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Abstract

An agent’s preferences depend on an ordered parameter or type. We character-

ize the set of utility functions with single-crossing differences (SCD) in convex envi-
ronments. These include preferences over lotteries, both in expected utility and rank-

dependent utility frameworks, and preferences over bundles of goods and over con-

sumption streams. Our notion of SCD does not presume an order on the choice space.

This unordered SCD is necessary and sufficient for “interval choice” comparative stat-

ics. We present applications to cheap talk, observational learning, and collective choice,

showing how convex environments arise in these problems and how SCD/interval

choice are useful. Methodologically, our main characterization stems from a result on

linear aggregations of single-crossing functions.

Keywords: monotone comparative statics, choice among lotteries, interval equi-
libria, aggregating single crossing

*Previous versions of this paper were circulated under the title “Single-Crossing Differences on Distri-
butions”. We thank Nageeb Ali, John Duggan, Federico Echenique, Mira Frick, Ben Golub, Ryota Iijima,
Ian Jewitt, Alexey Kushnir, Shuo Liu, Daniele Pennesi, Jacopo Perego, Lones Smith, Bruno Strulovici, and
various audiences for helpful comments.

†Department of Economics, Columbia University. E-mail: nkartik@gmail.com
‡Department of Economics, Washington University in St. Louis. E-mail: sangmoklee@wustl.edu
§Booth School of Business, University of Chicago. E-mail: Daniel.Rappoport@chicagobooth.edu

mailto:nkartik@gmail.com
mailto:sangmoklee@wustl.edu
mailto:Daniel.Rappoport@chicagobooth.edu


Contents

1. Introduction 1

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. An Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Single-Crossing Differences and Interval Choice 6

3. Single-Crossing Differences in Convex Environments 8

3.1. The Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. Implications for Leading Examples . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3. Aggregating Single-Crossing Functions . . . . . . . . . . . . . . . . . . . . . 18

4. Applications 21

4.1. Cheap Talk with Uncertain Receiver Preferences . . . . . . . . . . . . . . . . 22

4.2. Observational Learning with Multidimensional Utility . . . . . . . . . . . . 24

4.3. Collective Choice over Lotteries . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. Discussion 27

5.1. Single Crossing vs. Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2. Interval Choice and Monotone Comparative Statics . . . . . . . . . . . . . . 28

6. Conclusion 30

Appendices 31

References 42

Supplementary Appendices 45



1. Introduction

1.1. Overview

Single-crossing properties and their implications for choices are at the heart of many
economic models, as highlighted by Milgrom and Shannon (1994). Consider a utility func-
tion u(a, θ), where a is the choice object and θ a preference parameter. In this paper, we
completely characterize the structure of u(·) when it has single-crossing differences (SCD) in
a rich—specifically, convex—environment. Before defining this property more precisely and
explaining our results, we begin with some background and motivation for our work in a
leading context: choice among lotteries.

Motivation. In various applications of single crossing, choices have been restricted to
deterministic outcomes when it would be desirable to accommodate lotteries. Consider
Crawford and Sobel’s (1982) canonical cheap-talk model: a sender with private type θ ∈
Θ ⊆ R chooses a costless message to send a receiver, who then takes a decision a. A single-
crossing property on the sender’s utility u(a, θ) ensures that any equilibrium is an “interval
equilibrium”, i.e., Θ is partitioned into intervals that induce the same decision. This result
is predicated on assumptions ensuring that in equilibrium, the sender can fully anticipate
the decision induced by each message. However, in assorted contexts, one would like
to model a sender who is uncertain about the receiver’s preferences; but then, from the
sender’s perspective, each message would induce a lottery over decisions.

A challenge with extending single-crossing properties to choice among lotteries is that
there is no natural order on the set of all lotteries. Moreover, it is not always apparent a
priori what restrictions are reasonable on the set of feasible lotteries, in particular whether
some form of stochastic dominance can order every choice set an agent may face. In the
cheap-talk problem, the nature of the receiver’s preferences may well imply that a higher
message (in equilibrium) induces lotteries that have both higher mean and higher vari-
ance. In other applications, the lotteries may be the result of still further interactions—e.g.,
they may represent continuations in dynamic strategic problems—that are intractable to
structure ex ante.

An alternative to restricting the set of lotteries is to require that an agent’s utility differ-
ence between any pair of lotteries—or, more abstractly, any pair of choice objects—is single
crossing in the agent’s preference parameter or type. (For any ordered set Θ, a function
Θ 7→ R is single crossing if its sign is monotonic.) It is this single-crossing property that
we study, which we refer to as single-crossing differences (SCD). Our notion is closely related
to that of Milgrom and Shannon (1994) for comparative statics, and the “order restriction”
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property Rothstein (1990) introduced for collective choice. As we explain in Section 2, SCD
characterizes interval choice (Theorem 1), a fundamental property for applications. Loosely,
interval choice says that given any choice set and any option in that set, if a low and a high
type both find that option optimal, then so do all intermediate types. In the cheap-talk ap-
plication, the sender’s options are messages, and interval choice yields the aforementioned
interval equilibrium desideratum.

A key question, then, is: for an expected-utility agent, which (von Neumann Morgen-
stern) utility functions assure SCD over lotteries? It is not enough that SCD holds over
pure outcomes:

Example. Let Θ = [−1, 1], A = {0, 1, 2}, and u(a, θ) = a for a ̸= 1 while u(1, θ) = θ2 + 1/2.
For any a, a′ ∈ A, u(a, θ) − u(a′, θ) is single-crossing in θ as its sign does not depend on
θ. But for G the uniform lottery over outcomes 0 and 2, the expected utility difference
u(1, θ) − Ea∼G[u(a, θ)] = θ2 + 1/2 − (1/2)2 = θ2 − 1/2 is not single crossing in θ. Hence, u
has SCD over pure outcomes but does not have SCD over lotteries.

SCD in Convex Environments. In the foregoing example, SCD holds for “extreme” al-
ternatives (i.e., pure outcomes) but fails over “in-between” alternatives (i.e., lotteries). We
find this broader viewpoint valuable, as various economic settings have such richness in
the alternatives. Accordingly, consider a utility function u(a, θ), where a ∈ A is an action
(i.e., a choice alternative) and θ ∈ Θ the ordered type. Say that the choice environment is
convex if the set of functions {u(a, ·) : Θ → R}a∈A is convex.1

Convex choice environments abound. The function u can be expected utility and A the
set of lotteries over arbitrary outcomes. But, as explained by Example 2 in Section 3, u can
also be rank-dependent utility (Quiggin, 1982). Or, as detailed in Example 3, A can be a
product set representing different dimensions of the choice object, and u can be a multidi-
mensional utility function with convex range. This class captures examples of deterministic
settings in mechanism design, dynamic consumption streams, and choices over bundles of
goods or products with multiple characteristics.

Our paper’s main result, Theorem 2, is a characterization of SCD in any convex environ-
ment. Theorem 2 establishes that in a convex environment, u has SCD if and only if

u(a, θ) = g1(a)f1(θ) + g2(a)f2(θ) + h(θ), (1)

where f1 and f2 are single-crossing functions that satisfy a ratio-ordering property we define

1 That is, for all a, a′ ∈ A and λ ∈ (0, 1), there is a′′ ∈ A such that for all θ ∈ Θ, u(a′′, θ) = λu(a, θ) + (1 −
λ)u(a′, θ).
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in Section 3. Roughly speaking, ratio ordering requires that the relative importance placed
on g1(·) versus g2(·) changes monotonically with type.2 The idea is transparent when Θ has
a minimum θ and a maximum θ. Then, u having SCD is equivalent to the existence of a
(type-dependent) representation ũ(a, θ) that satisfies

ũ(a, θ) = λ(θ)ũ(a, θ) + (1− λ(θ))ũ(a, θ),

where λ : Θ → [0, 1] is increasing (Proposition 1). In other words, in such a convex envi-
ronment, SCD is equivalent to being able to represent each type’s preferences by a utility
function that is a convex combination of those of the extreme types, with higher types
putting more weight on the highest type’s utility.

In the context of expected utility, there are canonical (von Neumann Morgenstern) func-
tional forms that induce SCD over lotteries: in mechanism design and screening, u((q, t), θ) =
θq−t, where q ∈ R is the quantity, t ∈ R is the transfer, and θ ∈ R is the agent’s marginal rate
of substitution; in optimal delegation without transfers, u((q, t), θ) = θq+g(q)−t, where q ∈
R is the allocation, t ∈ R+ is money burning, and θ ∈ R is the agent’s type (cf. Amador and
Bagwell, 2013); in communication/delegation and voting, u(a, θ) = −(a−θ)2 = 2θa−a2−θ2,
where a ∈ R is an outcome and θ ∈ R is the agent’s bliss point. On the other hand, our char-
acterization also makes clear that SCD is quite stringent. For example, within the class of
power loss functions, only the quadratic loss function generates SCD over lotteries (Corol-
lary 2). Outside of expected utility, we explain in Subsection 3.2 when discounted utility
and Cobb-Douglas utility satisfy SCD in a convex environment; in particular, it holds for
the simple two-good case of u((x, y), θ) = θ log x + (1 − θ) log y, where x, y ∈ R++ are the
quantities and θ parameterizes the marginal rate of substitution.

Applications. Section 4 applies SCD in convex environments to three economic prob-
lems, highlighting the implications of interval choice. Among other things, the cheap-talk
application with uncertain receiver preferences in Subsection 4.1 demonstrates concretely
how choices from all lotteries emerge naturally. In Subsection 4.2’s observational-learning
application, a convex environment stems from multidimensional utility. Subsection 4.3
considers collective choice over lotteries, showing how our results contribute to a long-
standing question of whether equilibrium exists when political candidates can offer lottery
platforms (Zeckhauser, 1969; Shepsle, 1972).

2 In particular, if either f1(·) or f2(·) is strictly positive, then ratio ordering reduces to saying that the ratio
of the two functions is monotonic. More generally, Lemma 1 establishes that ratio ordering is necessary and
sufficient for all linear combinations of two single-crossing functions to be single crossing.
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1.2. An Intuition

A key step towards Theorem 2’s characterization of SCD in convex environments is
establishing that every type’s utility is an affine combination of two (type-independent)
functions: Equation 1. We can provide a succinct intuition when Θ has a minimum θ and
a maximum θ. It suffices to show that there are three actions, a1, a2, and a3, such that any
type θ’s utility from any action a satisfies

u(a, θ) = λ1(a)u(a1, θ) + λ2(a)u(a2, θ) + λ3(a)u(a3, θ), (2)

for some λ(a) ≡ (λ1(a), λ2(a), λ3(a)) with
∑3

i=1 λi(a) = 1. (Equation 1 follows by setting,
for i = 1, 2, fi(θ) = u(ai, θ)− u(a3, θ), gi(a) = λi(a), and h(θ) = u(a3, θ).) The desired λ(a) is
the solution to u(a, θ)u(a, θ)

1

 =

u(a1, θ) u(a2, θ) u(a3, θ)

u(a1, θ) u(a2, θ) u(a3, θ)

1 1 1


λ1(a)λ2(a)

λ3(a)

 ,
which exists at least when there are three actions for which the 3 × 3 matrix on the right-
hand side is invertible. To interpret this matrix equation, note that in a convex environ-
ment, any convex combination of utilities from {a1, a2, a3, a} is the utility from some ac-
tion. Hence, the equation says that one can find two distinct actions with utilities equal
to convex utility combinations of {a1, a2, a3, a} such that the lowest and highest types are
both indifferent between those two actions.3 By SCD, all types must be indifferent between
these two actions, which amounts to Equation 2.

A second key step towards Theorem 2 is showing that the two type-independent utili-
ties in Equation 1 must be ratio ordered. The intuition for this step is provided in Subsec-
tion 3.3.

1.3. Related Literature

We now offer a summary of related work, supplying additional details later.

Quah and Strulovici (2012) consider an expected-utility agent choosing under uncer-
tainty about her preferences, which depend on some unknown “state”. They ask when
single-crossing differences in the Milgrom and Shannon (1994) sense is preserved regard-
less of the state distribution. In our expected-utility application, we consider an agent who

3 Take one utility combination to be that corresponding to the uniform distribution P = (1/4, 1/4, 1/4, 1/4)
on {a1, a2, a3, a} and the other corresponding to P +ε(λ1(a), λ2(a), λ3(a),−1) for any sufficiently small ε > 0.
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knows her preferences but chooses among lotteries. Although these are conceptually dif-
ferent questions, there is a mathematical connection in portions of our analysis. Quah and
Strulovici’s (2012) question concerns when single crossing is preserved by positive linear
combinations. On the other hand, our problem turns on arbitrary linear combinations pre-
serving single crossing. As elaborated after Lemma 1, this explains the difference between
Quah and Strulovici’s signed-ratio-monotonicity condition and our ratio-ordering condi-
tion. Moreover, there is no analog in their analysis to the linear dependence we deduce in
Proposition 2, which is crucial to our main characterization’s functional form (5).

When Θ ⊆ R, the utility specification u(a, θ) = θg1(a) + g2(a) induces expected utility
with SCD over lotteries; indeed, the expected-utility difference between any two lotteries
is monotonic in θ. The usefulness of this utility specification (or slight variants) to structure
choices among arbitrary lotteries has been highlighted by Duggan (2014), Celik (2015), and
Kushnir and Liu (2018). In Subsection 5.1, we show how SCD preferences always have such
a “monotonic differences” representation in convex environments that satisfy a reasonable
additional condition. This is a striking consequence of convex environments, as we are not
aware of any such result more generally.

In the operations research literature, there has been interest in functional forms for
“multi-attribute utility functions” (e.g., Fishburn, 1974). When there are two attributes
and the agent has expected-utility preferences, Abbas and Bell (2011) study a “one-switch
condition” that is akin to SCD over lotteries on one attribute. In that setting, they offer
a result related to our Proposition 1. However, they do not identify ratio ordering as the
property that characterizes when single crossing is preserved under aggregation, which is
a key contribution of our analysis (Lemma 1 and Proposition 2). Also novel to our paper
are the comparative statics characterizations of SCD (Theorem 1 and Theorem 4) and our
economic applications.

For choice among restricted sets of lotteries (which we wish to largely avoid, for reasons
mentioned earlier), there are various prior results on the conditions for monotone com-
parative statics under expected-utility preferences. Standard restricted classes of lotteries
include those ordered by first-order stochastic dominance (Topkis, 1978) and likelihood-
ratio dominance (Karlin, 1968; Athey, 2002).4

Outside of expected utility on lottery spaces, we are not aware of any work highlighting
SCD in convex environments. In our view, the lens of convex environments is a contribu-
tion of our paper.

4 For first-order stochastic dominance, the requirement is that the utility function is supermodular; for
likelihood-ratio dominance, it is log-supermodularity. Smith (2011) considers choice among arbitrary lotter-
ies and their certainty equivalents.
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2. Single-Crossing Differences and Interval Choice

Our analysis begins by formalizing comparative statics results that justify a notion of
single-crossing differences without reference to an order over the choice space.

Let (Θ,≤) be a (partially) ordered set containing upper and lower bounds for all pairs.5

We often refer to elements of Θ as types.

Definition 1. A function f : Θ → R is:

1. single crossing (resp., from below or from above) if sign[f ] is monotonic (resp., increas-
ing or decreasing);6

2. strictly single crossing if it is single crossing and there are no θ′ < θ′′ such that f(θ′) =
f(θ′′) = 0.

Definition 2. Given any set A, a function u : A×Θ → R has:

1. single-crossing differences (SCD) if ∀a, a′ ∈ A, the difference Da,a′(θ) ≡ u(a, θ)− u(a′, θ)

is single crossing in θ;

2. strict single-crossing differences (SSCD) if ∀a, a′ ∈ A such that a ̸= a′, Da,a′(θ) is strictly
single crossing in θ.

Our definition of (S)SCD is related to but different from Milgrom and Shannon (1994),
who stipulate that u : A × Θ → R has (strict) single-crossing differences given an order ⪰
on A if for all a′ ≻ a′′, Da′,a′′(θ) is (strictly) single crossing from below. (Here, ≻ is the strict
component of ⪰. Note that the (S)SCD terminology is due to Milgrom (2004).) We do not
presume that A is ordered, but we consider differences for all pairs of elements of A. If A
is completely ordered, then our definition is weaker than Milgrom and Shannon’s (1994)
because ours does not constrain the direction of single crossing. As established below, our
notion characterizes related but distinct comparative statics from theirs.

Our notion of SCD is also closely related to Rothstein’s (1990) notion of order restriction,
which he introduced in the context of collective choice. Like SCD, order restriction does not

5 A partial order—hereafter, also referred to as just an order—is a binary relation that is reflexive, anti-
symmetric, and transitive (but not necessarily complete). An upper (resp., lower) bound of Θ0 ⊆ Θ is θ ∈ Θ
(resp., θ ∈ Θ) such that θ ≤ θ (resp., θ ≤ θ) for all θ ∈ Θ0. While none of our results require any assumptions
on the cardinality of Θ, the results in Section 3 are trivial when |Θ| < 3. See an earlier version of this paper,
Kartik, Lee, and Rappoport (2019, Appendix I), for how our results extend when (Θ,≤) is only a pre-ordered
set, i.e., when ≤ does not satisfy anti-symmetry.

6 For x ∈ R, sign[x] = 1 if x > 0, sign[x] = 0 if x = 0, and sign[x] = −1 if x < 0. A function h : Θ → R is
increasing (resp., decreasing) if θh > θl =⇒ h(θh) ≥ h(θl) (resp., h(θh) ≤ h(θl)); it is monotonic if it is either
increasing or decreasing. An equivalent, and perhaps more familiar, definition of f being single crossing
from below is (∀θ < θ′) f(θ) ≥ (>)0 =⇒ f(θ′) ≥ (>)0.
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presume an order on the choice space. Order restriction is more permissive insofar as the
order on the type space can be chosen to generate SCD; it is more restrictive in requiring
that order to be complete.

