’s disclosure strategy, the
best-response threshold for i is the same as when he is a single sender.
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Proof. Denote r := 1−µDM

µDM

µi

1−µi
, and define W (β, r) := Vi(T (β, r)) − Vi(β), where T (β, r) :=

β
β+(1−β)r

is shorthand for T (β, µDM , µi). When Vi(·) is strictly monotone and c = 0, i’s best-
response threshold must satisfy E[W (·, r)] = 0 when r is determined by i’s threshold type and
the DM’s nondisclosure belief.

When r = 1, we have for any β that T (β, 1) = β and hence W (β, 1) = 0. Because T (β, r)
is strictly decreasing in r for all interior β, any experiment that is not fully informative has
E[W (·, r)] = 0 if and only if r = 1. Thus, no matter j’s disclosure strategy (so long as it is
not fully informative, which it cannot be since pj < 1), i’s best-response threshold is such
that r = 1, i.e., the DM’s nondisclosure belief equals i’s threshold type. But this is the same
condition as in the single-sender game.

When c ̸= 0, there are non-linear specifications for Vi(·) under which our themes about
strategic complementarity under concealment cost or substitutability under disclosure cost
do extend, and there are other specifications which make conclusions ambiguous or even
reversed. We illustrate in the Supplementary Appendix through a family of power utility
functions.
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ALONSO, R. AND O. CÂMARA (2016): “Bayesian Persuasion with Heterogeneous Priors,”
Journal of Economic Theory, 165, 672–706.

AU, P. H. AND K. KAWAI (2020): “Competitive Information Disclosure by Multiple Senders,”
Games and Economic Behavior, 119, 56–78.

AUMANN, R. J. (1976): “Agreeing to Disagree,” Annals of Statistics, 4, 1236–1239.

BATTAGLINI, M. (2002): “Multiple Referrals and Multidimensional Cheap Talk,” Economet-
rica, 70, 1379–1401.

BHATTACHARYA, S., M. GOLTSMAN, AND A. MUKHERJEE (2018): “On the Optimality of
Diverse Expert Panels in Persuasion Games,” Games and Economic Behavior, 107, 345–363.

33



BHATTACHARYA, S. AND A. MUKHERJEE (2013): “Strategic Information Revelation when Ex-
perts Compete to Influence,” RAND Journal of Economics, 522–544.

BOURJADE, S. AND B. JULLIEN (2011): “The Roles of Reputation and Transparency on the
Behavior of Biased Experts,” RAND Journal of Economics, 42, 575–594.

CARLIN, B. I., S. W. DAVIES, AND A. IANNACCONE (2012): “Competition, Comparative Per-
formance, and Market Transparency,” American Economic Journal: Microeconomics, 4, 202–37.

DAHM, M., P. GONZALES, AND N. PORTEIRO (2009): “Trials, Tricks and Transparency: How
Disclosure Rules Affect Clinical Knowledge,” Journal of Health Economics, 28, 1141–1153.

DAUGHETY, A. AND J. REINGANUM (2018): “Evidence Suppression by Prosecutors: Viola-
tions of the Brady Rule,” Journal of Law, Economics, and Organization, 34, 475–510.

DEMARZO, P. M., I. KREMER, AND A. SKRZYPACZ (2019): “Test Design and Minimum Stan-
dards,” American Economic Review, 109, 2173–2207.

DEWATRIPONT, M. AND J. TIROLE (1999): “Advocates,” Journal of Political Economy, 107, 1–39.

DRANOVE, D. AND G. Z. JIN (2010): “Quality Disclosure and Certification: Theory and Prac-
tice,” Journal of Economic Literature, 48, 935–63.

DYE, R. A. (1985): “Disclosure of Nonproprietary Information,” Journal of Accounting research,
23, 123–145.

——— (2017): “Optimal Disclosure When There are Penalties for Nondisclosure,” RAND Jour-
nal of Economics, 48, 704–732.

ECHENIQUE, F. (2002): “Comparative Statics by Adaptive Dynamics and the Correspondence
Principle,” Econometrica, 70, 833–844.

ELLIOTT, M., B. GOLUB, AND A. KIRILENKO (2014): “How Better Information Can Garble
Experts’ Advice,” American Economic Review, 104, 463–468.

