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Abstract

When does society eventually learn the truth, or take the correct action, via ob-
servational learning? In a general model of sequential learning over social networks,
we identify a simple condition for learning dubbed excludability. Excludability is a joint
property of agents’ preferences and their information. We develop two classes of prefer-
ences and information that jointly satisfy excludability: (i) for a one-dimensional state,
preferences with single-crossing differences and a new informational condition, direc-
tionally unbounded beliefs; and (ii) for a multi-dimensional state, intermediate prefer-
ences and subexponential location-shift information. These applications exemplify that
with multiple states “unbounded beliefs” is not only unnecessary for learning, but in-
compatible with familiar informational structures like normal information. Unbounded
beliefs demands that a single agent can identify the correct action. Excludability, on the
other hand, only requires that a single agent must be able to displace any wrong action,
even if she cannot take the correct action.
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1. Introduction

This paper concerns the classic sequential observational or social learning model ini-
tiated by Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992). There is an
unknown payoff-relevant state (e.g., product quality). Each of many agents has homoge-
neous preferences over her own action and the state (e.g., all prefer products of higher
quality). Agents act in sequence, each receiving her own private information about the
state and observing some subset of her predecessors’ actions. The central economic ques-
tion is about asymptotic learning: do Bayesian agents eventually learn to take the correct
action (e.g., will the highest quality product eventually prevail)?

One would anticipate that whether there is social learning depends on the combination
of agents’ preferences and their information structure. But, at least for finite action sets,
economists have largely emphasized the latter dimension alone.1 The reason is inextrica-
bly tied to focusing on models with two states. With only two states, there is social learning
given any (nontrivial) preferences if and only if there is learning for all preferences. For,
with two states, even the former requires private signals/beliefs to be unbounded (Smith
and Sørensen, 2000; Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011). Unbounded beliefs
says that given any full-support prior it should be possible for a single private signal, how-
ever unlikely it is, to make an agent arbitrarily close to certain about the true state.

With multiple—i.e., more than two—states, unbounded beliefs still characterizes learn-
ing for all preferences (Arieli and Mueller-Frank, 2021).2 However, it is now a very de-
manding condition. Consider, for instance, the canonical example of normal information:
the state is ω ∈ Ω ⊂ R and agents’ signals are drawn independently from a normal distri-
bution with mean ω and fixed variance. With only two states, there is unbounded beliefs
because a very high signal makes one arbitrarily convinced of the high state, while a very
low signal makes one arbitrarily convinced of the low state. But with multiple states, nor-
mal information fails unbounded beliefs: given any full-support prior, there is an upper
bound on how certain one can become about any non-extremal state based on observing
one signal.3 Is social learning doomed with multiple states for familiar information struc-

1 Unless noted otherwise, our introduction should be understood as referring to the canonical sequential
social learning model with a finite action set, homogeneous preferences, and no direct payoff externalities.
It is well recognized that variations in those aspects can also matter for social learning; see for example, Lee
(1993) on infinite action spaces, Avery and Zemsky (1998) and Eyster, Galeotti, Kartik, and Rabin (2014) on
endogenous prices or congestion costs, and Goeree, Palfrey, and Rogers (2006) on heterogeneous preferences.

2 Arieli and Mueller-Frank (2021, Theorem 1) refer to the condition as “totally unbounded beliefs”. They
establish their result for a complete network, i.e., when each agent observes the actions of all predecessors.
A by-product of our analysis is to establish it for general networks (Corollary 1 in Section 3).

3 So binary states is special because all states are extreme states. There is nothing exceptional about normal
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tures like normal information?