Interval Choice. We say that Θ0 ⊆ Θ is an interval if θl, θh ∈ Θ0 and θl < θm < θh imply
θm ∈ Θ0. Let C : 2A × Θ ⇒ A with C(S, θ) ⊆ S for each S ⊆ A and θ ∈ Θ. We say that
C has interval choice if {θ : a ∈ C(S, θ)} is an interval for each S ⊆ A and a ∈ S. That is,
interpreting C as a choice correspondence, the set of types choosing any option given any
choice set is an interval. We say that u : A×Θ → R strictly violates SCD if there are a, a′ ∈ A

and θl < θm < θh such that min{Da,a′(θl), Da,a′(θh)} > 0 > Da,a′(θm).

Theorem 1. Let u : A×Θ → R and Cu(S, θ) ≡ argmaxa∈S u(a, θ) for any S ⊆ A and θ.

1. If u has SCD, then the choice correspondence Cu has interval choice. If u strictly violates
SCD, then Cu does not have interval choice.

2. If |Θ| ≥ 3, then u has SSCD if and only if every selection from Cu has interval choice.

The intuition for the sufficiency of (S)SCD in Theorem 1 is straightforward. Regarding
necessity, we note that a violation of SCD—as opposed to a strict violation—is compatible
with the choice correspondence having interval choice: e.g., A = {a′, a′′}, Θ = {θl, θm, θh}
with θl < θm < θh, and min{Da′,a′′(θl), Da′,a′′(θh)} > 0 = Da′,a′′(θm).7 In Part 2 of the
theorem, if |Θ| = 2 then any selection from any choice correspondence trivially has interval
choice, yet u does not have SSCD when Da,a′(θ) = 0 for some a, a′ and all θ.

Monotone Comparative Statics. Our choice space A is unordered. Intuitively, interval
choice is intimately related to there being monotone comparative statics (MCS)—i.e., in
some sense, higher types make higher choices—with respect to some complete order on the
choice space. We formalize this connection in Subsection 5.2 by tying (S)SCD to MCS. In
brief, given any order on A, we order subsets of A by the corresponding strong set order,
and say that the function u has MCS if, for every choice set S ⊆ A and all types θh > θl,
the higher type chooses a higher set: Cu(S, θh) ≥ Cu(S, θl). Roughly speaking, Theorem 4
in Subsection 5.2 shows that an order on A induces MCS if and only if u has SCD and the
order is a refinement of a natural “SCD-order” generated by u.

7 On the other hand, a strict violation of SCD is slightly stronger than needed: one could weaken its
requirement to min{Da′,a′′(θl), Da′,a′′(θh)} ≥ 0 > Da′,a′′(θm). Our formulation with both inequalities being
strict amounts to putting aside indifferences, which proves convenient for the applications in Section 4.
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3. Single-Crossing Differences in Convex Environments

This section characterizes single-crossing differences in “rich” environments. We now
assume the existence of a strictly increasing real-valued function on (Θ,≤).8 This require-
ment is satisfied, for example, when Θ is finite, or Θ ⊆ Rn is endowed with the usual order.
We assume the environment (A,Θ, u) is convex in the following sense:

the set of functions {u(a, ·) : Θ → R}a∈A is convex. (⋆)

That is, a convex environment is rich enough insofar as for any pair of actions and any
weighting, there is a third action that replicates the weighted sum of utilities of the original
actions. We stress that convexity is in terms of utilities: we have not assumed any structure
on A. However, if A is convex, then it is straightforward that (⋆) is assured by linearity of
u in its first argument.

Example 1 (Expected Utility). Consider an expected-utility agent who chooses among lot-
teries. There is a set of consequencesX and the agent has utility v(x, θ). LettingA ≡ ∆X be
the set of all finite-support lotteries over X , the agent’s utility from lottery P ∈ A is given
by u(P, θ) ≡

∫
x
v(x, θ)dP .9 This is a case in which Condition (⋆) holds because u is linear in

its first argument and A is convex. □

Example 2 (Rank-Dependent Expected Utility). Continuing with lotteries, non-expected
utility environments can also be convex. By virtually the same logic as above for ex-
pected utility, it is sufficient for (⋆) that the utility from lottery P be given by u(P, θ) ≡∫
x
v(x, θ)d(w ◦ P ), with w : ∆X → ∆X an arbitrary reweighting function whose image

is convex. For example, a standard formulation of rank-dependent utility (Quiggin, 1982;
Diecidue and Wakker, 2001) corresponds to X ≡ {x1, . . . , xn} ⊂ R with x1 < · · · < xn,
and a strictly increasing function ŵ : [0, 1] → [0, 1] satisfying ŵ(0) = 0 and ŵ(1) = 1

such that for any lottery P and consequence xi, the reweighting is given by (w ◦ P )(xi) ≡
ŵ
(∑i

j=1 p(xj)
)
− ŵ

(∑i−1
j=1 p(xj)

)
, where p is the probability mass function of the lottery P .

So long as ŵ is continuous, w has a convex image as required; the image is simply ∆X . □

8 That is, we assume ∃h : Θ → R such that θ < θ =⇒ h(θ) < h(θ). This requirement is related to utility
representations for possibly incomplete preferences (Ok, 2007, Chapter B.4.3). A sufficient condition is that
Θ has a countable order dense subset, i.e., there is a countable set Θ0 ⊆ Θ such that (∀θ, θ ∈ Θ \ Θ0) θ <
θ =⇒ ∃θ0 ∈ Θ0 s.t. θ < θ0 < θ (Jaffray, 1975, Corollary 1). The assumption only plays a technical role in
establishing our characterization of strict SCD, i.e., in the second statement of Theorem 2.

9 We restrict attention to finite-support distributions throughout the paper for ease of exposition, as it
guarantees that expected utility is well defined no matter the distribution and utility function. Nevertheless,
we write integrals rather than summations when it simplifies notation regarding the domain of integra-
tion/summation.
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Example 3 (Multidimensional Utility). While lotteries naturally induce a convex environ-
ment, they are not necessary. Another example is choice among multidimensional actions.
Specifically, A ≡ A1 × . . . × An ⊆ Rn and for any a ≡ (a1, . . . , an), utility is given by
u(a, θ) ≡

∑n
i=1 gi(ai)fi(θ) for some pairs of functions (gi, fi)

n
i=1, with each gi having a con-

vex image. That A is a product set and each gi has a convex image ensures (⋆). We refer to
this specification as multidimensional utility.

Here are some economic contexts in which there is multidimensional utility. First, a con-
sumer chooses among products with multiple characteristics or a bundle of multiple goods,
denoted (a1, . . . , an). Each characteristic or good i with quality or quantity ai has a com-
mon value gi(ai), but the tradeoff across characteristics/goods varies with the consumer’s
preference parameter θ, as given by fi(θ). Second, a designer uses an incentive-compatible
direct mechanism φ : T → A that maps an agent’s private type t ∈ T ≡ {1, . . . , n} to an
action φ(t) ∈ A. The designer’s payoff is

∑
t v(φ(t), t)f(t; θ), where v(a, t) is the designer’s

utility from allocating a to t, and f(·; θ) ∈ ∆T is a type distribution that depends on some
parameter θ. Third, an agent chooses consumption ct in each period t ∈ T ≡ {1, . . . , n}.
The agent’s present discounted value is

∑
t v(ct)ρ(t; θ), where ρ(t; θ) is discount function

parameterized by θ. □

Example 4 (Experiments). Our final example is one in which an expected-utility agent can
only choose from a proper subset of lotteries. Let Ω be a finite set of “states”. We refer to ∆Ω

as the set of beliefs or posteriors and ∆∆Ω as the set of experiments (with finite support). In
Bayesian persuasion (Kamenica and Gentzkow, 2011) or, more broadly, information design
(Bergemann and Morris, 2019), an expected-utility agent has preferences represented by
v(p, θ), where p ∈ ∆Ω and θ is a preference parameter. The expected utility from experiment
Q ∈ ∆∆Ω is given by u(Q, θ) ≡

∫
p
v(p, θ)dQ. If we consider all experiments, then this

setting is a special case of Example 1. But given a prior p∗ ∈ ∆Ω, any experiment must in
fact be Bayes-plausible, i.e., its distribution of posteriors must average to the prior p∗. So,
given p∗, the agent can only choose an experiment in A ≡ {Q ∈ ∆∆Ω :

∫
p∈∆Ω

pdQ = p∗}.
Nevertheless, the linearity of u in its first argument and the convexity of A again imply (⋆).
Indeed, based on Example 2, Condition (⋆) will hold even for rank-dependent expected-
utility agents choosing among Bayes-plausible experiments. □

3.1. The Characterization

Our characterization of SCD in convex environments (Theorem 2 below) requires the
following definition.

Definition 3. Let f1, f2 : Θ → R each be single crossing.
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1. f1 ratio dominates f2 if

(∀θl < θh) f1(θl)f2(θh) ≤ f1(θh)f2(θl), and (3)

(∀θl < θm < θh) f1(θl)f2(θh) = f1(θh)f2(θl) ⇐⇒

{
f1(θl)f2(θm) = f1(θm)f2(θl),

f1(θm)f2(θh) = f1(θh)f2(θm).
(4)

2. f1 strictly ratio dominates f2 if Condition (3) holds with strict inequality.

3. f1 and f2 are (strictly) ratio ordered if either f1 (strictly) ratio dominates f2 or vice-versa.

Condition (3) contains the essential idea of ratio dominance and is what we focus on in
the main text; Condition (4) only deals with some knife-edged cases that are discussed in
Appendix B.1. The definition of strict ratio dominance does not make reference to Condi-
tion (4) because that condition is vacuous when Condition (3) holds with strict inequality.

We use the terminology “ratio dominance” because when f2 is a strictly positive func-
tion, Condition (3) is the requirement that the ratio f1(θ)/f2(θ) must be increasing in θ.
Indeed, if both f1 and f2 are probability densities of random variables Y1 and Y2, then (3)
says that Y1 stochastically dominates Y2 in the sense of likelihood ratios.10

Condition (3) is a natural generalization of the increasing ratio property to functions
that may change sign. To get a geometric intuition, suppose f1 strictly ratio dominates f2.
Let f(θ) ≡ (f1(θ), f2(θ)). For every θl < θh, f1(θl)f2(θh) − f1(θh)f2(θl) < 0 implies that the
vector f(θl) moves to f(θh) through a rescaling of magnitude and a clockwise—rather than
counterclockwise—rotation (throughout our paper, a “rotation” must be no more than 180

degrees).11

Hence, f1 and f2 are ratio ordered only if f(θ) rotates monotonically as θ increases, either
always clockwise or always counterclockwise.12 It follows that the set {f(θ) : θ ∈ Θ} must
be contained in a closed half-space of R2 defined by a hyperplane that passes through the

10 From the viewpoint of information economics, think of θ as a signal of a state s ∈ {1, 2}, drawn from the
density f(θ|s) ≡ fs(θ). Condition (3) is Milgrom’s (1981) monotone likelihood-ratio property for f(θ|s).

11 To elaborate on the direction of rotation, recall that from the definition of cross product,

(f1(θl), f2(θl), 0)× (f1(θh), f2(θh), 0) = ∥f(θl)∥∥f(θh)∥ sin(r)e3 = (f1(θl)f2(θh)− f1(θh)f2(θl)) e3,

where r is the counterclockwise angle from f(θl) to f(θh), e3 ≡ (0, 0, 1), × is the cross product, and ∥·∥ is
the Euclidean norm. If sin(r) < 0 (resp., sin(r) > 0), then f(θl) moves to f(θh) through a clockwise (resp.,
counterclockwise) rotation.

12 The preceding discussion establishes this point under the presumption of strict ratio ordering; however,
because of the hypothesis in Definition 3 that f1 and f2 are single crossing and because of Condition (4), the
conclusion holds for ratio ordering too. Furthermore, it can be confirmed that a monotonic rotation of f(·)
implies ratio ordering if there are no θ′ and θ′′ such that f(θ′) and f(θ′′) are collinear.
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(a) Condition (3) holds for θl < θm < θh.
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(b) Condition (3) fails both when Θ =

{θl, θm, θh} with θl < θm < θh, and when
Θ = {θl, θm, θ̂h} with θl < θm < θ̂h.

Figure 1: Geometric representation of Condition (3).

origin: otherwise, there will be two pairs of vectors such that an increase in θ corresponds to
a clockwise rotation in one pair and a counterclockwise rotation in the other. See Figure 1.
In its panel (b), the non-monotonic rotation of f(θ) is clear when Θ = {θl, θm, θh} with
θl < θm < θh, but it is also present when Θ = {θl, θm, θ̂h} with θl < θm < θ̂h; in the latter
case, the aforementioned half-space requirement is violated.

We can now state our main characterization. For brevity, we say that u has (S)SCD⋆

as shorthand for “In a convex environment, u has (S)SCD.” Furthermore, we say that A
is minimal if there is no pair of utility-indistinguishable actions: ∀a, a′ ∈ A, ∃θ such that
Da,a′(θ) ≡ u(a, θ)− u(a′, θ) ̸= 0.

Theorem 2. The function u : A×Θ → R has SCD⋆ if and only if it takes the form

u(a, θ) = g1(a)f1(θ) + g2(a)f2(θ) + h(θ), (5)

with f1 and f2 each single crossing and ratio ordered. In addition, if A is minimal, then u has
SSCD⋆ if and only if f1 and f2 are strictly ratio ordered.13

We make a number of observations to help interpret Theorem 2.

13 If A is not minimal, then so long as |Θ| > 1, u violates SSCD⋆ because for some a and a’, Da,a′ is
a zero function and hence not strictly single crossing. Nonetheless, the characterization applies when we
consider utility-indistinguishable actions as equivalence classes and the corresponding utility function on
those equivalence classes.
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The theorem says that for u to have SCD⋆, it must be possible to write it in the form
(5). Notice that given (5), for any a0, a1 ∈ A, the function u(a1, ·) − u(a0, ·) is a linear
combination of f1(·) and f2(·). Therefore, to rule out the possibility of the form (5), it is
sufficient to find a0, a1, a2, a3 ∈ A and θl < θm < θh such that the 3 × 3 matrix M ≡
[u(ai, θj)−u(a0, θj)]i∈{1,2,3},j∈{l,m,h} is invertible. This procedure is often useful to reject SCD⋆,
as we illustrate subsequently in Corollary 2.

Given the functional form (5), not only is SCD⋆ assured by f1 and f2 each being single
crossing and ratio ordered, but these properties are almost necessary.14

An asymmetry between a and θ in Equation 5 bears noting: the function h : Θ → R does
not have a counterpart function A 7→ R. The reason is that whether the utility difference
between two actions is single crossing could be altered by adding a function of a alone to
u(a, θ). On the other hand, adding a function of θ alone has no such effect because SCD
is an ordinal property that is invariant to any (type-dependent) increasing transformation,
or representation, of u, i.e., ũ(a, θ) ≡ m(u(a, θ), θ), where each m(·, θ) : R → R is strictly
increasing.

In general, whether the convexity condition (⋆) holds can depend on which represen-
tation one chooses. But since SCD is ordinal, the scope of our analysis is in fact broader
than it may seem: if a utility function satisfies SCD and some representation satisfies (⋆),
then Theorem 2 applies to that representation.15 We illustrate how this is useful in Subsec-
tion 3.2.3.

If u(a, θ) has the form (5) with strictly positive functions f1 and f2, then up to a posi-
tive affine transformation (viz., subtracting h(θ) and dividing by f1(θ)+f2(θ)),16 any type’s
utility becomes a convex combination of two type-independent utility functions over ac-
tions, g1 and g2. Theorem 2’s ratio ordering requirement then simply says that the relative
weight on g1 and g2 changes monotonically with the agent’s type. This idea underlies the
following proposition.

Proposition 1. Let Θ have both a minimum and a maximum (i.e., ∃ θ, θ ∈ Θ such that (∀θ)
θ ≤ θ ≤ θ), and the environment (A,Θ, u) be convex. Then, u has SCD⋆ if and only if u has a

14 “Almost” excludes the case in which g1 and g2 are affinely dependent, i.e., g1 = λg2+γ for some λ, γ ∈ R.
Intuitively, affine independence ensures that neither g1 nor g2 is dispensable in (5).

15 For example, given a product set A ⊆ R2
+ and θ ∈ [0, 1], the Cobb-Douglas utility aθ1a

1−θ
2 does not satisfy

(⋆), but the representation θ log a1 + (1 − θ) log a2 is a multidimensional utility (Example 3) and therefore
satisfies (⋆), indeed SCD⋆.

16 In general, a positive affine transformation of u(a, θ) is any b(θ)u(a, θ) + c(θ) where b(·) > 0. Unlike
arbitrary representations, positive affine transformations preserve condition (⋆).
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positive affine transformation ũ satisfying

ũ(a, θ) = λ(θ)ũ(a, θ) + (1− λ(θ))ũ(a, θ), (6)

with λ : Θ → [0, 1] increasing. In addition, if A is minimal, then u has SSCD⋆ if and only if λ is
strictly increasing.

Proposition 1 provides an economic interpretation of SCD⋆ as capturing preferences that
monotonically shift weight from one extreme type’s to the other’s. We note, though, that
even when Θ has extreme types, it could be easier to verify whether a given function has
SCD⋆ using Theorem 2 because one does not have to search among the affine transforma-
tions allowed by Proposition 1.

We offer one additional interpretational comment. On the one hand, Theorem 2 and
Proposition 1 indicate that SCD—while desirable for tractability (including interval choice),
economic intuition, etc.—is a demanding property in a convex environment. On the other
hand, because the functions g1 and g2 in Theorem 2 are arbitrary, SCD⋆ nevertheless allows
for a broad economic landscape. Specifically, when one assumes SCD in any environment
(convex or not), one generally has in mind that there is an underlying tradeoff—e.g., risk
vs. expected return among lotteries, delay vs. total amount in payment streams, or price
vs. product quality in markets—whose balance shifts monotonically with type. Our char-
acterizations show that SCD⋆ is broad enough to capture such desiderata because the g1
and g2 functions in Theorem 2 can evaluate the tradeoff differently: e.g., compared to g2,
the function g1 can be more risk averse, discount the future more, or be more price sensi-
tive; furthermore, as highlighted by Proposition 1, higher types put more weight on one
criterion.