EMONS, W. AND C. FLUET (2019): “Strategic Communication with Reporting Costs,” Theory
and Decision, 87, 341–363.

GALPERTI, S. (2019): “Persuasion: The Art of Changing Worldviews,” American Economic
Review, 109, 996–1031.

34



GENTZKOW, M. AND E. KAMENICA (2014): “Costly Persuasion,” American Economic Review,
104, 457–462.

——— (2017): “Competition in Persuasion,” Review of Economic Studies, 84, 300–322.

GROSSMAN, S. J. AND O. D. HART (1980): “Disclosure Laws and Takeover Bids,” Journal of
Finance, 35, 323–334.

HAGENBACH, J., F. KOESSLER, AND E. PEREZ-RICHET (2014): “Certifiable Pre-Play Commu-
nication: Full Disclosure,” Econometrica, 82, 1093–1131.

JOHNSON, J. P. AND D. P. MYATT (2006): “On the Simple Economics of Advertising, Market-
ing, and Product Design,” American Economic Review, 96, 756–784.

JOVANOVIC, B. (1982): “Truthful Disclosure of Information,” Bell Journal of Economics, 13, 36–
44.

JUNG, W.-O. AND Y. K. KWON (1988): “Disclosure When the Market is Unsure of Information
Endowment of Managers,” Journal of Accounting Research, 26, 146–153.

KARTIK, N., F. X. LEE, AND W. SUEN (2017): “Investment in Concealable Information by
Biased Experts,” RAND Journal of Economics, 48, 24–43.

——— (2021): “Information Validates the Prior: A Theorem on Bayesian Updating and Ap-
plications,” American Economic Review: Insights, 3, 165–82.

KRISHNA, V. AND J. MORGAN (2001): “A Model of Expertise,” Quarterly Journal of Economics,
116, 747–775.

LIPMAN, B. L. AND D. J. SEPPI (1995): “Robust Inference in Communication Games with
Partial Provability,” Journal of Economic Theory, 66, 370–405.

MARINOVIC, I. AND F. VARAS (2016): “No News is Good News: Voluntary Disclosure in the
Face of Litigation,” RAND Journal of Economics, 47, 822–856.

MATTHEWS, S. AND A. POSTLEWAITE (1985): “Quality Testing and Disclosure,” RAND Jour-
nal of Economics, 16, 328–340.

MILGROM, P. (2008): “What the Seller Won’t Tell You: Persuasion and Disclosure in Markets,”
Journal of Economic Perspectives, 22, 115–131.

35



MILGROM, P. AND J. ROBERTS (1986): “Relying on the Information of Interested Parties,”
RAND Journal of Economics, 17, 18–32.

——— (1990): “Rationalizability, Learning, and Equilibrium in Games with Strategic Com-
plementarities,” Econometrica, 58, 1255–1277.

MILGROM, P. R. (1981): “Good News and Bad News: Representation Theorems and Applica-
tions,” Bell Journal of Economics, 12, 380–391.

OKUNO-FUJIWARA, M., A. POSTLEWAITE, AND K. SUZUMURA (1990): “Strategic Information
Revelation,” Review of Economic Studies, 57, 25–47.

SHAKED, M. AND J. G. SHANTHIKUMAR (2007): Stochastic Orders, Springer Series in Statistics,
New York: Springer.

SHAVELL, S. (1994): “Acquisition and Disclosure of Information Prior to Sale,” RAND Journal
of Economics, 25, 20–36.

SHIN, H. S. (1998): “Adversarial and Inquisitorial Procedures in Arbitration,” RAND Journal
of Economics, 29, 378–405.

SOBEL, J. (1989): “An Analysis of Discovery Rules,” Law and Contemporary Problems, 52, 133–
159.

THE NEW YORK TIMES (2015): “Honda Fined for Violations of Safety Law,” http://nyti.
ms/1yFNVUa.

VERRECCHIA, R. E. (1983): “Discretionary Disclosure,” Journal of Accounting and Economics, 5,
179–194.

36

http://nyti.ms/1yFNVUa
http://nyti.ms/1yFNVUa


Supplementary Appendix

B. Non-linear Utilities

This appendix expands on the discussion in Appendix A.4. Specifically, we show through
a family of power utility functions how our main conclusions can be affected by departures
from linearity of a sender’s utility Vi(βDM).