Our paper shows that the answer is no. With multiple states, whether society eventually
learns to take the correct action depends on the interplay of preferences and information.
Crucially, learning can obtain under standard preferences with familiar information struc-
tures that fail unbounded beliefs. Figure 1 illustrates an example of normal information
with state space Ω = {1, 2, 3}, action set A = {a1, a2}, and a uniform prior µ0. The failure
of unbounded beliefs is reflected in the set of posteriors, represented by the black curve,
being bounded away from state 2’s vertex. For concreteness, suppose that each agent ob-
serves all predecessors’ actions. In Figure 1a, preferences violate single crossing—defined
formally in Section 4—because action a1 is optimal in both states 1 and 3, whereas a2 is op-
timal in state 2. Here, learning fails: since action a1 is optimal after any signal the first agent
receives, society is stuck with all agents taking a1. By contrast, in Figure 1b, agents have
single-crossing preferences; specifically an agent who takes action ai gets the quadratic-
loss utility −(i− ω)2. Now, at any belief at which learning the state would be useful (i.e., a
belief that puts positive probability on both state 1, where a1 is optimal, and either state 2

or 3, where a2 is optimal), no single action is optimal after all signals. This property yields
social learning; see Theorem 1 in Section 3.

a2
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(a) u(a1, ω) = −1
2 , u(a2, ω) = −(2− ω)2
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(b) u(ai, ω) = −(i− ω)2

Figure 1: Belief simplex for state space Ω = {1, 2, 3}. The curve depicts the set of posteriors for a
single agent under normal information with prior µ0. The action set is A = {a1, a2} and each agent’s
utility is u(a, ω). The shaded regions depict optimal actions under uncertainty.

Excludability. Our paper develops a simple joint condition on information and prefer-
ences, which we call excludability, that is not only sufficient for social learning on general
observational networks (satisfying a mild condition known as expanding observations),
but in a sense also necessary; see Theorem 2 in Section 3.

information violating unbounded beliefs; see Remark 2 in Section 3.
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Roughly speaking, excludability requires that for each pair of actions, a and a′, a single
agent must be able to receive a signal that makes her arbitrarily convinced that a is better
than a′, no matter which (full-support) belief she starts with. Put differently, information
must be able to distinguish the set of states in which a is better than a′ from the set in
which a′ is better than a. Excludability implies that society can never get stuck on a wrong
action: if an action is suboptimal at the true state, then some agent will receive a private
signal convincing her not to take that action. We establish that this property of displacing
wrong actions leads to social learning. Notably, an agent can displace wrong actions even if
she cannot take the correct action, i.e., the optimal action at the true state. (See Figure 2 in
Section 3 for a concrete example.) We view the distinction of social learning arising from
the individual capacity to displace wrong actions rather than to discover the correct action
as a key insight; this distinction cannot be seen with only two states, where the two notions
are equivalent.

Excludability provides a useful perspective on existing ideas in the literature. For in-
stance, as detailed in Section 3, an information structure yields excludability for all pref-
erences if and only if that information structure has unbounded beliefs. But more impor-
tantly, we can use excludability to deduce weaker informational conditions that yield social
learning for canonical classes of preferences.4

Single-crossing preferences. Our leading application of excludability is to preferences
with single-crossing differences (SCD). Here we show that learning obtains when the infor-
mation structure satisfies directionally unbounded beliefs (DUB). SCD is a familiar property
(Milgrom and Shannon, 1994) that is widely assumed in economics: it captures settings in
which there are no preference reversals as the state increases. By contrast, DUB appears
to be a new condition on information structures, although Milgrom (1979) utilizes a re-
lated property in the context of auction theory. Like SCD, DUB is formulated for a (totally)
ordered state space. It requires that for any state ω and any prior that puts positive prob-
ability on ω, there exist both: (i) signals that make one arbitrarily certain that the state is
at least ω; and (ii) signals that make one arbitrarily certain that the state is at most ω. Cru-
cially, no signal need make one arbitrarily certain about ω (unlike unbounded beliefs). For
the normal information structure discussed earlier, requirements (i) and (ii) are met for any
state by arbitrarily high and arbitrarily low signals, respectively.

Proposition 1 in Section 4 shows that SCD preferences and DUB information are jointly

4 Although this approach of obtaining more tenable conditions by restricting preferences to some broad
class is novel to social learning, it is classical in other areas of economics. For instance, first-order stochastic
dominance is weakened to second-order by restricting to concave (and increasing) utility functions.
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sufficient for excludability, and hence learning. For a direct intuition on the SCD-DUB in-
terplay, consider normal information again. There are preferences (like those in Figure 1a)
under which society can get stuck at some belief at which agents are taking an incorrect
action, but only a strong signal about an intermediate state would change the action—alas
no such signal is available. However, under SCD preferences (like those in Figure 1b), if
knowing that the state is some intermediate ω would change the action, then so would
knowing that the state is at least ω or at most ω. Normal information, or more generally
DUB, guarantees that there are strong signals approximating such knowledge.