3.2. Implications for Leading Examples

This subsection develops the implications of Theorem 2 for our leading examples. For
brevity, we focus on the implications of SCD⋆, stating the SSCD⋆ counterpart only in Corol-
lary 1.

3.2.1. Single-Crossing Expectational Differences

Suppose, following Example 1, that A ≡ ∆X is a set of lotteries and u is the expected
utility induced by v(x, θ). We say that v has (strict) single-crossing expectational differences, or
(S)SCED, if the expected utility function u has (S)SCD⋆.17 SCED is not implied by SCD or

17 In general, an expected utility function u may not have SSCD⋆ simply because A ≡ ∆X is not minimal.
This arises, for example, when u is a mean-variance utility function and multiple lotteries have the same
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even supermodularity of v.18 Rather:

Corollary 1. The von Neumann Morgenstern utility function v has (S)SCED if and only if it has
the same form as u in Theorem 2.

The corollary’s proof is straightforward: if v satisfies the characterization, then u(P, θ) =
(
∫
x
g1(x)dP )f1(θ)+(

∫
x
g2(x)dP )f2(θ)+h(θ) with f1 and f2 satisfying the conditions given in

Theorem 2, so u has SCD⋆. Conversely, if u(P, θ) ≡
∫
x
v(x, θ)dP has SCD⋆, and hence has the

form in Theorem 2, then so does v because v(x, θ) ≡ u(δx, θ) = g1(x)f1(θ)+g2(x)f2(θ)+h(θ),
where δx denotes the degenerate lottery on x.

Corollary 1 is related to Abbas and Bell (2011, Theorem 1). They study expected utility
over lotteries with some additional restrictions on the environment (e.g., Θ is finite and
completely ordered, and preferences satisfy some substantive economic conditions). For
that setting, their Theorem 1 states a similar result to the version of Corollary 1 that would
obtain using Proposition 1 instead of Theorem 2.19

Even aside from the ratio-ordering and single-crossing requirements in Theorem 2, the
functional form (5) deserves emphasis: there are only two “interaction terms”, each of
which is multiplicatively separable in a and θ. This means that preferences over lotteries
must be summarized by two linear statistics: for any lottery P ∈ ∆X , the statistics are∫
x
g1(x)dP and

∫
x
g2(x)dP .20 This point underlies the following corollary, which identifies

quadratic loss as the unique power loss function that has SCED.

Corollary 2. LetX = R and Θ ⊆ R with |Θ| ≥ 3. A loss function v(x, θ) = −|x− θ|z with z > 0

has SCED if and only if z = 2.

Under quadratic loss, preferences over lotteries are summarized by the lotteries’ first
and second moments. We note that some non-power-loss generalizations of quadratic loss,

mean and variance. In such cases we consider utility-indistinguishable lotteries as equivalence classes and
the corresponding utility function ũ defined on these equivalence classes of lotteries. We say v has SSCED if
ũ has SSCD⋆.

18 For instance, given x, θ ∈ R, any power loss function v(x, θ) = −|x − θ|z is supermodular when z > 1,
but Corollary 2 below establishes that SCED fails for z ̸= 2.

19 Abbas and Bell (2011) use the terminology of “one-switch independence”, which appears equivalent to
SSCED up to one minor detail that can be set aside here (concerning the treatment of distinct lotteries that all
types are indifferent over). Translated into our notation, they assert that a utility function v(x, θ) has SSCED
if and only if v(x, θ) = f1(θ)g1(x) + f2(θ)g2(x) + h(θ), with f1 strictly positive and f2/f1 strictly increasing.
This can be seen from our Proposition 1 because, given its hypothesis of extreme types, it implies that v has
SSCED if and only if v(x, θ) = b(θ) [g1(x) + λ(θ)(g2(x)− g1(x)] + c(θ), where b is strictly positive, λ is strictly
increasing, and g1 and g2 are, respectively, monotonic transformations of v(·, θ) and v(·, θ).

20 The utility function v(x, θ) = exp (xθ) cannot be written in the form of Equation 5 and hence does not
have SCED. Indeed, its expected utility from an arbitrary lottery cannot be summarized by any finite number
of linear statistics, let alone two.
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such as v(x, θ) = xθ+g(x)+h(θ) with g : R → R, also satisfy SCED; these functional forms—
or variants that also augment a quasilinear money burning component, which continues to
preserve SCED—are used in the study of delegation with stochastic mechanisms or money
burning (Amador and Bagwell, 2013; Kleiner, 2022).

SCED is useful in dynamic problems, as seen in Banks and Duggan (2006), Duggan
(2014), Celik (2015), and Ali, Kartik, and Kleiner (2022). It is thus noteworthy that:

Corollary 3. Suppose v(x, θ) has SCED. Then, denoting x∞ ≡ (xt)
∞
t=0, so does the discounted

utility function ṽ(x∞, θ) =
∑∞

t=0 ρ(t)v(xt, θ) for any ρ : {0, 1, . . .} → R.

We omit a proof as the result follows straightforwardly from Corollary 1. Note that
Corollary 3 does not require exponential discounting. (Of course, implicitly ρ must ensure
that ṽ(·) is finite.)

3.2.2. Single-Crossing Rank-Dependent Expected Utility

Suppose an agent’s preferences over lotteries A ≡ ∆X have a rank-dependent expected
utility (RDEU) representation as described in Example 2, with underlying utility v(x, θ).

Corollary 4. An RDEU function has SCD⋆ if and only if the underlying utility v has the same
form as u in Theorem 2.

We omit a proof because it is analogous to that for Corollary 1. An RDEU agent thus
evaluates a lottery P according to two summary statistics:

∫
x
g1(x)d(w◦P ) and

∫
x
g2(x)d(w◦

P ). The difference with expected utility is that these summary statistics are no longer linear
in P . Instead the statistics reweight probabilities according to the original reweighting
function.

3.2.3. Multidimensional Utility

Suppose, following Example 3, that an agent has a multidimensional utility function
u(a, θ) ≡

∑n
i=1 gi(ai)fi(θ).

Corollary 5. A multidimensional utility function u has SCD⋆ if and only if

u(a, θ) =

(
n∑
i=1

λIi gi(ai)

)
f I(θ) +

(
n∑
i=1

λIIi gi(ai)

)
f II(θ) + h(θ), (7)

with f I and f II each single crossing and ratio ordered, and λI , λII ∈ Rn.
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The interpretation is that a multidimensional utility has SCD⋆ when at most two “sum-
mary” dimensions matter. The values on these summary dimensions are weighted sums
of the original values gi(ai) over the primitive dimensions i = 1, . . . , n. Higher types place
relatively more weight on products/bundles that are more valuable on one of the two sum-
mary dimensions; recall Proposition 1.

As mentioned in Example 3, multidimensional utility can capture a consumer choos-
ing among consumption bundles. A canonical specification is the Cobb-Douglas utility
u(a, θ) =

∏n
i=1 a

fi(θ)
i , where a ∈ Rn

+ is the consumption bundle and the vector of fi(θ) ≥ 0

parameterizes the consumer’s marginal rates of substitution (MRS). Note that an alterna-
tive representation is

∑n
i=1 fi(θ) log(ai), which has the multidimensional form. Corollary 5

implies that for Cobb-Douglas utility to have SCD, it must be representable as

u(a, θ) =

(
n∏
i=1

a
λIi
i

)f(θ)( n∏
i=1

a
λIIi
i

)1−f(θ)

,

with f : Θ → [0, 1] monotonic and λI , λII ≥ 0.21 The interpretation is that to satisfy
SCD, the Cobb-Douglas utility must have “two layers”: the consumer first evaluates the
θ-independent Cobb-Douglas value of two composite goods, and then trades off these com-
posite goods according to a Cobb-Douglas utility function with MRS that is monotonic in
θ. SCD guarantees that for any choice set (e.g., a budget set), the value of each composite
good in the chosen consumption bundle changes monotonically (necessarily in opposite
directions) in θ. A special case is the textbook example of two goods, say 1 and 2, and
u(a, θ) = aθ1a

1−θ
2 with θ ∈ [0, 1]. In that case, we recover the textbook observation that given

any budget set, the consumption of each good is monotonic in the MRS.

As another example, consider discounted utility over consumption streams. For a con-
sumption stream (ct)

T
t=1, the discounted utility

∑T
t=1 ctρ(t, θ) is of the multidimensional

form. Corollary 5 implies that the discounted utility has SCD⋆ only if, for any consump-
tion stream (ct),

∑
t ctρ(t, θ) is linearly generated by two functions of θ. By considering

consumption streams that are positive only in a single period, we see that each ρ(t, ·) must
in fact be generated by the same two functions of θ, i.e., ρ(t, θ) = λIt f

I(θ)+λIIt f
II(θ). When

T ≥ 3, such linear dependency does not hold for exponential discounting, i.e., when each
type θ has a discount factor δθ such that ρ(t, θ) = (δθ)

t. Consequently, exponential discount-
ing is incompatible with interval choice: given any three discount factors, there are con-
sumption streams (ct) and (c′t) such that an agent with either low or high patience strictly

21 More precisely, Corollary 5 yields the representation
(∏n

i=1 a
λI
i
i

)fI(θ) (∏n
i=1 a

λII
i
i

)fII(θ)

, where f I and

f II are each single crossing and ratio ordered, and Proposition 1 yields the further simplification.
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prefers (ct) while an agent with intermediate patience strictly prefers (c′t).22 In fact, our
analysis reveals that in general choice between an arbitrary pair of consumption streams
will be monotonic in the time preference parameter θ only if ρ(t, θ) has the aforementioned
linear dependence. An example is linear time cost, say θ ∈ [θ, θ] ⊂ R and ρ(t, θ) = α − θt

for some α > θT .23

3.2.4. Single-Crossing Expectational Differences over Experiments

Suppose, following Example 4, that Ω, ∆Ω, and ∆∆Ω are a set of states, posteriors,
and experiments respectively. Given a prior p∗ ∈ ∆Ω, an agent can only choose a Bayes-
plausible experiment: A ≡ {Q ∈ ∆∆Ω :

∫
p∈∆Ω

pdQ = p∗}. We say that v(p, θ) has single-
crossing expectational differences over experiments (SCED-X) if the expected utility function
u(Q, θ) ≡

∫
p
v(p, θ)dQ over A has SCD⋆. Since A ⊊ ∆∆Ω, SCED is sufficient for SCED-X

but not necessary. SCED-X is, instead, characterized as follows.

Corollary 6. For any full-support prior p∗, the function v has SCED-X if and only if

v(p, θ) = g1(p)f1(θ) + g2(p)f2(θ) +
∑
ω

v(δω, θ)p(ω), (8)

with f1 and f2 each single crossing and ratio ordered.

As the environment is convex, Theorem 2’s characterization applies to the expected util-
ity function u. Similar to the SCED characterization in Corollary 1, the form of the expected
utility function u passes to the von Neumann Morgenstern utility function v.24 The differ-
ence is that the last term in Equation 8 can depend on the posterior p as well as the type
θ, unlike the h(θ) term in Equation 5. This is because the expected utility having the form
in Theorem 2 only imposes, for SCED-X, that the expectation of that term is constant over
lotteries that average to the prior, rather than over all lotteries. This means that the term
can admit a linear dependence in p, as seen in Equation 8.

22 For example, let (ct)3t=1 = (1, 0, 6) and (c′t)
3
t=1 = (0, 5, 0). The difference u(c′, θ)−u(c, θ) = δθ(1−5δθ+6δ2θ)

is strictly positive if and only if δθ ∈ (1/3, 1/2).
23 The fact that SCD imposes strong restrictions on the nature of discounting can be related to difficulties in

aggregating time preferences (Jackson and Yariv, 2015). Specifically, with three types (or agents), θ < P < θ,
where “P” stands for Planner, SCD is very similar to a Pareto principle: whenever types θ and θ have the
same preference over a pair of consumption streams, so should type P . Our discussion indicates that if types
θ and θ are exponential discounters, then P cannot be, as was highlighted by Jackson and Yariv (2015). In fact,
our result says that P ’s preference must linearly depend on the other two types, echoing Harsanyi (1955).

24 This is not as straightforward as in the case SCED, where one can appeal to degenerate lotteries on any
posterior. Under SCED-X, the only posterior on which there can be a degenerate lottery is the prior.
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3.3. Aggregating Single-Crossing Functions

This subsection explains the logic behind Theorem 2; we focus on single crossing here,
deferring strict single crossing to Supplementary Appendix SA.2. Owing to the convex
environment, the central issue is when linear aggregations of functions are single crossing.
Lemma 1 below shows that ratio ordering is the characterizing property when aggregat-
ing two functions; Proposition 2 then establishes that when aggregating more than two
functions, no more than two can be linearly independent, which leads to Theorem 2.25

Lemma 1. Let f1, f2 : Θ → R. The linear combination α1f1(θ) + α2f2(θ) is single crossing
∀α ∈ R2 if and only if f1 and f2 are each single crossing and ratio ordered.
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(a) Sufficiency of ratio ordering.
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(b) Necessity of ratio ordering, with θl < θm < θh.

Figure 2: Ratio ordering and single crossing of all linear combinations.

Here is the lemma’s intuition. For sufficiency, consider any linear combination α1f1 +

α2f2. Assume α ∈ R2\{0}, to avoid triviality. The vector α defines two open half spaces
R2
α,− ≡ {x ∈ R2 : α · x < 0} and R2

α,+ ≡ {x ∈ R2 : α · x > 0}, where · is the dot product; see
Figure 2(a). As explained earlier after Definition 3, ratio ordering of f1 and f2 implies that
the vector f(θ) ≡ (f1(θ), f2(θ)) rotates monotonically as θ increases. If the rotation is from
R2
α,− to R2

α,+ (resp., from R2
α,+ to R2

α,−), then α · f ≡ α1f1 + α2f2 is single crossing only from

25 Real-valued functions f1, . . . , fn are linearly independent if (∀λ ∈ Rn\{0})
∑n
i=1 λifi is not a zero func-

tion, i.e., is not everywhere zero.
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below (resp., only from above). If
⋃
θ∈Θ f(θ) ⊆ R2

α,− or
⋃
θ∈Θ f(θ) ⊆ R2

α,+, then α · f is single
crossing both from below and above. Other cases are similar.26

To see why Condition (3) of ratio ordering is necessary, suppose the vector f(θ) does not
rotate monotonically. Figure 2(b) illustrates a case in which, for θl < θm < θh, f(θl) rotates
counterclockwise to f(θm), but f(θm) rotates clockwise to f(θh). As shown in the figure,
one can find α ∈ R2 such that f(θm) ∈ R2

α,− while both f(θl), f(θh) ∈ R2
α,+, which implies

that α · f is not single crossing. See Appendix B.1 for why Condition (4) is necessary.

Lemma 1 relates to Quah and Strulovici (2012, Proposition 1). They establish that for any
two functions f1 and f2 that are single crossing from below, α1f1 + α2f2 is single crossing
from below for all α ∈ R2

+ if and only if f1 and f2 satisfy a condition they call signed-
ratio monotonicity (see Supplementary Appendix SA.5 for the definition). In general, ratio
ordering is not comparable with signed-ratio monotonicity because we consider a differ-
ent aggregation problem from Quah and Strulovici: (i) the input functions may be single
crossing in either direction; (ii) the linear combinations involve coefficients of arbitrary
sign; and (iii) the resulting combination can be single crossing in either direction. The ex-
ample in the introduction highlights the importance of point (ii). There, θ ∈ [−1, 1] and
u(a, θ) = (θ2 + 1/2)11{a=1} + 211{a=2}. Both f1(θ) = θ2 + 1/2 and f2(θ) = 2 are positive func-
tions (hence, single crossing from below), and so all positive linear combinations are also
positive functions, but f1(θ)− (1/2)f2(θ) = θ2 − 1/2 is not single crossing because f1 and f2
are not ratio ordered. If the input functions in Lemma 1 are restricted to be single crossing
from below, then ratio ordering implies signed-ratio monotonicity.

Lemma 1 implies a characterization of likelihood-ratio ordering for random variables
with strictly positive densities. While this likelihood-ratio ordering characterization does
not appear to be well-known among economists, it is a special case of Karlin’s (1968) re-
sults on the variation diminishing property of totally positive functions. More generally,
however, Lemma 1 differs from Karlin (1968) because it considers aggregations of functions
that can change sign, whereas he only studies non-negative functions.27

Theorem 2 requires an extension of Lemma 1 to more than two functions. Consider any
set Z and f : Z ×Θ → R. We say that f is linear combinations SC-preserving if

∫
z
f(z, θ)dµ is

26 Notice that this argument does not require either f1 or f2 to be single signed. By contrast, Abbas and
Bell (2011, p. 769, in their last paragraph on “Necessity”) incorrectly claim that all linear combinations of two
(strictly) single crossing functions are (strictly) single crossing only if one function is single signed.

27 Under some conditions, it is possible to transform the lemma’s aggregation problem into one of aggre-
gating non-negative functions, and then apply Karlin’s (1968) results. However, the precise conditions are
opaque (Kartik, Lee, and Rappoport, 2019, Appendix H.2); moreover, the procedure is somewhat involved
and, in our view, less instructive than our direct proof of Lemma 1.
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single crossing in θ for every function µ : Z → R with finite support.28

Proposition 2. Let f : Z × Θ → R for some set Z. The function f is linear combinations SC-
preserving if and only if there exist z1, z2 ∈ Z and λ1, λ2 : Z → R such that

1. f(z1, ·) : Θ → R and f(z2, ·) : Θ → R are (i) each single crossing and (ii) ratio ordered, and

2. (∀z) f(z, ·) = λ1(z)f(z1, ·) + λ2(z)f(z2, ·).

Proposition 2 says that a family of single-crossing functions {f(z, ·)}z∈Z preserves single
crossing of all finite linear combinations if and only if the family is “linearly generated” by
two single-crossing functions that are ratio ordered. In particular, given any three single-
crossing functions, f1, f2, and f3, all their linear combinations will be single crossing if and
only if there is a linear dependence in the triple, say λ1f1 + λ2f2 = f3 for some λ ∈ R2, and
f1 and f2 are ratio ordered.