To that end, define
W (β, r) := Vi(T (β, r))− Vi(β), (10)

as in the proof of Proposition 7; here, r ≡ 1−µDM

µDM

µi

1−µi
is a measure of the disagreement

in interim beliefs µDM and µi, and T (β, r) ≡ β
β+(1−β)r

is shorthand for the transformation
T (β, µDM , µi) from (3). Under a disclosure cost (c > 0) the relevant case is r > 1 if the sender
is upward biased (as in this case the threshold sender type must have a higher belief than the
DM’s nondisclosure belief) and r < 1 if the sender is downward biased; under a concealment
cost (c < 0) the relevant case is r < 1 if the sender is upward biased and r > 1 if the sender is
downward biased.

In the following proposition, we say that an upward-biased sender i’s disclosure is a
strategic substitute (resp., complement) to j’s if when j’s message is more Blackwell-informative,
then i’s largest and smallest best response disclosure thresholds increase (resp., decrease).

Proposition 8. Assume Vi(β) = γβα, where either γ, α > 0 or γ, α < 0, so that sender i is upward
biased. Then i’s disclosure is:

1. a strategic substitute to j’s under disclosure cost if 0 < α ≤ 1 and γ > 0;

2. a strategic complement to j’s under a small enough concealment cost if 0 < α ≤ 1 and γ > 0;21

3. a strategic complement to j’s under disclosure cost if α < −1 and γ < 0;

4. a strategic substitute to j’s under concealment cost if α < 0 and γ < 0.

Parts 1 and 2 of Proposition 8 extend, respectively, parts 2 and 3 of Proposition 3 to some
non-linear preferences (and subject to a small enough concealment cost, in part 2). Parts 3 and
4 of Proposition 8 show how our findings of strategic complementarity under concealment
cost and strategic substitutability under disclosure cost can be reversed for other non-linear

21 A small enough concealment cost means that c < 0 is close enough to 0 that the interim disagreement
condition in part 2 of Lemma 4 holds. Note that as c→ 0, all of i’s best response thresholds converge uniformly
to the unique single-sender equilibrium threshold (at which point r = 1), so r is assured to be in the relevant
range when |c| is small enough.
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preferences. Note that one must be careful with the analog for a downward-biased sender,
because the direction of disagreement reverses. If Vi(β) = −γβα, then in each part above,
“disclosure cost” and “concealment cost” should be interchanged.

Given the discussion in the first paragraph of Appendix A.4 and following the logic given
in the main text after Lemma 3, Proposition 8 is a straightforward consequence of the fol-
lowing lemma. Recall that a disclosure cost corresponds to r > 1 and a concealment cost to
r < 1.

Lemma 4. If Vi(β) = βα, then W (β, r) defined in (10) is:

1. convex in β if 0 < α ≤ 1 and r > 1;

2. concave in β if 0 < α ≤ 1 and 1−α
1+α

< r < 1;

3. convex in β if α < −1 and r > 1;

4. concave in β if α < 0 and r < 1.

Proof of Lemma 4. Denoting partial derivatives with subscripts as usual, we compute that
Wββ(·) is equal to

V ′′
i

(
β

β + (1− β)r

)(
r2

(β + (1− β)r)4

)
+ V ′

i

(
β

β + (1− β)r

)(
2r(r − 1)

(β + (1− β)r)3

)
− V ′′

i (β).

Plugging in Vi(β) = βα and doing some algebra shows that Wββ(·) has the same sign as:

α

[
(1− α) +

r(2β(r − 1)− r(1− α))

(β + (1− β)r)α+2

]
=: H(β, α, r).

Observe thatH(0, α, r) = α(1−α)(1−r−α), and hence if α < 1 and α ̸= 0 then sign[H(0, α, r)] =

sign[r − 1]. Differentiating yields

Hβ(·) =
α(α + 1)(r − 1)r(αr + 2β(r − 1))

(β + (1− β)r)α+3
.

We now consider five cases; they correspond to the lemma’s enumeration, except that the
final two cases here together establish part 4 of the lemma.

1. Suppose 0 < α ≤ 1 and r > 1. Then H(0, α, r) ≥ 0 and Hβ(·) > 0, and hence H(β, α, r) > 0

for all β ∈ (0, 1).