The sufficiency direction of Proposition 2 follows from Lemma 1, as does necessity of
the “generating functions” being ratio ordered. The intuition for the necessity of lin-
ear dependence is as follows. Assume Θ is completely ordered. For any θ, let f(θ) ≡
(f1(θ), f2(θ), f3(θ)). If {f1, f2, f3} is linearly independent, then there exist θl < θm < θh such
that {f(θl), f(θm), f(θh)} spans R3. Take any α ∈ R3 \ {0} that is orthogonal to the plane
Sθl,θh that is spanned by f(θl) and f(θh), as illustrated in Figure 3. The linear combination
α · f is not single crossing because (α · f)(θl) = (α · f)(θh) = 0 while (α · f)(θm) ̸= 0.

α

f θl)

f(θh)

f(θm)

0

Sθl θh

Figure 3: The necessity of linear dependence in Proposition 2.

28 The notation
∫
z
f(z, θ)dµ should be read as

∑
{z:µ(z) ̸=0} f(z, θ)µ(z).
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While the necessity portion of Proposition 2 only asserts ratio ordering of the “generat-
ing functions”, Lemma 1 implies that if f : Z×Θ → R is linear combinations SC-preserving,
then for all z, z′ ∈ Z, the pair f(z, ·) : Θ → R and f(z′, ·) : Θ → R must be ratio ordered.

Proof Sketch of Theorem 2. We can now sketch the argument for Theorem 2. That its
characterization is sufficient for SCD⋆ is straightforward from Lemma 1. For necessity,
suppose as a simplification that, for some a0 ∈ A, (∀θ) u(a0, θ) = 0.29 For any {a1, . . . , an} ⊂
A and (λ1, . . . , λn), we build on the Hahn-Jordan decomposition of (λ1, . . . , λn) to write
the linear combination

∑n
i=1 λiv(ai, θ) as M

∑n
i=0(p(ai) − q(ai))u(ai, θ), where p and q are

probability mass functions on {a0, a1, . . . , an}, and M is a scalar.30 (Unless
∑n

i=1 λi = 0,
we have

∑n
i=1 p(ai) ̸=

∑n
i=1 q(ai); the assumption that u(a0, ·) = 0 permits us to assign all

the “excess difference” to a0, as detailed in fn. 30.) Since the environment is convex there
exist ap, aq ∈ A such that the linear combination is equal to M(u(ap, θ)− u(aq, θ)), which is
single crossing because u has SCD⋆ . Since every such linear combination is single crossing,
Proposition 2 guarantees a′ and a′′ such that for all a, u(a, ·) = g1(a)u(a

′, ·) + g2(a)u(a
′′, ·),

with u(a′, ·) and u(a′′, ·) each single crossing and ratio ordered.

Remark 1. The proof of Theorem 2 is materially no different from that for an expected-utility
environment. Indeed, any convex environment (A,Θ, u) can be transformed into another
convex environment (Ã,Θ, ũ) where Ã ≡ {u(a, ·)}a∈A is a convex subset of the vector space
of functions Θ 7→ R, and, under mild conditions, Choquet’s Theorem implies that each
ũ(·, θ) : Ã→ R is an expected utility function. We develop the lens of convex environments
for two reasons: (i) to highlight that our characterization is driven only by Condition (⋆),
not other properties of expected utility such as linearity or continuity; and (ii) to cover
additional economic settings, as in Examples 2–4.

4. Applications

This section illustrates the usefulness of our results in three applications. Interested
readers may consult our earlier working paper, Kartik, Lee, and Rappoport (2019, Section
4.3), for another application to costly signaling.

29 This is just a normalization, since u(a, θ) has SCD⋆ if and only if ũ(a, θ) ≡ u(a, θ)− u(a0, θ) has SCD⋆.
30 Let L ≡

∑n
i=1 λi. For i > 0, set p′(ai) ≡ max{λi, 0} and q′(ai) ≡ −min{λi, 0}. If L ≥ 0, set p′(a0) = 0

and q′(a0) ≡ L; if L < 0, set p′(a0) ≡ −L and q′(a0) ≡ 0. Let M ≡
∑n
i=0 p

′(ai) =
∑n
i=0 q

′(ai). Finally, for all
a ∈ {a0, . . . , an}, set p(a) ≡ p′(a)/M and q(a) ≡ q′(a)/M .
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4.1. Cheap Talk with Uncertain Receiver Preferences

There are two expected-utility players, a sender (S) and a receiver (R). The sender’s type
is θ ∈ Θ, where Θ is ordered by ≤. After learning his type, S chooses a payoff-irrelevant
messagem ∈M , where |M | > 1. After observingm but not θ,R takes a decision x ∈ X . The
sender’s von Neumann Morgenstern utility function is vS(x, θ); the receiver’s is vR(x, θ, ψ),
where ψ ∈ Ψ is a preference parameter that is unknown to S when choosingm, and known
to R when choosing x. Note that ψ does not affect the sender’s preferences. The variables
θ and ψ are independently drawn from commonly-known probability distributions.

An example is Θ = [0, 1], X = R, ψ ∈ Ψ ⊆ R2, vS(x, θ) = −(x − θ)2 and vR(x, θ, ψ) =

−(x−ψ1−ψ2θ)
2. Here the variable ψ1 captures the receiver’s “type-independent bias” and

ψ2 captures the relative “sensitivity” to the sender’s type. If ψ were commonly known and
θ uniformly distributed, this would be the model of Melumad and Shibano (1991), which
itself generalizes the canonical example from Crawford and Sobel (1982) that obtains when
ψ1 ̸= 0 and ψ2 = 1.

We focus on (weak Perfect Bayesian) equilibria in which S uses a pure strategy, µ : Θ →
M , andR plays a possibly-mixed strategy, α :M×Ψ → ∆X .31 Given any α, every message
m induces some lottery Pα(m) ∈ ∆X from the sender’s viewpoint. An equilibrium (µ, α)

is: (i) an interval equilibrium if every message is used by an interval of sender types, i.e.,
if (∀m) {θ : µ(θ) = m} is an interval; and (ii) sender minimal if for all on-the-equilibrium-
path m ̸= m′, there is some θ such that EPα(m)[v

S(·, θ)] ̸= EPα(m′)[v
S(·, θ)]. In other words,

sender minimality rules out all sender types being indifferent between two distinct on-path
messages.32

Claim 1. If vS has SSCED (Corollary 1) then every sender-minimal equilibrium is an interval
equilibrium.

Proof. From the sender’s viewpoint, the lottery over the receiver’s decisions that is in-
duced by any message (given any receiver strategy) is independent of θ because ψ and θ

are independent. The result follows from Theorem 1, as sender-minimality implies that one
can restrict attention to the sender choosing among lotteries that are utility-distinguishable
(i.e., if P and Q are equilibrium lotteries, then DP,Q is not a zero function). Q.E.D.

31 Our notion of equilibrium requires optimal play for every (not just almost every) type of sender. The
restriction to pure strategies for the sender is for expositional simplicity.

32 In Crawford and Sobel (1982) and Melumad and Shibano (1991), all equilibria are outcome equivalent to
sender-minimal equilibria. More generally, all equilibria are sender minimal when there is a complete order
over messages under which higher messages are infinitesimally more costly for all sender types.
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Claim 1 relates to Seidmann (1990), who first considered an extension of Crawford and
Sobel (1982) to sender uncertainty about the receiver’s preferences. His goal was to il-
lustrate how such uncertainty could facilitate informative communication even when the
sender always strictly prefers higher receiver decisions. Example 2 in Seidmann (1990) con-
structs a non-interval and sender-minimal equilibrium that is informative. Claim 1 clarifies
that the key is a failure of SSCED.

The strict single-crossing property in standard cheap-talk models (e.g., Crawford and
Sobel (1982) and Melumad and Shibano (1991)) not only yields interval equilibria, but it
also implies that local incentive compatibility is sufficient for global incentive compati-
bility. This additional tractability also holds under SSCED. Let Θ = {θi : i ∈ Z} such
that θi < θj for i < j, and P : Θ → ∆X be a candidate equilibrium outcome (i.e.,
the distribution of receiver’s choices that each sender type induces in equilibrium). Un-
der SSCED, it is sufficient for sender incentive compatibility that (∀i ∈ Z) u(P (θi), θi) ≥
max{u(P (θi−1), θi), u(P (θi+1), θi)}.

Besides being sufficient, (S)SCED is also necessary to guarantee interval cheap-talk equi-
libria. Say that vS strictly violates SCED if the expected utility function strictly violates SCD,
i.e., if there are P,Q ∈ ∆X and θl < θm < θh such that min{DP,Q(θl), DP,Q(θh)} > 0 >

DP,Q(θm).

Claim 2. Let Θ ⊆ R, X ≡ R, Ψ ⊆ R2, and vR(x, θ, ψ) ≡ −(x−ψ1 −ψ2θ)
2. If vS strictly violates

SCED, then for some pair of distributions of θ and ψ there is a non-interval equilibrium in which
each sender type plays its unique best response.

Proof. Assume vS strictly violates SCED and let P and Q be the distributions and θl <

θm < θh the types in that definition. In what follows, we can without loss assume |M | = 2.
So let M ≡ {m′,m′′} and consider the sender’s strategy

µ(θ) =

m′ if θ ∈ {θl, θh}

m′′ if θ = θm.

Let Fθ be any distribution with support {θl, θm, θh} and θ′ ≡ EFθ
[θ|θ ∈ {θl, θh}] ̸= θm.

Then, the unique best response against µ for a receiver of type ψ = (ψ1, ψ2) is

α(m′, ψ) = ψ1 + ψ2θ
′ and α(m′′, ψ) = ψ1 + ψ2θm.

It can be verified that there is a distribution Fψ such that, from the sender’s viewpoint, the
message m′ leads to the distribution P and the message m′′ leads to the distribution Q, and
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so µ is the sender’s unique best response.33 Q.E.D.

The particular specification of vR in Claim 2 is not critical; what is important is that
there be enough flexibility to generate appropriate lotteries from the sender’s viewpoint
using best responses for the receiver.34 For example, the result would also hold—more
straightforwardly, but less interestingly—if the receiver were totally indifferent over all
actions for some preference realization. On the other hand, if ψ ∈ R and vR(x, θ, ψ) ≡
−(x − θ − ψ)2, then (S)SCED is not necessary, because any pair of lotteries that the sender
may face are ranked by first-order stochastic dominance. Strict supermodularity of vS(x, θ)
then guarantees that all sender-minimal equilibria are interval equilibria; however, strict
supermodularity does not imply (S)SCED, as noted in Subsection 3.2.1.

In our cheap-talk application it is uncertainty about the receiver’s preferences that leads
to the sender effectively choosing among lotteries over the receiver’s decisions. Similar re-
sults could also be obtained when the receiver’s preferences are known but communication
is noisy, à la Blume, Board, and Kawamura (2007).

4.2. Observational Learning with Multidimensional Utility

The classic sequential observational learning model (Banerjee, 1992; Bikhchandani, Hir-
shleifer, and Welch, 1992) considers agents sequentially choosing products with uncer-
tainty about product values but learning from predecessors’ choices.

For concreteness, suppose that students t = 1, 2, . . . sequentially purchase laptops be-
fore entering an engineering school. Each laptop is identified by its attribute vector a ≡
(a1, . . . , an) ∈ [0, 1]n, which consists of processing power, memory, screen size, price, etc.
The students are uncertain about the nature of the work required to complete the degree,

33 Let x and y be random variables with distributions P and Q, respectively. Let Fψ be the distribution of a
random vector ψ = (ψ1, ψ2) defined by [

ψ1

ψ2

]
≡
[
1 θ′

1 θm

]−1 [
x
y

]
.

As ψ ∼ Fψ (i.e., ψ has distribution Fψ),[
1 θ′

1 θm

] [
ψ1

ψ2

]
=

[
ψ1 + ψ2θ

′

ψ1 + ψ2θm

]
is stochastically equivalent to (x, y). Thus, α(m′, ψ) = ψ1 + ψ2θ

′ ∼ P and α(m′′, ψ) = ψ1 + ψ2θm ∼ Q.
34 In particular, the result in Claim 2 holds under the following more general assumptions: Θ, A ⊆ R,

the receiver’s preferences are represented by uR(a, θ, ψ) = g1(ψ, a)θ + g2(ψ, a), and for every θl < θh and
a′, a′′ ∈ A, there exists ψ ∈ Ψ such that a′ ∈ argmaxa u

R(a, ψ, θl) and a′′ ∈ argmaxa u
R(a, ψ, θh). The proof is

very similar to that of Claim 2.
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which is captured by a state θ ∈ Θ ⊂ R, where Θ is countable. The state affects how stu-
dents weigh each attribute of a laptop. Specifically, following Example 3, students have a
common multidimensional utility function u(a, θ) ≡

∑n
i=1 gi(ai)fi(θ). Each gi has a convex

range, which ensures a convex environment, i.e., Condition (⋆). Students are expected-
utility maximizers.

Given a finite set of available laptops A ⊆ [0, 1]n and a prior µ0 over the state, each
student chooses a laptop using two information sources. Conditional on the state, student
t obtains an independent private signal st about θ (e.g., her own impression from reading
syllabi and talking to alumni). A canonical example is normal information: st ∼ N (θ, σ2),
where σ > 0 is a known constant. Each student also observes all predecessors’ choices.

The question is whether there is adequate learning, as defined by Kartik, Lee, Liu, and
Rappoport (2022): no matter the prior µ0 and the choice set A, do students’ sequential
choices eventually settle on the laptop they would choose if the state were known?35 Those
authors identify SCD as the necessary and sufficient condition on the utility function u(a, θ)
for learning under normal information, and more generally, for information structures that
have “directionally unbounded beliefs”.36 In the current multidimensional utility environ-
ment, the following characterization obtains, which we state without proof.

Claim 3. There is adequate learning under normal information if and only if u(a, θ) has SCD⋆, i.e.,
it has the form stated in Corollary 5.

The claim implies that adequate learning under normal information obtains if only if
students’ preferences depend on at most two “summary attributes”, which are each linear
combinations over the original value over attributes, i.e., linear combinations of the func-
tions gi(ai). For example, students may trade off “convenience”, which is an aggregate of
price, weight, and size, with “performance”, which aggregates processing speed, memory,
and storage. Learning requires that the convenience and performance aggregators do not

35 Here is a precise definition. The full-information expected utility given a belief µ ∈ ∆Θ is the expected
utility under that belief if the state will be revealed before an action is chosen:

U∗(µ) ≡
∑
θ∈Θ

max
a∈A

u(a, θ)µ(θ).

Given a prior µ0 and a strategy profile σ, student t’s utility Ut is a random variable. Let Eσ,µ0
[Ut] be student

t’s ex-ante expected utility. There is adequate learning at a choice set A if for every prior µ0 and every
equilibrium strategy profile σ, Eσ,µ0

[Ut] → U∗(µ0) as t → ∞. There is adequate learning if there is adequate
learning at all choice sets.

36 Roughly, an information structure has directionally unbounded beliefs if for every state there exist sig-
nals that provide arbitrarily-close-to relative certainty about that state vs. all lower states, and analogously
(potentially different) signals for that state vs. all higher states. Under normal information, for any state,
arbitrarily high signals deliver the former while arbitrarily low signals deliver the latter.
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vary with the state. A second implication derives from f I and f II in Equation 7 being
ratio ordered. The interpretation is that for learning, students must value one summary
attribute more as the state increases, e.g., a higher state indicates more computationally
intensive work and hence a higher value of performance relative to convenience.

4.3. Collective Choice over Lotteries

Collective choice over lotteries manifests in many contexts: elections entail uncertainty
about what policies elected politicians will implement; and a board of directors may view
each candidate for CEO as a probability distribution over firm earnings. Zeckhauser (1969)
first pointed out that pairwise-majority comparisons in these settings can be cyclical, even
when comparisons over deterministic outcomes are not. Our results shed light on when
such difficulties do not arise.

Consider a finite group of individuals indexed by i ∈ {1, 2, . . . , N}, where for simplicity
N is odd. The group must choose from a set of lotteries over X, where X is the space of
outcomes (political policies, earnings, etc.) with generic element x. Each individual i has
von Neumann Morgenstern utility function v(x, θi), where θi ∈ Θ is a preference parameter
or i’s type. We assume Θ is completely ordered; without further loss of generality, let
Θ ⊂ R and θ1 ≤ · · · ≤ θN . The expected utility for an individual of type θ from lottery P
is u(P, θ) ≡

∫
x
v(x, θ)dP . We denote individual i’s preference relation over lotteries by ⪰i,

with strict component ≻i.

Define the group’s preference relation, ⪰maj , over lotteries P and Q by majority rule:

P ⪰maj Q if |{i : P ⪰i Q}| ≥ N/2.

Claim 4. If v has SCED (Corollary 1), then the group’s preference relation is transitive and coin-
cides with that of individual (N + 1)/2.

The claim follows from the arguments of Rothstein (1990) and Gans and Smart (1996),
but we include a direct proof given how short it is.

Proof. Let M ≡ (N + 1)/2. By SCD, (i) if P ⪰M Q , then P ⪰maj Q because there cannot
exist i < M < j such that Q ≻i P and Q ≻j P ; analogously, (ii) if P ≻M Q, then P ≻maj Q.
Hence, ⪰maj coincides with ⪰M . Q.E.D.

Claim 4 can be applied to a well-known problem in political economy (Shepsle, 1972).
For simplicity, we now further assume the policy space is a finite set X ⊂ R and there
is a group of N voters whose types are their ideal points, i.e., {θi} = argmaxx∈R v(x, θi).
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There are two office-motivated candidates, L and R; each j ∈ {L,R} can commit to any
lottery from some given set Aj ⊆ ∆X . A restricted set Aj may capture various kinds
of constraints; for example, Shepsle (1972) assumed the incumbent candidate could only
choose degenerate lotteries. In our setting, what ensures the existence of an equilibrium,
and which policy lotteries are offered in an equilibrium?37

Claim 4 implies that if voters’ utility functions v have SCED and if voter M ≡ (N + 1)/2

is indifferent between her most-preferred lottery in AL and in AR, then there is a unique
equilibrium: each candidate offers the best lottery for voter M ; in particular, both candi-
dates converge to δθM , the degenerate lottery on θM , if that is feasible for both. It bears
emphasis that in this case policy convergence at the median ideal point is not driven by
all voters being globally “risk averse” (e.g., v(x, θ) = −(x− θ)2); rather, it is because SCED
ensures the existence of a decisive voter whose most-preferred lottery is degenerate.38

There is a sense in which SCED is necessary to guarantee that each candidate j will
offer the median ideal-point voter’s most-preferred lottery from the feasible set Aj . Sup-
pose v(x, θ) strictly violates SCED, i.e., there are P,Q ∈ ∆X and θl < θm < θh such that
min{DP,Q(θl), DP,Q(θh)} > 0 > DP,Q(θm). Then, if the population of voters is just {l,m, h}
and AL = AR = {P,Q}, the unique equilibrium is for both candidates to offer lottery P ,
which is voter m’s less-preferred lottery.

5. Discussion

5.1. Single Crossing vs. Monotonicity

We have characterized when u : A × Θ → R has SCD in a convex environment. SCD
is an ordinal property. Analogous to the interest in monotonic functions rather than just
single-crossing functions, one may also be interested in the following cardinal property,
which we term monotonic differences (MD):

(∀a, a′ ∈ A) u(a, θ)− u(a′, θ) is monotonic in θ.

In a convex environment, we write MD⋆ analogously to SCD⋆.

37 More precisely: the two candidates simultaneously choose their lotteries, and each voter then votes for
his preferred candidate (assuming, for concreteness, that a voter randomizes between the candidates with
equal probability if indifferent). A candidate wins if he receives a majority of the votes. Candidates maximize
the probability of winning. We seek a Nash equilibrium of the game between the two candidates.

38 An example may be helpful. Let X = [−1, 1], Θ = {−1, 0, 1}, and v(x, θ) = xθ + 1/(|x| + 1) + 1. The
corresponding functions f1(θ) = θ and f2(θ) = 1 are each strictly single crossing from below and strictly ratio
ordered. For all θ, v(·, θ) is maximized at x = θ but is convex on some subinterval of X .
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Theorem 3. The function u : A×Θ → R has MD⋆ if and only if it takes the form

u(a, θ) = g1(a)f1(θ) + g2(a) + h(θ), (9)

where f1 is monotonic.

Suppose that an expected-utility agent with von Neumann Morgenstern utility v(x, θ) is
choosing among lotteries, so A ≡ ∆X . We say that v has monotonic expectational differences
(MED) if the expected utility function u has MD⋆. Analogous to the SCED characterization
in Corollary 1, it is straightforward that the function v has MED if and only if it has the same
characterization as given for u in Theorem 3. This MED characterization has largely been
obtained by Kushnir and Liu (2018) in their study of the equivalence between Bayesian
and dominant-strategy implementation.

A function u with SCD⋆ has MD⋆ when the function f2 in the form (5) is identically
equal to one; f1 and f2 being ratio ordered is then equivalent to f1 being monotonic. In
general, SCD⋆ functions need not have MD⋆; however, by Proposition 1, SCD⋆ functions
have MD⋆ representations if Θ has both a minimum and a maximum.39 We view this finding
as unexpected; outside of convex environments, we are not aware of any general result on
when SCD functions have MD representations.

5.2. Interval Choice and Monotone Comparative Statics

In Section 2, we showed that (S)SCD characterizes interval choice. There is a sense in
which interval choice is intimately related to monotone comparative statics holding with
respect to some order over the choice space. In light of Theorem 1, the connection is eluci-
dated below by tying (S)SCD to monotone comparative statics.

Throughout this subsection, we consider an ordered set of alternatives, (A,⪰). To sim-
plify exposition and avoid dealing with equivalence classes, we will focus on compara-
tive statics for a function u : A × Θ → R such that A is minimal (with respect to u), i.e.,
(∀a ̸= a′)(∃θ)u(a, θ) ̸= u(a′, θ). For any a, a′ ∈ A, let a ∨ a′ and a ∧ a′ denote the usual join
and meet respectively.40 Neither need exist. Given any S, S ′ ⊆ A, we say that S dominates
S ′ in the strong set order, denoted S ⪰SSO S ′, if for every a ∈ S and a′ ∈ S ′, (i) a ∨ a′ and

39 Absent this condition, an SCD⋆ function may not even have an MD⋆ representation. In the context of
expected utility, an earlier version of our paper characterized precisely when such representations do not
exist and provided an example (Kartik, Lee, and Rappoport, 2019, Appendix G). Duggan (2014, Section 4)
also discusses the difficulty of finding SCED functions that do not have MED representations.

40 Alternative a ∈ A is the join (or supremum) of {a, a′} if (i) a ⪰ a and a ⪰ a′, and (ii) if b ⪰ a and b ⪰ a′,
then b ⪰ a. The meet (or infimum) of {a, a′} is defined analogously.
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a ∧ a′ exist, and (ii) a ∨ a′ ∈ S and a ∧ a′ ∈ S ′. It can be verified that ⪰SSO is transitive on
non-empty subsets of (A,⪰).

Definition 4. u : A×Θ → R has monotone comparative statics (MCS) on (A,⪰) if

(∀S ⊆ A) (∀θl ≤ θh) argmax
a∈S

u(a, θh) ⪰SSO argmax
a∈S

u(a, θl).

Our definition of MCS is closely related to but not the same as Milgrom and Shannon
(1994). We take (A,⪰) to be any ordered set while they require a lattice. We focus only on
monotonicity of choice in θ but require the monotonicity to hold for every subset S ⊆ A;
Milgrom and Shannon require monotonicity of choice jointly in the pair (θ, S), but this
implicitly only requires choice monotonicity in θ to hold for every sublattice S ⊆ A.

Define binary relations ≻SCD and ⪰SCD on A as follows: a ≻SCD a′ if Da,a′(θ) ≡ u(a, θ)−
u(a′, θ) is single crossing only from below; a ⪰SCD a′ if either a ≻SCD a′ or a = a′. It is
clear that ⪰SCD is reflexive and anti-symmetric. If u : A × Θ → R has SCD, then ⪰SCD is
also transitive. Moreover, given SCD (and minimality), the ⪰SCD order is incomplete only
over pairs with “dominance”: if a ⪰̸SCD a′ and vice-versa, then either (∀θ) Da,a′(θ) > 0, or
(∀θ) Da,a′(θ) < 0.

Theorem 4. u : A × Θ → R has monotone comparative statics on (A,⪰), where A is minimal, if
and only if u has SCD and ⪰ is a refinement of ⪰SCD.

Our definition of SCD does not require an order on the set of alternatives, whereas MCS
does. Theorem 4 says that SCD is necessary and sufficient for there to exist an order that
yields MCS. Moreover, the theorem justifies viewing ⪰SCD as the prominent order for MCS:
MCS does not hold with any order that either coarsens ⪰SCD or reverses a ranking by
≻SCD. The argument for necessity in Theorem 4 only makes use of binary choice sets. If
SCD fails, then there is no order ⪰ for which there is choice monotonicity for all binary
choice sets. If SCD holds, then choice monotonicity on all binary choice sets requires ⪰
to refine ⪰SCD. For sufficiency in Theorem 4, we show that for any choice set, ⪰SCD is a
complete order among the set of alternatives that are chosen by some type; thereafter, we
appeal to Milgrom and Shannon (1994, Theorem 4).

In Supplementary Appendix SA.1, we state and prove an analog of Theorem 4 for mono-
tone selection, i.e., that every selection from the choice correspondence is increasing; simi-
larly to Milgrom and Shannon (1994, Theorem 4’), this result uses SSCD rather than SCD.
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6. Conclusion

This paper has characterized the class of utility functions that have SCD⋆, i.e., single-
crossing differences in a convex environment (Theorem 2). Our notion of SCD does not
presume an order on the choice space and is the appropriate notion for interval-choice
comparative statics (Theorem 1). We have given a number of examples of convex environ-
ments, most notably expected utility, rank-dependent expected utility, and multidimen-
sional utility, and discussed the implications of our characterization in these contexts. The
applications in Section 4 illustrate how SCD⋆ is useful in economic problems.

While we have emphasized interval choice, it bears noting that there are other familiar
implications of single-crossing properties that in fact rely only on our order-independent
notion of (S)SCD; for example, SSCD is the key to guaranteeing that local incentive com-
patibility implies global incentive compatibility.41

We close by mentioning some avenues for future research. First, it may be of inter-
est to characterize exactly when preferences have a utility representation that satisfies our
convexity condition (⋆). Second, and relatedly, one may explore characterizations of SCD
outside convex environments. In particular, we are intrigued by the question of when SCD
preferences do not possess a representation that takes a similar form to that we have char-
acterized.

Third, our results have direct bearing on problems in which all types of an agent face
the same choice set. Such situations are natural. But consider a variation of the cheap-talk
application (Subsection 4.1) in which the sender’s type is correlated with the receiver’s
type. Even though the receiver’s type does not affect the sender’s payoff, different sender
types will generally have different beliefs about the distribution of the receiver’s action that
any message induces in equilibrium. Effectively, different sender types will be choosing
from different choice sets. An approach that synthesizes the current paper’s with that of,
for example, Athey’s (2002) may be useful for such problems.

41 We mean in a sense analogous to Carroll (2012, Proposition 4). While Carroll establishes his result by
defining a single-crossing property with respect to some given order over alternatives, essentially the same
logic applies with our order-independent notion of strict SCD (Definition 2).
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Appendices

Organization. Appendix A contains proofs for our comparative statics results (Theorem 1
and Theorem 4); Appendix B for aggregation of single crossing functions (Lemma 1 and
Proposition 2) and our characterizations of SCD⋆ (Theorem 2 and Proposition 1); and Ap-
pendix C for our MD⋆ characterization (Theorem 3). Some additional material is in the
Supplementary Appendices.

A preliminary result. Before turning to the proofs, we state a useful equivalence with the
violation of single crossing; the result is obvious when (Θ,≤) is a completely ordered set
but also applies when it is not.

Claim 5. A function f : Θ → R is not single crossing if and only if for some θl < θm < θh, either

sign[f(θl)] < sign[f(θm)] and sign[f(θm)] > sign[f(θh)], or (10)

sign[f(θl)] > sign[f(θm)] and sign[f(θm)] < sign[f(θh)]. (11)

Proof of Claim 5. The “if” direction of the claim is immediate. For the “only if” direction,
suppose f : Θ → R is single crossing neither from below nor from above:

(∃θ1 < θ2) sign[f(θ1)] < sign[f(θ2)], and

(∃θ3 < θ4) sign[f(θ3)] > sign[f(θ4)].

Let Θ0 ≡ {θ1, θ2, θ3, θ4} and θ and θ be upper and lower bounds of Θ0. If f(θ) = f(θ) = 0,
then (θl, θm, θh) = (θ, θ0, θ) for some θ0 ∈ Θ0 with f(θ0) ̸= 0 satisfies either (10) or (11). So
assume f(θ) ̸= 0; an similar argument applies if f(θ) ̸= 0. If f(θ) < 0, then (θl, θm, θh) =

(θ1, θ2, θ) satisfies (10). If f(θ) > 0, then (θl, θm, θh) = (θ3, θ4, θ) satisfies (11). Q.E.D.

A. Proofs for Comparative Statics

A.1. Proof of Theorem 1

Part 1. Suppose u has SCD, and consider any S ⊆ A, a′ ∈ S, and θl, θh ∈ {θ : a′ ∈
argmaxa∈S u(a, θ)} with θl < θh. For any a′′ ∈ S, Da′,a′′(θl) ≥ 0 and Da′,a′′(θh) ≥ 0,
which imply that Da′,a′′(θm) ≥ 0 for all θm with θl < θm < θh. It follows that {θ : a′ ∈
argmaxa∈S u(a, θ)} is an interval.

If u strictly violates SCD, ∃a′, a′′ ∈ A and θl < θm < θh such that min{Da′,a′′(θl), Da′,a′′(θh)}
> 0 > Da′,a′′(θm). Clearly, {θ : a′ ∈ argmaxa∈{a′,a′′} u(a, θ)} is not an interval.
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Part 2. Suppose |Θ| ≥ 3. A function u : A × Θ → R does not have SSCD when there
exist a′, a′′ ∈ A such that Da′,a′′ (and Da′′,a′) are not strictly single crossing. Alternatively,
using Claim 5, u does not have SSCD if and only if (∃a′, a′′) (∃θl < θm < θh) Da′,a′′(θl) ≥ 0,
Da′,a′′(θm) ≤ 0, and Da′,a′′(θh) ≥ 0. This condition is equivalent to (∃S ⊆ Awith a′, a′′ ∈ S)

(∃θl < θm < θh) a
′ ∈
⋂
θ∈{θl,θ} argmaxa∈S u(a, θ) and Da′,a′′(θm) ≤ 0, which holds if and only

if some selection from the choice correspondence Cu does not have interval choice.

A.2. Proof of Theorem 4

( =⇒ ) Suppose u : A × Θ → R has MCS on A with some order ⪰. We first prove the
following claim.

Claim 6. For every a′, a′′ ∈ A, if ∃θl < θh such that sign[Da′,a′′(θl)] < sign[Da′,a′′(θh)], then
a′ ≻ a′′.

Proof. Consider S = {a′, a′′}. Since sign[Da′,a′′(θl)] ̸= sign[Da′,a′′(θh)], we have

argmax
a∈S

u(a, θl) ̸= argmax
a∈S

u(a, θh).

Thus, either (i) a′ ∈ argmaxa∈S u(a, θl) and a′′ ∈ argmaxa∈S u(a, θh), or (ii) a′′ ∈ argmaxa∈S u(a, θl)

and a′ ∈ argmaxa∈S u(a, θh). Since u has MCS on (A,⪰), we have argmaxa∈S u(a, θh) ⪰SSO

argmaxa∈S u(a, θl). Therefore, a′ ∧ a′′ ∈ argmaxa∈S u(a, θl) and a′ ∨ a′′ ∈ argmaxa∈S u(a, θh),
which implies that either a′ ⪰ a′′ or a′′ ⪰ a′. Since a′ ̸= a′′, we have either a′ ≻ a′′ or
a′′ ≻ a′. If a′′ ≻ a′, then a′′ = a′ ∨ a′′ ∈ argmaxa∈S u(a, θh), contradicting sign[Da′,a′′(θl)] <

sign[Da′,a′′(θh)]. Thus, a′ ≻ a′′. Q.E.D.

To show that u has SCD onA, suppose not, towards contradiction. Claim 5 implies there
exist a′, a′′ ∈ A and θl < θm < θh such that either

sign[Da′,a′′(θl)] < sign[Da′,a′′(θm)] and sign[Da′,a′′(θm)] > sign[Da′,a′′(θh)], or (12)

sign[Da′,a′′(θl)] > sign[Da′,a′′(θm)] and sign[Da′,a′′(θm)] < sign[Da′,a′′(θh)]. (13)

Given either (12) or (13), Claim 6 implies a′ ≻ a′′ and a′′ ≻ a′, a contradiction.

To show that ⪰ is a refinement of ⪰SCD, it suffices to show that

(∀a′, a′′ ∈ A) a′ ≻SCD a′′ =⇒ a′ ≻ a′′, (14)

because both ⪰ and ⪰SCD are anti-symmetric. Take any a′, a′′ ∈ A such that a′ ≻SCD a′′. As
Da′,a′′ is single crossing only from below, ∃θl < θh such that sign[Da′,a′′(θl)] < sign[Da′,a′′(θh)].
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Claim 6 implies a′ ≻ a′′, which proves (14).

( ⇐= ) Suppose that u : A × Θ → R has SCD, and ⪰ is a refinement of ⪰SCD. For any
S ⊆ A, define Cu(S) ≡

⋃
θ∈Θ argmaxa∈S u(a, θ). It is clear that

(∀θ) argmax
a∈S

u(a, θ) = argmax
a∈Cu(S)

u(a, θ).

We claim that Cu(S) is completely ordered by ⪰SCD. To see why, take any pair a′, a′′ ∈
Cu(S) with a′ ̸= a′′. As u has SCD, Da′,a′′ is single crossing in θ. As A is minimal, Da′,a′′ is
not a zero function. Also, as a′, a′′ ∈ Cu(S), sign[Da′,a′′ ] is not a constant function with value
either 1 or -1. Thus, Da′,a′′ is single crossing either only from below, or only from above. It
follows that a′ ≻SCD a′′ or a′′ ≻SCD a′.

Since ⪰ is a refinement of ⪰SCD, ⪰ coincides with ⪰SCD on Cu(S), and the strong set
orders generated by ⪰ and ⪰SCD on the collection of all subsets of Cu(S) also coincide. By
definition of ⪰SCD, when restricted to Cu(S)×Θ, u satisfies Milgrom and Shannon’s (1994)
single-crossing property in (a, θ) with respect to ⪰SCD and ≤.42 As Cu(S) is completely
ordered by ⪰SCD, it follows from Milgrom and Shannon (1994, Theorem 4) that ∀θl < θh,

argmax
a∈S

u(a, θh) = argmax
a∈Cu(S)

u(a, θh) ⪰SSO argmax
a∈Cu(S)

u(a, θl) = argmax
a∈S

u(a, θl).

B. Proofs for Aggregating Single-Crossing Functions and Main

Characterizations
Before providing the proofs in this appendix, we first clarify Condition (4) in the defini-

tion of ratio dominance.

B.1. On the Definition of Ratio Dominance

Section 3 in the main text explained Condition (3) in the definition of ratio dominance.
We impose Condition (4) to rule out cases in which, for some θl < θm < θh, either (i) f(θl)
and f(θh) are collinear in opposite directions while f(θm) is not, or (ii) f(θl) and f(θh) are
non-zero vectors while f(θm) is not. See Figure 4, wherein panel (a) depicts case (i) and
panel (b) depicts case (ii). Note that Condition (3) is satisfied in both panels.