2. Suppose 0 < α ≤ 1 and 1−α
1+α

< r < 1. Then H(0, α, r) = α(1 − α)(1 − r−α) ≤ 0. The roots
of H(1, α, r) = α [(1− α) + r2(1 + α)− 2r] viewed as a function of r are r = 1 and r = 1−α

1+α
;
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since H(1, α, r) is convex in r, it is negative between the roots, and hence H(1, α, r) < 0 for
r in the specified range. Furthermore, sign[Hβ(·)] = sign[2β(1 − r) − αr]; hence, since the
expression 2β(1− r)−αr is negative at β = 0 and increasing in β, any interior critical point
of H(·, α, r) is a minimum. It follows that H(β, α, r) < 0 for all β ∈ (0, 1).

3. Suppose α < −1 and r > 1. Then H(0, α, r) > 0 and

H(1, α, r) = α(r − 1)(α− 1 + r(1 + α)) > 0.

We will show thatHβ(β, α, r) = 0 impliesH(β, α, r) > 0, which combines with the previous
two inequalities to imply that H(·) > 0. Accordingly, assume Hβ(β, α, r) = 0, which occurs
when β = αr

2(1−r)
, which implies α ∈ (−2,−1) and r ≥ 2

2+α
(because β ≤ 1 and α < −1) .

Furthermore,

H

(
αr

2(1− r)
, α, r

)
= α

[
1− α− r2

(
2

r(α + 2)

)α+2
]
.

The derivative of the above expression with respect to r is α2
(

2
α+2

)α+2
r−α−1, which is

strictly positive given α ∈ (−2,−1) and r > 2
α+2

> 2. Moreover, when evaluated with

r = 2, the expression reduces to α
[
1− α− 4

(α+2)α+2

]
. For α ∈ (−2,−1), the bracketed term

is negative because (α + 2)α+2 < 1 implies 4
(α+2)α+2 > 4, while 1 − α < 3. Since α < 0, we

have H
(

αr
2(1−r)

, α, r
)
> 0, as was to be shown.

4. Suppose −1 ≤ α < 0 and 0 ≤ r < 1. Then H(0, α, r) < 0 and Hβ(·) ≤ 0, and hence
H(β, α, r) < 0 for all β ∈ (0, 1).

5. Suppose α < −1 and 0 ≤ r < 1. Then H(0, α, r) < 0 and

H(1, α, r) = α(r − 1)(α− 1 + r(1 + α)) < 0.

As argued in case 3 above, Hβ(β, α, r) = 0 requires α ∈ (−2,−1) and r ≥ 2
2+α

> 2, which is
not possible given that we have assumed r < 1. Thus, on the relevant domain, Hβ(·) has a
constant sign and so H(·) < 0.

C. Details for Welfare Examples

Here we provide the verifications for Example 1 and Example 2. Given the examples’ discrete
signals, we will abuse notation and say that a sender uses threshold 1/2 if he reveals his
two favorable signals and conceals the two unfavorable ones. Note that in Example 1 with
c = 0.36, if there is just one upward-biased sender, then disclosing sh yields that sender a
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payoff γ − c = 0.34 and disclosing s yields 1− c = 0.64.

Proof of Claim 1.1. To establish the best equilibrium, it suffices to show that there is an equi-
librium in which the sender reveals sh and s (i.e., uses threshold 1/2). The corresponding
nondisclosure belief is

η(1/2, p, π) =
1− p+ p(1− γ)δ

2− p
= 0.3067. (11)

Since 0.3067 < γ − c = 0.34, the sender strictly prefers to disclose sh, which verifies that we
have an equilibrium.

To calculate welfare, observe that because of her quadratic-loss objective, the DM’s welfare
in any equilibrium is −E[µ(1 − µ)], where µ is the posterior. In the above best equilibrium,
disclosure of s is perfectly informative, disclosure of sh yields posterior γ, and nondisclosure
yields the posterior in (11), which we denote below as η∗. The DM’s welfare is thus

−
(
1− p

2

)
η∗(1− η∗)− pδ

2
γ(1− γ) = −0.1864.

Proof of Claim 1.2. Let sender 1 be upward biased and sender 2 be downward biased. We
proceed in three steps.