42 Milgrom and Shannon’s single-crossing property of u on Cu(S)×Θ is equivalent to

(∀a′ ≻SCD a′′)(∀θl < θh) u(a′, θl) ≥ (>)u(a′′, θl) =⇒ u(a′, θh) ≥ (>)u(a′′, θh).
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Figure 4: f1 and f2 are not ratio ordered because Condition (4) fails for θl < θm < θh.

It turns out that for all linear combinations of two single-crossing functions f1 and f2 to
be single crossing, Condition (4) of ratio ordering is required; see the proof of Lemma 1.
Figure 4 illustrates: in panel (a), (f1 + f2)(θl) = (f1 + f2)(θh) = 0 while (f1 + f2)(θm) < 0; in
panel (b), (f1 + f2)(θl) > 0 and (f1 + f2)(θh) > 0 while (f1 + f2)(θm) = 0. So in both cases, f1
and f2 are each single crossing but f1 + f2 is not.

B.2. Proof of Lemma 1

When |Θ| ≤ 2, the proof is trivial as all functions are single crossing and every pair of
functions are ratio ordered. Hereafter, we assume |Θ| ≥ 3.

( =⇒ ) It is clear that each function f1 and f2 is single crossing. We must show that f1 and
f2 are ratio ordered.

To prove (3), we suppose towards contradiction that

(∃θl < θh) f1(θl)f2(θh) < f1(θh)f2(θl), and

(∃θ′ < θ′′) f1(θ
′)f2(θ

′′) > f1(θ
′′)f2(θ

′).
(15)

Take any upper bound θ of {θl, θh, θ′, θ′′}.

First, let αl ≡ (f2(θl),−f1(θl)). Then (αl · f)(θl) = (f2(θl),−f1(θl)) · (f1(θl), f2(θl)) = 0, and
(αl · f)(θh) > 0. Thus, αl · f is single crossing from below and (αl · f)(θ) > 0.

Second, let α′ ≡ (f2(θ
′),−f1(θ′)). Then (α′ · f)(θ′) = 0 and (α′ · f)(θ′′) < 0. Thus, α′ · f is
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single crossing from above and (α′ · f)(θ) < 0.

Let α = (f2(θ),−f1(θ)). It follows that

(α · f)(θl) = (f2(θ),−f1(θ)) · (f1(θl), f2(θl)) = −(αl · f)(θ) < 0,

(α · f)(θ′) = −(α′ · f)(θ) > 0, and

(α · f)(θ) = 0.

Therefore, α · f is not single crossing, a contradiction.

To prove (4), take any θl < θm < θh.

First, we show that f1(θl)f2(θh) = f1(θh)f2(θl) implies f1(θm)f2(θh) = f1(θh)f2(θm) and
f1(θm)f2(θl) = f1(θl)f2(θm). Assume f1 is not a zero function on {θl, θm, θh}, as otherwise
the proof is trivial. Since f1 is single crossing, either f1(θl) ̸= 0 or f1(θh) ̸= 0. We con-
sider the case of f1(θh) ̸= 0 (and omit the proof for the other case, as it is analogous). Let
αh ≡ (f2(θh),−f1(θh)). Since αh · f is single crossing and (αh · f)(θ) = 0 for θ = θl, θh,
it holds that (αh · f)(θm) = f2(θh)f1(θm) − f1(θh)f2(θm) = 0. It follows immediately that
f1(θm)f2(θh) = f1(θh)f2(θm). As (f1(θm), f2(θm)) and (f1(θh), f2(θh)) are linearly dependent
and (f1(θh), f2(θh)) is a non-zero vector, there exists λ ∈ R such that fi(θm) = λfi(θh) for
i = 1, 2. Thus,

f1(θl)f2(θm) = λf1(θl)f2(θh) = λf2(θl)f1(θh) = f2(θl)f1(θm).

Next, we show that if f1(θl)f2(θm) = f1(θm)f2(θl) and f1(θm)f2(θh) = f1(θh)f2(θm), then
f1(θl)f2(θh) = f1(θh)f2(θl). Let α ≡ (f2(θl)− f2(θh),−f1(θl) + f1(θh)). It follows that

(α · f)(θl) = (f2(θl)− f2(θh)) f1(θl)− (f1(θl)− f1(θh)) f2(θl) = f1(θh)f2(θl)− f1(θl)f2(θh),

(α · f)(θh) = (f2(θl)− f2(θh)) f1(θh)− (f1(θl)− f1(θh)) f2(θh) = f1(θh)f2(θl)− f1(θl)f2(θh), and

(α · f)(θm) = (f2(θl)− f2(θh)) f1(θm)− (f1(θl)− f1(θh)) f2(θm) = 0.

As α · f is single crossing, it follows that (α · f)(θl) = (α · f)(θh) = 0, as we wanted to show.

( ⇐= ) Assume that f1 and f2 are each single crossing. We prove the result for the case
in which f1 ratio dominates f2; the other case is analogous. For any α ∈ R2, we prove that
α · f is single crossing. We may assume that α ̸= 0, as the result is trivial otherwise.

Suppose, towards contradiction, that α · f is not single crossing. Claim 5 implies there
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exist θl < θm < θh such that either,

sign[(α · f)(θl)] < sign[(α · f)(θm)] and sign[(α · f)(θm)] > sign[(α · f)(θh)], or (16)

sign[(α · f)(θl)] > sign[(α · f)(θm)] and sign[(α · f)(θm)] < sign[(α · f)(θh)]. (17)

First, we consider the case in which f(θ) ≡ (f1(θ), f2(θ)) for all θ ∈ {θl, θm, θh} are non-
zero vectors. Take any θ1, θ2 ∈ {θl, θm, θh} such that θ1 < θ2. As f1 ratio dominates f2, by
Condition (3), f(θ1) moves to f(θ2) in a clockwise rotation with an angle less than or equal
to 180 degrees. Let r12 be the clockwise angle from f(θ1) to f(θ2). The vector α ̸= 0 defines
a partition of R2 into R2

α,+ ≡ {x ∈ R2 : α · x > 0}, R2
α,0 ≡ {x ∈ R2 : α · x = 0}, and

R2
α,− ≡ {x ∈ R2 : α · x < 0}. In both cases (16) and (17), both f(θl) and f(θh) are not in the

same part of the partition that f(θm) belongs to. Thus, rlm > 0 and rmh > 0. On the other
hand, both f(θl) and f(θh) are in the same closed half-space, either R2

α,+∪R2
α,0 or R2

α,−∪R2
α,0,

and f(θm) is in the other closed half-space, either R2
α,− ∪ R2

α,0 or R2
α,+ ∪ R2

α,0, respectively.
Thus, rlh ≥ 180. Since Condition (3) implies rlh ≤ 180, it follows that rlh = 180. Hence,
f(θl) and f(θm) are linearly independent (0 < rlm < 180), and similarly for f(θm) and f(θh).
However, f(θl) and f(θh) are linearly dependent (rlh = 180). This contradicts (4).

Second, suppose either f(θl) = 0 or f(θh) = 0. We provide the argument assuming
f(θl) = 0; it is analogous if f(θh) = 0. Under either (16) or (17), f(θm) ̸= 0. By Condition
(4), f(θm) and f(θh) are linearly dependent. In particular, because f(θm) ̸= 0, there exists a
unique λ ∈ R such that f(θh) = λf(θm). Under either (16) or (17), λ ≤ 0, which contradicts
the hypothesis that f1 and f2 are single crossing.

Last, suppose f(θl) ̸= 0, f(θm) = 0, and f(θh) ̸= 0. By Condition (4), f(θl) and f(θh) are
linearly dependent. Hence, there exists a unique λ ∈ R such that f(θl) = λf(θh). Under
either (16) or (17), λ > 0, which contradicts the hypothesis that f1 and f2 are single crossing.

B.3. Proof of Proposition 2

The result is trivial if |Z| = 1 and it is equivalent to Lemma 1 if |Z| = 2, so we may
assume |Z| ≥ 3. The proof is also straightforward if all functions f(z, ·) : Θ → R are
multiples of one function f(z1, ·), i.e., if there is z1 such that (∃λ : Z → R)(∀z)f(z, ·) =

λ(z)f(z1, ·). Thus, we further assume there exist z′, z′′ such that f(z′, ·) : Θ → R and f(z′′, ·) :
Θ → R are linearly independent.

( ⇐= ) Assume f(z1, ·) and f(z2, ·) are (i) each single crossing and (ii) ratio ordered, and
that there are functions λ1, λ2 : Z → R such that (∀z) f(z, ·) = λ1(z)f(z1, ·) + λ2(z)f(z2, ·).
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Then, for any function µ : Z → R with finite support,∫
z

f(z, θ)dµ =

∫
z

(λ1(z)f(z1, θ) + λ2(z)f(z2, θ)) dµ =
∑
i=1,2

(∫
z

λi(z)dµ

)
f(zi, θ),

which is single crossing in θ by Lemma 1.

( =⇒ ) Take any z1, z2 ∈ Z such that f1(·) ≡ f(z1, ·) and f2(·) ≡ f(z2, ·) are linearly
independent. Then, by Lemma 1, f1 and f2 are each single crossing and ratio ordered, as
their linear combinations are all single crossing.

For every θ′, θ′′, let

Mθ′,θ′′ ≡

[
f1(θ

′) f2(θ
′)

f1(θ
′′) f2(θ

′′)

]
.

We first prove the following claim:

Claim 7. There exists θl < θh such that rank[Mθl,θh ] = 2.

Proof of Claim 7. As f1 and f2 are linearly independent, there exists θ0 such that f2(θ0) ̸= 0.
Let λ ≡ −f1(θ0)

f2(θ0)
. Then, for some θλ, f1(θλ) + λf2(θλ) ̸= 0 and rank[Mθ0,θλ ] = 2.

The proof is complete if θ0 > θλ or θ0 < θλ. If not, take a lower and upper bound, θ and θ,
of {θ0, θλ}. Then rank[Mθ,θ] = 2. For otherwise, there exists α ∈ R2\{0} such that Mθ,θα = 0.
As θ0 and θλ are between θ and θ, and α1f1 + α2f2 is single crossing, we have Mθ0,θλα = 0,
which contradicts rank[Mθ0,θλ ] = 2. Q.E.D.

Now take any z ∈ Z, the function fz(·) ≡ f(z, ·), and θl, θh in Claim 7. As rank[Mθl,θh ] = 2,
the system [

fz(θl)

fz(θh)

]
=

[
f1(θl) f2(θl)

f1(θh) f2(θh)

][
λ1

λ2

]
(18)

has a unique solution λ ∈ R2. We will show that fz = λ1f1 + λ2f2.

Suppose, towards contradiction, there exists θλ such that

fz(θλ) ̸= λ1f1(θλ) + λ2f2(θλ). (19)

Let θ and θ respectively be a lower and an upper bound of {θl, θh, θλ}. If rank[Mθ,θ] < 2,
there is λ′ ∈ R2\{0} such that λ′1f1(θ) + λ′2f2(θ) = 0 for θ = θ, θ. As λ′1f1 + λ′2f2 is single
crossing, we have λ′1f1(θ) + λ′2f2(θ) = 0 for θ = θl, θh, which contradicts rank[Mθl,θh ] = 2.43

43 The function λ′1f1+λ′2f2 must be single crossing because we can consider µ : Z → R such that µ(z1) = λ′1,
µ(z2) = λ′2, and µ(z) = 0 for any z ̸= z1, z2. We use similar reasoning subsequently.
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If, on the other hand, rank[Mθ,θ] = 2, the system[
fz(θ)

fz(θ)

]
=

[
f1(θ) f2(θ)

f1(θ) f2(θ)

][
λ′1

λ′2

]

has a unique solution λ′ ∈ R2. As fz − λ′1f1 − λ′2f2 is single crossing,

fx(θl) = λ′1f1(θl) + λ′2f2(θl) and fx(θh) = λ′1f1(θh) + λ′2f2(θh), and (20)

fx(θλ) = λ′1f1(θλ) + λ′2f2(θλ). (21)

(20) implies that λ′ solves (18). As the unique solution to (18) was λ, it follows that λ′ = λ.
But then (19) and (21) are in contradiction. Therefore, there exist λ1, λ2 : Z → R such that

(∀z, θ) f(z, θ) = λ1(z)f(z1, θ) + λ2(z)f(z2, θ).

B.4. Proof of Theorem 2’s SCD⋆ Characterization

Here we only prove Theorem 2’s characterization of SCD⋆. The proof for its SSCD⋆

characterization is deferred to Supplementary Appendix SA.2.

( ⇐= ) Suppose that u(a, θ) = g1(a)f1(θ)+ g2(a)f2(θ)+h(θ), with f1, f2 : Θ → R each single
crossing and ratio ordered. Then, for any a, a′ ∈ A, Da,a′(θ) = (g1(a)−g1(a′))f1(θ)+(g2(a)−
g2(a

′))f2(θ), which is single crossing by Lemma 1.

( =⇒ ) Assume, without loss of generality, that |A| ≥ 2. Take any a0 ∈ A, and define
A′ ≡ A \ {a0}. Define f : A × Θ → R as f(a, θ) ≡ u(a, θ) − u(a0, θ), which, for every a, is
single crossing in θ.

We will show that, for every function µ′ : A′ → R with finite support,
∫
a∈A′ f(a, θ)dµ

′

can be represented as a multiple of the difference between two convex utility combinations∫
a
u(a, θ)dP and

∫
a
u(a, θ)dQ. Since the environment is convex, there exist aP , aQ ∈ A such

that u(aP , θ) =
∫
a
u(a, θ)dP and u(aQ, θ) =

∫
a
u(a, θ)dQ for all θ. Since the utility difference

u(aP , θ) − u(aQ, θ) is single crossing, so is
∫
a∈A′ f(a, θ)dµ

′. The result then follows from
Proposition 2.

For any function µ′ : A′ → R with finite support, we define a function µ : A → R as an
extension of µ′:

µ(a0) ≡ −
∑

{a:µ′(a)̸=0}

µ′(a), and (∀a ∈ A′) µ(a) ≡ µ′(a).
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In a sense, we let a0 absorb the function values on A′. In particular, note that∑
{a:µ(a)̸=0}

µ(a) = µ(a0) +
∑

{a:µ′(a) ̸=0}

µ(a) = 0.

We construct the Hahn-Jordan decomposition (µ+, µ−) of µ. That is, we define functions
µ+, µ− : A → R+ by (∀a ∈ A) µ+(a) ≡ max{µ(a), 0} and µ−(a) ≡ −min{µ(a), 0}. These
are both functions with finite support, and µ = µ+ − µ−. Let M ≡

∑
{a:µ(a)̸=0} µ+(a) =∑

{a:µ(a)̸=0} µ−(a). If M = 0, pick an arbitrary P ∈ ∆A with finite support and let Q = P . If
M > 0, define P,Q ∈ ∆A with probability mass functions p, q such that for any a ∈ A,

p(a) =
µ+(a)

M
and q(a) =

µ−(a)

M
.

Note that P andQ have finite support. Since the environment is convex, there exist aP , aQ ∈
A such that u(aP , θ) =

∫
a
u(a, θ)dP and u(aQ, θ) =

∫
a
u(a, θ)dQ for all θ. It follows that∫

a∈A′
f(a, θ)dµ′ =

∫
a∈A

f(a, θ)dµ (because f(a0, θ) = 0)

=

∫
a∈A

u(a, θ)dµ− u(a0, θ)µ(A)

=

∫
a∈A

u(a, θ)dµ+ −
∫
a∈A

u(a, θ)dµ− (as µ(A) = 0)

= M · (u(aP , θ)− u(aQ, θ)) ,

which is single crossing.

Thus, if u has SCD⋆, then f : A′×Θ → R is linear combinations SC-preserving. By Propo-
sition 2, there exist a1, a2 ∈ A′ and λ1, λ2 : A

′ → R such that (i) f(a1, θ) and f(a2, θ) are each
single crossing and ratio ordered, and (ii) (∀a ∈ A′) f(a, ·) = λ1(a)f(a1, ·) + λ2(a)f(a2, ·).
Hence, there exist functions g1, g2 : A → R with g1(a0) = g2(a0) = 0 such that (∀a ∈ A)

f(a, ·) = g1(a)f(a1, ·) + g2(a)f(a2, ·), or equivalently,

(∀a, θ) u(a, θ) = g1(a)f(a1, θ) + g2(a)f(a2, θ) + u(a0, θ).

B.5. Proof of Proposition 1

We prove Proposition 1’s result about SCD⋆ and omit an analogous proof for the result
about SSCD⋆. If |Θ| ≤ 2, then the proof is trivial, so assume |Θ| ≥ 3. The “if” direction of
the result follows directly from Theorem 2: if u has a positive affine transformation ũ of the
form in Proposition 1, then u, as a positive affine transformation of ũ, has SCD⋆.

39



For the “only if” direction, take any u that has SCD⋆. Following the form given in Theo-
rem 2, a positive affine transformation of u is

ũ(a, θ) = g1(a)f1(θ) + g2(a)f2(θ),

where f1, f2 : Θ → R are each single crossing and ratio ordered.

First, we consider the case in which f(θ) and f(θ) are linearly dependent.44 Assume,
with a positive affine transformation of ũ, that the length of the vector f(θ) ≡ (f1(θ), f2(θ))

in R2 is either 0 or 1 for every θ. If f(θ) = f(θ) = 0, then because f1 and f2 are each single
crossing, we have (∀θ) f1(θ) = f2(θ) = 0 and (∀a, θ) ũ(a, θ) = 0. We can easily now rewrite
ũ in the form (6), with λ : Θ → [0, 1] increasing.

Suppose f(θ) ̸= 0; we omit the analogous proof for the case of f(θ) ̸= 0. By Condition
(4) of ratio ordering, for every θ, the vector f(θ) ∈ R2 is linearly dependent on f(θ). As
(∀θ) ∥f(θ)∥ ∈ {0, 1}, there exists λ : Θ → {−1, 0, 1} such that (∀θ) f(θ) = λ(θ)f(θ). Note
that λ is increasing because f1 and f2 are each single crossing. If either λ(θ) = 0 (and so
(∀a) ũ(a, θ) = 0) or λ(θ) = 1 (and so (∀θ) λ(θ) = 1), then

ũ(a, θ) = λ(θ)ũ(a, θ) + (1− λ(θ))ũ(a, θ),

with the last term equal to zero. If, on the other hand, λ(θ) = −1, then

ũ(a, θ) = λ(θ)ũ(a, θ) =
λ(θ) + 1

2
ũ(a, θ) +

λ(θ)− 1

2
(−ũ(a, θ))

=
λ(θ) + 1

2
ũ(a, θ) +

(
1− λ(θ) + 1

2

)
ũ(a, θ).

Next, suppose that the vectors f(θ), f(θ) ∈ R2 are linearly independent, so the angle
between the vectors is strictly less than 180 degrees. As f1 and f2 are ratio ordered, for each
θ there exists α(θ), β(θ) ∈ R+ such that

f(θ) = α(θ)f(θ) + β(θ)f(θ),

or equivalently,
ũ(a, θ) = α(θ)ũ(a, θ) + β(θ)ũ(a, θ).

By Condition (4), f(θ) ̸= 0, which implies that α(θ)+β(θ) > 0. A positive affine transforma-

44 This case can be ignored in the proof for SSCD⋆, because if f1 and f2 are strictly ratio ordered, then f(θ)
and f(θ) must be linearly independent.
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tion of dividing ũ(·, θ) by α(θ) + β(θ) results in the form (6), where λ(θ) ≡ α(θ)
α(θ)+β(θ)

∈ [0, 1].

To prove that the function λ is increasing, take θ1, θ2 such that θ ≤ θ1 ≤ θ2 ≤ θ. To
reduce notation below, let αi ≡ α(θi) and βi ≡ β(θi) for i = 1, 2. We must show that
α1

α1+β1
≤ α2

α2+β2
, or equivalently that α1β2 ≤ α2β1. Suppose f1 ratio dominates f2; the other

case is analogous. Then f1(θ1)f2(θ2) ≤ f1(θ2)f2(θ1), and hence

(
α1f1(θ) + β1f1(θ)

) (
α2f2(θ) + β2f2(θ)

)
≤
(
α2f1(θ) + β2f1(θ)

) (
α1f2(θ) + β1f2(θ)

)
,

or equivalently,
(α1β2 − α2β1)

(
f1(θ)f2(θ)− f1(θ)f2(θ)

)
≤ 0.

Note that f1(θ)f2(θ) − f1(θ)f2(θ) > 0 because f1 ratio dominates f2, and f(θ) and f(θ) are
linearly independent. Hence, α1β2 ≤ α2β1.

C. Proofs for MD⋆

The proof of Theorem 3 requires analogs of Lemma 1 and Proposition 2 for monotonic
functions; these results are stated next but their proofs are deferred to Supplementary Ap-
pendix SA.4.

C.1. Aggregating Monotonic Functions

Lemma 2. Let f1, f2 : Θ → R be monotonic functions. The linear combination α1f1(θ) + α2f2(θ)

is monotonic ∀α ∈ R2 if and only if either f1 or f2 is an affine transformation of the other, i.e., there
exists λ ∈ R2 such that either f2 = λ1f1 + λ2 or f1 = λ1f2 + λ2.

We say that f : Z × Θ → R is linear combinations monotonicity-preserving if
∫
z
f(z, θ)dµ is

a monotonic function of θ for every function µ : Z → R with finite support.

Proposition 3. Let f : Z × Θ → R for some set Z. The function f is linear combinations
monotonicity-preserving if and only if there exist z′ ∈ Z and λ1, λ2 : Z → R such that (i) f(z′, ·)
is monotonic, and (ii) (∀z) f(z, ·) = λ1(z)f(z

′, ·) + λ2(z).

C.2. Proof of Theorem 3

( ⇐= ) We omit the proof as it is similar to the proof of Theorem 2 in Appendix B.4.

( =⇒ ) The proof is trivial if (∀a, θ) u(a, θ) = 0, so assume there exists a0 such that u(a0, ·) :
Θ → R is not a zero function. Define f : A × Θ → R by f(a, θ) ≡ u(a, θ) − u(a0, θ). Note
that (∀a) f(a, θ) is a monotonic function of θ.
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Let A′ ≡ A\{a0}. As in the proof of Theorem 2 in Appendix B.4, for every µ′ : A′ → R
with finite support, there exist convex utility combinations

∫
a
u(a, θ)dP and

∫
a
u(a, θ)dQ,

where P and Q have finite support, such that
∫
a∈A′ f(a, θ)dµ

′ is monotonic if and only if∫
a∈A u(a, θ)dP −

∫
a∈A u(a, θ)dQ is monotonic. Since the environment is convex, the latter

utility difference is indeed monotonic, and so
∫
a∈A′ f(a, θ)dµ

′ is monotonic. By Proposi-
tion 3, there exist a′ ∈ A\a0 and λ1, λ2 : A\{a0} → R such that (∀a, θ) f(a, θ) = λ1(a)f(a

′, θ)+

λ2(a). Hence, there exist functions g1, g2 : A → R with g1(a0) = g2(a0) = 0 such that
f(a, θ) = g1(a)f(a

′, θ) + g2(a), or equivalently, u(a, θ) = g1(a)f(a
′, θ) + g2(a) + u(a0, θ).
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Supplementary Appendices (For Online Publication Only)

Appendix SA.1 provides a monotone selection theorem (Theorem 5); Appendix SA.2
proves Theorem 2’s characterization of SSCD⋆; Appendix SA.3 proves the implications of
Theorem 2 (Corollary 1, Corollary 2, Corollary 5, and Corollary 6); and Appendix SA.4 con-
tains proofs of the intermediate results Lemma 2 and Proposition 3 towards our MD⋆ char-
acterization (Theorem 3). Finally, Appendix SA.5 elaborates on the connection between
ratio ordering and Quah and Strulovici’s (2012) signed-ratio monotonicity.

SA.1. SSCD and Monotone Selection

Theorem 4 established the connection between SCD and monotone comparative statics.
Here we establish an analogous connection between SSCD and monotone selection.

Definition 5. u : A × Θ → R has monotone selection (MS) on (A,⪰) if for any S ⊆ A, every
selection s∗(θ) from argmaxa∈S u(a, θ) is increasing in θ.45

Define binary relations ≻SSCD and ⪰SSCD on A as follows: a ≻SSCD a′ if Da,a′ is strictly
single crossing only from below; a ⪰SSCD a′ if either a ≻SSCD a′ or a = a′. As before, if
u : A×Θ → R has SSCD, then ⪰SSCD is an order.

Theorem 5. u : A×Θ → R has monotone selection on (A,⪰), where A is minimal, if and only if
u has SSCD and ⪰ is a refinement of ⪰SSCD.

Note that SSCD (and a refinement of ⪰SSCD) is not only sufficient but also necessary
in Theorem 5. One can verify that, while not stated in their Theorem 4’, Milgrom and
Shannon’s (1994) strict single-crossing property is also necessary for monotone selection in
their sense.

Proof of Theorem 5. The proof is similar to the proof of Theorem 4 in Appendix A.2.

( =⇒ ) Suppose u : A×Θ → R has MS on (A,⪰).

To show that u has SSCD on A, suppose not, towards contradiction. As we have shown
in the proof of Theorem 1,

(∃a′, a′′ with a′ ̸= a′′)(∃θl < θm < θh) Da′,a′′(θl) ≥ 0, Da′,a′′(θm) ≤ 0, and Da′,a′′(θh) ≥ 0.

45 s∗(θ) ≡ ∅ if argmaxa∈S u(a, θ) = ∅, and we extend ⪰ to A ∪ {∅} by stipulating a ⪰ ∅ ⪰ a for every a ∈ A.
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Let S ≡ {a′, a′′} and consider a selection s∗(θ) from argmaxa∈S u(a, θ) such that s∗(θl) =

s∗(θh) = a′ and s∗(θm) = a′′. Since u has MS on (A,⪰), we must have a′ ⪰ a′′ and a′′ ⪰ a′, a
contradiction to anti-symmetry of ⪰.

To show that ⪰ is a refinement of ⪰SSCD, it suffices to show that

(∀a′, a′′ ∈ A) a′ ≻SSCD a′′ =⇒ a′ ≻ a′′,

because both ⪰ and ⪰SSCD are anti-symmetric. Take any a′, a′′ ∈ A such that a′ ≻SSCD a′′.
As Da′,a′′ is strictly single crossing only from below, ∃θl < θh such that sign[Da′,a′′(θl)] <

sign[Da′,a′′(θh)], which implies that sign[Da′,a′′(θl)] ≤ 0 and sign[Da′,a′′(θh)] ≥ 0. Consider a
selection a′′ ∈ argmaxa∈{a′,a′′} u(a, θl) and a′ ∈ argmaxa∈{a′,a′′} u(a, θh). Since u has MS on
(A,⪰), we have a′ ⪰ a′′. Since a′ ̸= a′′ and ⪰ is anti-symmetric, it must be that a′ ≻ a′′.

( ⇐= ) For any S ⊆ A, define Cu(S) ≡
⋃
θ∈Θ argmaxa∈S u(a, θ). First, we claim that Cu(S)

is completely ordered by ⪰SSCD. To see this, take any pair a′, a′′ ∈ Cu(S) with a′ ̸= a′′.
As u has SSCD , Da′,a′′ is strictly single crossing in θ. As a′, a′′ ∈ Cu(S), sign[Da′,a′′ ] is
not a constant function with value either 1 or -1. Thus, Da′,a′′ is strictly single crossing
either only from below or only from above. It follows that a′ ≻SSCD a′′ or a′′ ≻SSCD a′.
Next, since ⪰ is a refinement of ⪰SSCD, ⪰ coincides with ⪰SSCD on Cu(S). By definition
of ⪰SSCD, when restricted to Cu(S) × Θ, u satisfies Milgrom and Shannon’s strict single-
crossing property in (a, θ) with respect to ⪰SSCD and ≤.46 As Cu(S) is completely ordered
by ⪰SSCD, it follows from Milgrom and Shannon (1994, Theorem 4’) that any selection s∗(θ)
from argmaxa∈Cu(S) u(a, θ)(= argmaxa∈S u(a, θ)) is increasing in θ. Q.E.D.

SA.2. Proof of Theorem 2’s SSCD⋆ Characterization

Similar to the proof of Theorem 2 for SCD⋆, our proof for SSCD⋆ requires conditions en-
suring that arbitrary linear combinations of functions are strictly single crossing. We state
and discuss the analogs of Lemma 1 and Proposition 2 below in Appendix SA.2.1; their
proofs are in Appendix SA.2.2 and Appendix SA.2.3 respectively. The proof of Theorem 2
for SSCD⋆ then follows in Appendix SA.2.4.

46 Milgrom and Shannon’s strict single-crossing property of u on Cu(S)×Θ is equivalent to

(∀a′ ≻SSCD a′′)(∀θl < θh) u(a′, θl) ≥ u(a′′, θl) =⇒ u(a′, θh) > u(a′′, θh).
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SA.2.1. Aggregating Strictly Single-Crossing Functions

Lemma SA.1. Let f1, f2 : Θ → R. The linear combination α1f1(θ) + α2f2(θ) is strictly single
crossing ∀α ∈ R2\{0} if and only if f1 and f2 are strictly ratio ordered.

Besides the change to strict single crossing and, correspondingly, strict ratio ordering,
Lemma SA.1 has two other differences from Lemma 1. First, we rule out (α1, α2) = 0; this
is unavoidable because a zero function is not strictly single crossing. Second, and more
importantly, there is no explicit mention in Lemma SA.1 that f1 and f2 are each strictly
single crossing. It turns out—as elaborated in the Lemma’s proof—that when two functions
are strictly ratio ordered, each of them must be strictly single crossing.

To extend Lemma SA.1 to more than two functions, we say that f : Z × Θ → R is linear
combinations SSC-preserving if

∫
z
f(z, θ)dµ is either a zero function or strictly single crossing

in θ for every function µ : Z → R with finite support. Parallel to Proposition 2:

Proposition SA.1. Let f : Z × Θ → R for some set Z, and assume there exist z1, z2 ∈ Z such
that f(z1, ·) : Θ → R and f(z2, ·) : Θ → R are linearly independent. The function f is linear
combinations SSC-preserving if and only if there exist λ1, λ2 : Z → R such that

1. f(z1, ·) : Θ → R and f(z2, ·) : Θ → R are strictly ratio ordered, and

2. (∀z) f(z, ·) = λ1(z)f(z1, ·) + λ2(z)f(z2, ·).

For the “if” direction of Proposition SA.1, the existence of a pair of linearly independent
functions need not be assumed, because strict ratio ordering implies linear independence.
However, without that hypothesis, the “only if” direction would fail: given Z = {z1, z2},
and f(z1, ·) = 2f(z2, ·) with f(z1, ·) strictly single crossing, the function f is linear combina-
tions SSC-preserving even though f(z1, ·) and f(z2, ·) are not strictly ratio ordered.

SA.2.2. Proof of Lemma SA.1

When |Θ| ≤ 2.

If |Θ| = 1, the proof is trivial as all functions are strictly single crossing and every pair
of f1, f2 satisfy strict ratio ordering. So assume |Θ| = 2 and denote Θ = {θl, θh}; without
loss, we may assume θh > θl because of our maintained assumption that upper and lower
bounds exist for all pairs.

( =⇒ ) Either (f1(θl), f2(θl)) ̸= 0 or (f1(θh), f2(θh)) ̸= 0: otherwise, for every α ∈ R2\{0},
(α · f)(θl) = (α · f)(θh) = 0, and hence α · f is a zero function, which is not strictly single
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crossing. Assume (f1(θl), f2(θl)) ̸= 0; the proof for the other case is analogous. Let αl ≡
(f2(θl),−f1(θl)) and consider (αl · f)(θ) = f2(θl)f1(θ) − f1(θl)f2(θ). We have (αl · f)(θl) = 0

and, by strict single crossing of αl · f , (αl · f)(θh) ̸= 0. That is, f2(θl)f1(θh) ̸= f1(θl)f2(θh),
which means that f1 and f2 are strictly ratio ordered.

( ⇐= ) For any α ∈ R2\{0}, α · f is not strictly single crossing if and only if (α · f)(θl) =
(α · f)(θh) = 0. This implies α1f1(θl) = −α2f2(θl) and α1f1(θh) = −α2f2(θh), and hence

α1f1(θl)f2(θh) = −α2f2(θl)f2(θh) = α1f1(θh)f2(θl) and

α2f1(θl)f2(θh) = −α1f1(θl)f1(θh) = α2f1(θh)f2(θl).

As (α1, α2) ̸= 0, f1(θl)f2(θh) = f1(θh)f2(θl), contradicting strict ratio ordering of f1 and f2.

When |Θ| ≥ 3.

( =⇒ ) Suppose, towards contradiction, that f1 and f2 are not strictly ratio ordered:

(∃θl < θh) f1(θl)f2(θh) ≤ f1(θh)f2(θl) and

(∃θ′ < θ′′) f1(θ
′)f2(θ

′′) ≥ f1(θ
′′)f2(θ

′).
(SA.1)

Take any upper bound θ of {θl, θh, θ′, θ′′}. Letting αl ≡ (f2(θl),−f1(θl)), it holds that αl · f
is strictly single crossing only from below, as (αl · f)(θl) = (f2(θl),−f1(θl)) · (f1(θl), f2(θl)) =
0 and by (SA.1), (αl · f)(θh) ≥ 0. Hence (αl · f)(θ) ≥ 0. Analogously, letting α′ ≡
(f2(θ

′),−f1(θ′)), we conclude that (α′ · f)(θ) ≤ 0. Now let α ≡ (f2(θ),−f1(θ)). It follows
that

(α · f)(θl) = (f2(θ),−f1(θ)) · (f1(θl), f2(θl)) = −(αl · f)(θ) ≤ 0,

(α · f)(θ′) = (f2(θ
′),−f1(θ′)) · (f1(θ′), f2(θ′)) = −(α′ · f)(θ) ≥ 0, and

(α · f)(θ) = 0.

Therefore, α · f is not strictly single crossing.

( ⇐= ) We provide a proof for the case in which f1 strictly ratio dominates f2, and omit
the other case’s analogous proof. For any α ∈ R2\{0}, we prove that α · f is single crossing.
The argument is very similar to that used in proving Lemma 1, but note that here we do
not assume that f1 and f2 are each strictly single crossing.

As f1 strictly ratio dominates f2,

(∀θl < θh) f1(θl)f2(θh) < f1(θh)f2(θl). (SA.2)
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Suppose, towards contradiction, that α · f is not strictly single crossing.

Claim: There exist θl, θm, θh with θl < θm < θh such that

(α · f)(θl) ≤ 0, (α · f)(θm) ≥ 0, and (α · f)(θh) ≤ 0, or (SA.3)

(α · f)(θl) ≥ 0, (α · f)(θm) ≤ 0, and (α · f)(θh) ≥ 0. (SA.4)

Proof of claim: Since α · f is not strictly single crossing either from below or from above,

(∃θ1 < θ2) (α · f)(θ1) ≥ 0 ≥ (α · f)(θ2), and

(∃θ3 < θ4) (α · f)(θ3) ≤ 0 ≤ (α · f)(θ4).

Let Θ0 ≡ {θ1, θ2, θ3, θ4} and let θ and θ be an upper and lower bound of Θ0, respectively.
Either (α · f)(θ) ̸= 0 or (α · f)(θ) ̸= 0, as otherwise f1(θ)f2(θ) = f2(θ)f1(θ), contradicting
(SA.2). Suppose (α · f)(θ) ̸= 0. If (α · f)(θ) < 0, then we choose (θl, θm, θh) = (θ3, θ4, θ),
which satisfies (SA.3). If (α · f)(θ) > 0, then we choose (θl, θm, θh) = (θ1, θ2, θ), which
satisfies (SA.4). A similar argument applies when (α · f)(θ) ̸= 0. ∥

Condition (SA.2) implies that f(θ) ≡ (f1(θ), f2(θ)) ̸= 0 for all θ ∈ {θl, θm, θh}. Take
any θ1, θ2 ∈ {θl, θm, θh} such that θ1 < θ2. By (SA.2), f(θ1) moves to f(θ2) in a clockwise
rotation with an angle r12 ∈ (0, 180). Suppose (SA.3) holds; the argument is analogous
if (SA.4) holds. It follows from 0 < rlh < 180, (α · f)(θl) ≤ 0, and (α · f)(θh) ≤ 0 that
{f(θl), f(θh)} ⊆ R2

α,− ∪ R2
α,0 with {f(θl), f(θh)} ̸⊆ R2

α,0.47 This, together with rlm > 0 and
rmh > 0, implies f(θm) ∈ R2

α,−, which contradicts (SA.3).