Step 1: Each sender discloses his most favorable signal. We argue it for sender 1; it is symmetric
for sender 2. Given that sender 2 must conceal his two unfavorable signals (sh and s), the
hardest scenario for sender 1 to want to disclose s is when: (i) he is conjectured to conceal all
signals (maximizing the nondisclosure belief), and (ii) sender 2 discloses sl and s (by strategic
substitution, the more sender 2 discloses, the less sender 1’s incentive to disclose). In this sce-
nario, sender 1’s concealment is uninformative, so if both senders conceal, the DM’s posterior
is 1−p+p(δγ+1−δ)

2−p
(analogously to (11)). If sender 2 discloses sl, the DM’s posterior is 1−γ. Thus,

sender 1’s expected payoff from concealing s is

δ(1− γ)p(1− γ) +
(
1− δ(1− γ)p

)1− p+ p(δγ + 1− δ)

2− p
= 0.6273.

Since 0.6273 < 1− c = 0.64, sender 1 strictly prefers to disclose s.

Step 2: Each sender conceals all other signals. Again, we only argue it for sender 1. It suffices
to argue that sender 1 conceals sh. Given Step 1, the easiest scenario for sender 1 to want to
disclose sh is: (i) he is conjectured to disclose sh and s, i.e., use threshold 1/2 (minimizing the
nondisclosure belief), and (ii) sender 2 plays the least revealing strategy consistent with Step
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1, i.e., conceals sl, sh, and s. In this scenario, if sender 2 discloses, it must be signal s, giving
sender 1 a payoff of 0. If both senders conceal, the DM’s posterior is

η(1/2, p, π)

η(1/2, p, π) +
(
1− η(1/2, p, π)

)
(1− p+ pδ)

,

where η(1/2, p, π) is given in (11). Thus, sender 1’s expected payoff from concealing sh is

(
1− (1− γ)(1− δ)p

) η(1/2, p, π)

η(1/2, p, π) +
(
1− η(1/2, p, π)

)
(1− p+ pδ)

= 0.3414.

Since 0.3414 > γ − c = 0.34, sender 1 strictly prefers to conceal sh even in the scenario most
conducive to disclosing it.

Step 3: Welfare. Steps 1 and 2 (combined with equilibrium existence) establish that there is
a unique equilibrium: each sender reveals their most favorable signal and conceals the other
three.22 To calculate the equilibrium welfare, we follow the approach used to calculate welfare
in the proof of Claim 1.1. In the current two-sender equilibrium, the only disclosures are
extreme signals (posteriors 0 or 1), which contribute zero variance. Nondisclosure yields
posterior 1/2 by symmetry. The DM’s welfare with the two senders is thus

−
(
1− p(1− δ)

)
1
4
= −0.19.

Proof of Claim 2.1. It suffices to verify that there is an equilibrium in which the upward-
biased sender 1 reveals signals sh and s (and conceals the other two signals) while the downward-
biased sender 2 conceals all signals, as the DM’s welfare in this equilibrium is the same as in
the single-sender analysis of Example 1.

So consider those strategies and corresponding DM beliefs. Then sender 2’s payoff from
concealing s is 1 − 0.3727 = 0.6273 (because, by symmetry to the calculation in Step 1 of the
proof of Claim 1.2, the DM’s expected posterior is 1−0.06273 = 0.3727). Since 0.6273 > 0.62 =

1− c, sender 2 strictly prefers to conceal his most favorable signal, and concealing all signals
is his best response. Turning to sender 1: he effectively faces a single-sender problem with

22 Indeed, to confirm this is an equilibrium, fix those sender strategies. If sender 2 discloses, it must be signal
s, giving sender 1 a payoff of 0. If both senders conceal, symmetry implies the DM’s posterior is 1/2. Sender 1’s
expected payoff from concealing sh is thus(

1− p(1− γ)(1− δ)
)
(1/2) = 0.464.

Since 0.464 > γ − c = 0.34, sender 1 prefers to conceal sh. So sender 1 is playing a best response. By a symmetry
argument, so is sender 2.
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nondisclosure belief 0.3067 from (11). Since 0.3067 < γ − c = 0.32, sender 1 strictly prefers to
disclose sh, and hence he is also playing his best response.
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