SA.2.3. Proof of Proposition SA.1

Appendix B.3 proved Proposition 2 assuming certain functions are linearly indepen-
dent. Essentially the same proof can be used for Proposition SA.1, replacing statements
involving “single crossing” with “either a zero function or strictly single crossing”.

SA.2.4. Proof of the SSCD⋆ Portion of Theorem 2

The utility function u : A × Θ → R has SSCD⋆ if and only if (∀a, a′ ∈ A) Da,a′ is either
a zero function or strictly single crossing. Most statements in the proof of Theorem 2 for
SCD⋆ go through for SSCD⋆ when we replace “single crossing” with “either a zero function
or strictly single crossing”.

We need only to rewrite the proof of the “only if” part in the following two special cases:

47 Recall that R2
α,+ ≡ {x ∈ R2 : α · x > 0}, R2

α,0 ≡ {x ∈ R2 : α · x = 0}, and R2
α,− ≡ {x ∈ R2 : α · x < 0}.
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1. (∀a′, a′′)(∀θ) u(a′, θ) = u(a′′, θ), or

2. (∃a′, a′′) such that (i) u(a′′, θ)−u(a′, θ) is not a zero function of θ, and (ii) (∀a) u(a, θ)−
u(a′, θ) and u(a′′, θ)− u(a′, θ) are linearly dependent functions of θ.

In the first case, we can write u(a, θ) in form of (5) where g1, g2 are zero functions, h(θ) ≡
u(a0, θ) for any a0, (∀θ) f1(θ) = 1, and f2(θ) is any strictly decreasing function of θ. Then,

(∀θl < θh) f1(θl)f2(θh) = f2(θh) < f2(θl) = f1(θh)f2(θl).

In the second case, for every a, there exists λ ∈ R2\{0} such that λ1 (u(a, ·)− u(a′, ·)) +
λ2 (u(a

′′, ·)− u(a′, ·)) is a zero function. Note that λ1 ̸= 0, as otherwise u(a′′, ·) − u(a′, ·)
would be a zero function. It follows that there exists λ : A→ R such that

(∀a, θ) u(a, θ)− u(a′, θ) = λ(a) (u(a′′, θ)− u(a′, θ)) ,

or equivalently,

(∀a, θ) u(a, θ) = λ(a) (u(a′′, θ)− u(a′, θ)) + u(a′, θ).

Note that u(a′′, θ) − u(a′, θ) is a strictly single-crossing function of θ: consider the expecta-
tional difference with distributions that put probability one on a′′ and a′ respectively. If the
difference is strictly single crossing from below, we can write u(a, θ) in the form of (5) where
g1(a) = λ(a), g2(a) = 0, f1(θ) = u(a′′, θ) − u(a′, θ), and h(θ) = u(a′, θ). If the difference is
strictly single crossing only from above, we let g1(a) = −λ(a) and f1(θ) = u(a′, θ)−u(a′′, θ).
Now take any strictly increasing function h : Θ → R and define

ĥ(θ) ≡

{
−eh(θ) if f1(θ) ≤ 0

e−h(θ) otherwise
and f2(θ) ≡

{
ĥ(θ)f1(θ) if f1(θ) ̸= 0

1 otherwise.

To verify that f1 and f2 are strictly ratio ordered, take any θl < θh. There are three possibil-
ities to consider:

1. If f1(θl)f1(θh) > 0, then

f1(θl)f2(θh) = f1(θl)f1(θh)ĥ(θh) < f1(θl)f1(θh)ĥ(θl) = f1(θh)f2(θl),

as ĥ(θ) is strictly decreasing over {θ | f1(θ) < 0} and {θ | f1(θ) > 0}.

2. If f1(θl)f1(θh) < 0, then as f1(θ) is strictly single crossing from below, we have f1(θl) <
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0 < f1(θh). Hence,

f1(θl)f2(θh) = f1(θl)f1(θh)ĥ(θh) < 0 < f1(θl)f1(θh)ĥ(θl) = f1(θh)f2(θl).

3. If f1(θl)f1(θh) = 0, then because f1 is strictly single crossing from below, we have
either (i) f1(θl) < 0 = f1(θh), which results in f1(θl)f2(θh) = f1(θl) < 0 = f1(θh)f2(θl),

or (ii) f1(θl) = 0 < f1(θh), which results in f1(θl)f2(θh) = 0 < f1(θh) = f1(θh)f2(θl).

SA.3. Proofs for the Implications of Theorem 2

SA.3.1. Proof of Corollary 2

It is clear from Corollary 1 that v(x, θ) = −|x − θ|2 = −x2 + 2xθ − θ2 has SCED, as
f1(θ) = −1 and f2(θ) = 2θ are each single crossing and ratio ordered, and we take g1(x) =
x2, g2(x) = x, and h(θ) = −θ2.

For the converse, it is sufficient to prove the following claim.

Claim SA.1. If there exist g1, g2 : R → R and f1, f2, h : Θ → R such that

v(x, θ) ≡ −|x− θ|z = g1(x)f1(θ) + g2(x)f2(θ) + h(θ),

then z = 2.

Proof of Claim SA.1. Fix x0 ∈ R and define ṽ(x, θ) ≡ v(x, θ)−v(x0, θ) = g̃1(x)f1(θ)+g̃2f2(θ),

where g̃1(x) ≡ g1(x) − g1(x0) and g̃2 ≡ g2(x) − g2(x0). Fix any θl < θm < θh. There exists
(λl, λm, λh) ∈ R3\{0} such that

[
f1(θl) f1(θm) f1(θh)

f2(θl) f2(θm) f2(θh)

] λlλm
λh

 =

[
0

0

]
.

Hence, for every x ∈ R,

h(x) ≡ λlṽ(x, θl) + λmṽ(x, θm) + λhṽ(x, θh)

=
[
g̃1(x) g̃2(x)

] [f1(θl) f1(θm) f1(θh)

f2(θl) f2(θm) f2(θh)

] λlλm
λh

 = 0.

51



We hereafter consider λl ̸= 0 (and omit the proofs for the other two cases, λm ̸= 0 and
λh ̸= 0, which are analogous). The previous equation implies that for any x ∈ R,

ṽ(x, θl) = −λm
λl
ṽ(x, θm)−

λh
λl
ṽ(x, θh). (SA.5)

At any x < θ, ṽ(x, θ) = −(θ − x)z − v(x0, θ) is differentiable in x, and hence (SA.5) implies
that the partial derivative ṽx(x, θl) exists at x = θl. Thus, the right partial derivative

lim
ε↓0

ṽ(θl + ε, θl)− ṽ(θl, θl)

ε
= − lim

ε↓0
εz−1

must equal the left partial derivative

lim
ε↓0

ũ(θl − ε, θl)− ṽ(θl, θl)

−ε
= lim

ε↓0
εz−1,

which implies limε↓0 ε
z−1 = 0, and thus z > 1.

Now suppose to contradiction that z ̸= 2. At any x > θh, (SA.5) and ṽ(x, θ) = −(x −
θ)z − v(x0, θ) imply

−λl(x− θl)
z = λm(x− θm)

z + λh(x− θh)
z + (λm + λh − λl)v(x0, θ),

and hence, differentiating with respect to x and simplifying using z > 1 and z ̸= 2:

−λl(x− θl)
z−1 = λm(x− θm)

z−1 + λh(x− θh)
z−1, (SA.6)

−λl(x− θl)
z−2 = λm(a− θm)

z−2 + λh(x− θh)
z−2, (SA.7)

−λl(x− θl)
z−3 = λm(x− θm)

z−3 + λh(x− θh)
z−3. (SA.8)

It follows that λmλh ̸= 0: if, for example, λm = 0, then (SA.6) implies λh ̸= 0 (as λl ̸= 0),
and then (SA.6) and (SA.7) imply x− θl = x− θh for all x > θh, contradicting θl < θh. Since
((x− θl)

z−2)
2
= (x− θl)

z−1(x− θl)
z−3, we manipulate the right-hand sides of (SA.6)–(SA.8)

to obtain

2λmλh(x− θm)
z−2(x− θh)

z−2 = λmλh
(
(x− θm)

z−1(x− θh)
z−3 + (x− θm)

z−3(x− θh)
z−1
)
,

which simplifies, using λmλh ̸= 0, to

2 =
x− θh
x− θm

+
x− θm
x− θh

.
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Therefore, x− θh = x− θm for all x > θh, contradicting θm < θh. Q.E.D.

SA.3.2. Proof of Corollary 5

The “if” direction of the result follows directly from Theorem 2. For the “only if” direc-
tion, we apply Theorem 2 and observe that, for any a′, a′′ ∈ A,

Da′,a′′(θ) = (gI(a′)− gI(a′′))f I(θ) + (gII(a′)− gII(a′′))f II(θ),

with some f I , f II : Θ → R each single-crossing and ratio ordered, and gI , gII : A→ R.

For each dimension i for which gi : Ai → R is non-constant, we take a′, a′′ ∈ A with
gi(a

′
i) ̸= gi(a

′′
i ) and a′j = a′′j for j ̸= i. It follows that Da′,a′′(θ) = (gi(a

′
i) − gi(a

′′
i ))fi(θ), and

letting λIi ≡
gI(a′)−gI(a′′)
gi(a′i)−gi(a′′i )

and λIIi ≡ gII(a′)−gII(a′′)
gi(a′i)−gi(a′′i )

, that

(∀θ) fi(θ) = λIi f
I(θ) + λIIi f

II(θ).

For each dimension i for which gi : Ai → R is constant, we set λIi ≡ 0 and λIIi ≡ 0.

We have

u(a, θ) =
n∑
i=1

gi(a)fi(θ) =

(
n∑
i=1

λIi gi(ai)

)
f I(θ) +

(
n∑
i=1

λIIi gi(ai)

)
f II(θ) + h(θ),

where h(θ) ≡
∑

i∈{j:gj is constant} gifi(θ), with each gi a constant in the summation.

SA.3.3. Proof of Corollary 6

( ⇐= ) For any Q ∈ A ≡
{
P ∈ ∆∆Ω :

∫
p∈∆Ω

pdP = p∗
}

,

u(Q, θ) =

(∫
∆Ω

g1(p)dQ

)
f1(θ) +

(∫
∆Ω

g2(p)dQ

)
f2(θ) +

∫
∆Ω

(∑
ω∈Ω

v(δω, θ)p(ω)

)
dQ.

The last term on the right-hand side is equal to

∑
ω

v(δω, θ)

(∫
∆Ω

p(w)dQ

)
=
∑
ω

v(δω, θ)p
∗(ω).

Thus, for any Q,R ∈ A,

DQ,R(θ) =

(∫
∆Ω

g1(p)dQ−
∫
∆Ω

g1(p)dR

)
f1(θ) +

(∫
∆Ω

g2(p)dQ−
∫
∆Ω

g2(p)dR

)
f2(θ),
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which is single crossing in θ by Lemma 1.

( =⇒ ) Suppose that v has SCED-X with a full-support prior p∗. By Theorem 2, for any
experiment Q ∈ A,

u(Q, θ) =

∫
p∈∆Ω

v(p, θ)dQ = g1(Q)f1(θ) + g2(Q)f2(θ) + h(θ),

where g1, g2 : A → R, h : Θ → R, and f1, f2 : Θ → R are each single crossing and ratio
ordered.

Take any posterior p ∈ ∆Ω, and find α ∈ (0, 1] and q ∈ ∆Ω such that p∗ = αp+ (1− α)q.
We consider two experiments: Qp yields posteriors p and q with probability α and 1 − α,
respectively, and Rp yields each degenerate posterior δω ∈ ∆Ω with probability αp(ω), and
posterior q with probability 1− α. Observe that Qp, Rp ∈ A. Thus,

u(Qp, θ) = αv(p, θ) + (1− α)v(q, θ) = g1(Qp)f1(θ) + g2(Qp)f2(θ) + h(θ), and

u(Rp, θ) = α

(∑
ω

v(δω, θ)p(ω)

)
+ (1− α)v(q, θ) = g1(Rp)f1(θ) + g2(Rp)f2(θ) + h(θ).

Hence, u(Qp, θ)− u(Rp, θ) = α (v(p, θ)−
∑

ω v(δω, θ)p(ω)), which implies that

v(p, θ)−
∑
ω

v(δω, θ)p(ω) = g̃1(p)f1(θ) + g̃2(p)f2(θ),

where g̃i(p) =
gi(Qp)−gi(Rp)

α
for i = 1, 2.

SA.4. Proofs for Aggregating Monotonic Functions

SA.4.1. Proof of Lemma 2

( ⇐= ) Suppose there exist λ ∈ R2 such that f2 = λ1f1 + λ2. Then, for any α ∈ R2,

(α · f)(θ) = α1f1(θ) + α2(λ1f1(θ) + λ2) = (α1 + α2λ1)f1(θ) + λ2,

which is monotonic.

( =⇒ ) The proof is trivial if both f1 and f2 are constant functions. So we suppose that at
least one function, say f1, is not constant:

(∃θ′, θ′′) f1(θ
′) ̸= f1(θ

′′). (SA.9)
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This implies that rank[Mθ′,θ′′ ] = 2, where

Mθ′,θ′′ ≡

[
f1(θ

′) 1

f1(θ
′′) 1

]
.

Hence, the system [
f2(θ

′)

f2(θ
′′)

]
=

[
f1(θ

′) 1

f1(θ
′′) 1

][
λ1

λ2

]
(SA.10)

has a unique solution λ∗ ∈ R2. We will show that f2 = λ∗1f1 + λ∗2.

Suppose, towards contradiction, there exists θ∗ such that

f2(θ
∗) ̸= λ∗1f1(θ

∗) + λ∗2. (SA.11)

Let θ and θ be a lower and upper bound of {θ′, θ′′, θ∗}. If rank[Mθ,θ] < 2, then f1(θ) = f1(θ).
As θ′ and θ′′ are in between θ and θ and f1 is monotonic, we have f1(θ′) = f1(θ

′′), which
contradicts (SA.9). If, on the other hand, rank[Mθ,θ] = 2, then the system[

f2(θ)

f2(θ)

]
=

[
f1(θ) 1

f1(θ) 1

][
λ′1

λ′2

]

has a unique solution λ′ ∈ R2. As θ′, θ′′, and θ∗ are in between θ and θ, and f2 − λ′1f1 is
monotonic, we have [

f2(θ
′)

f2(θ
′′)

]
=

[
f1(θ

′) 1

f1(θ
′′) 1

][
λ′1

λ′2

]
and (SA.12)

f2(θ
∗) = λ′1f1(θ

∗) + λ′2. (SA.13)

Equation SA.12 implies that λ′ solves (SA.10). As the unique solution to (SA.10) was λ∗, it
follows that λ′ = λ∗. But then (SA.11) and (SA.13) are in contradiction.

SA.4.2. Proof of Proposition 3

( ⇐= ) We omit the proof as it is similar to the proof of Proposition 2 in Appendix B.3.

( =⇒ ) For the proof of necessity, if (∀z) f(z, θ) is a constant function of θ, then we let
λ1(z) = 0 and λ2(z) = f(z, θ). If there exists z′ ∈ Z such that f(z′, θ) is not a constant func-
tion of θ, then Lemma 2 implies (∀z, θ) f(z, θ) = λ1(z)f(z

′, θ) + λ2(z), with λ1, λ2 : Z → R.
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Figure SA.1: Signed-ratio monotonicity and single crossing of a convex combination.

SA.5. Relationship to Signed-Ratio Monotonicity

Quah and Strulovici (2012) establish that for any two functions f1 : Θ → R and f2 : Θ →
R that are each single crossing from below, α1f1 +α2f2 is single crossing from below for all
α ∈ R2

+ if and only if f1 and f2 satisfy signed-ratio monotonicity: for all i, j ∈ {1, 2},

(∀θl < θh) fj(θl) < 0 < fi(θl) =⇒ fi(θh)fj(θl) ≤ fi(θl)fj(θh). (SA.14)

Given our discussion in Subsection 3.1 of a graphical interpretation of ratio ordering, one
can see that Condition (SA.14) implies that the vector f(θ) ≡ (f1(θ), f2(θ)) rotates clockwise
as θ increases within the upper-left quadrant (i.e., when f1(·) < 0 < f2(·)), while it rotates
counterclockwise within the lower-right quadrant (i.e., when f1(·) > 0 > f2(·)); there are no
restrictions in the other two quadrants.48 The dashed curve with arrowheads in Figure SA.1
provides a depiction. Note that if f1 and f2 are both single crossing from below (or both
from above), then there cannot exist θl < θh such that one of f(θl) and f(θh) is in the upper-
left quadrant and the other in the lower-right quadrant. It follows that if f1 and f2 are both
single crossing from below, then ratio ordering implies signed-ratio monotonicity; more
generally, however, the implication is not valid.

48 To be precise: by “quadrant” we mean the interiors, i.e., excluding the axes.

56



Figure SA.1 also illustrates Quah and Strulovici’s (2012) result, analogous to Figure 2
for Lemma 1. Any linear combination α ∈ R2

+\{0} defines two open half spaces, R2
α,− ≡

{x ∈ R2 : α · x < 0} and R2
α,+ ≡ {x ∈ R2 : α · x > 0}, as indicated in Figure SA.1. If

the vector f(θ) rotates monotonically as θ increases from R2
α,− to R2

α,+, or either half space
contains the vector f(θ) for all θ, then α · f ≡ α1f1 + α2f2 is single crossing from below.
Conversely, if f(θ) does not rotate monotonically in the upper-left or lower-right quadrant,
then there exists α ∈ R2

+\{0} such that α · f is not single crossing from below.
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