Intermediate preferences. Our second application in Section 4 is to intermediate prefer-
ences in multidimensional spaces (Grandmont, 1978), where the state is ω ∈ Rd and the
action is a ∈ Rd. These subsume both constant-elasticity-of-substitution preferences com-
mon in many areas of economics and Euclidean preferences invoked in political economy
and communication/delegation models.

Using excludability, we show that social learning obtains under intermediate prefer-
ences so long as information is given by a subexponential location-shift family. Location-shift
families are widely-used information structures: for some density g : Rd → Rd, the sig-
nal distribution in any state ω is given by g(s − ω). Loosely, the subexponential condition
requires that the tail of g must be thin enough, eventually decreasing faster than an expo-
nential rate. We establish that this thin-tails property combined with intermediate prefer-
ences yields excludability. Notably, multidimensional normal information (i.e., normally
distributed signals with mean equal to the state and some fixed covariance matrix) satisfies
the subexponential requirement.

Methodology. A significant contribution of our paper is also methodological. We develop
an approach to tackle learning, and more generally, asymptotic social welfare with multiple
states in general observational networks. Theorem 1 in Section 3 is the backbone by which
we tie learning to excludability. Theorem 1 reduces the complex dynamic problem of social
learning in networks to a much simpler “static” problem. The theorem says that there is
learning if and only if every stationary belief has adequate knowledge. A stationary belief is
one at which there is an action that is optimal no matter an agent’s signal, and an adequate-
knowledge belief is one at which there is an action that is optimal no matter the state in the
belief’s support. Excludability is a simple sufficient—and necessary, in a sense explained
later—condition for all stationary beliefs to have adequate knowledge.

Theorem 1 itself is a consequence of Theorem 3 in Section 5, which provides a wel-
fare lower bound even when learning fails. The theorem roughly says that for any pref-
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erences and information (and given expanding observations), agents eventually obtain at
least their cascade utility. Cascade utility is the minimum expected utility an agent can get
from any Bayes-plausible distribution of stationary beliefs. Theorem 3 implies that learning
obtains when the cascade utility equals the utility obtained from taking the correct action
in each state, which leads to Theorem 1.

Related literature. A number of papers on sequential Bayesian social learning only con-
sider the complete observational network: each agent observes all her predecessors’ ac-
tions. For that case and with binary states, Smith and Sørensen (2000) show that, given
any nontrivial preferences, there is learning if and only if beliefs are unbounded. For the
complete network but with multiple states, Arieli and Mueller-Frank (2021) show that un-
bounded beliefs—which they call “totally unbounded beliefs”—is sufficient for learning,
and also necessary if learning must obtain no matter society’s preferences.5 The approach
of both Smith and Sørensen (2000) and Arieli and Mueller-Frank (2021) rests on the social
belief—an agent’s belief based on observing her predecessors’ actions, before observing
her own signal—being a martingale in the complete network.

Gale and Kariv (2003) and Çelen and Kariv (2004) depart from the complete network,
noting that martingale methods now fail. Both these papers also depart from the canonical
setting in other ways, however: in Gale and Kariv (2003) agents choose actions repeatedly,
while in Çelen and Kariv (2004) private signals are not independent conditional on the true
state. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) provide a general treatment of obser-
vational networks in an otherwise classical setting. But they only allow for binary states
and binary actions. They introduce the condition of expanding observations, explaining
that this property of the network is necessary for learning. They establish that it is also suf-
ficient for learning with unbounded beliefs. Building on Banerjee and Fudenberg (2004),
a key contribution of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) is to use a welfare
improvement principle to deduce learning; this approach works even though martingale ar-
guments fail. Lobel and Sadler (2015) introduce a notion of “information diffusion” and
use the improvement principle to establish information diffusion even when learning fails.

The analysis in both Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and Lobel and
Sadler (2015) relies on their binary-state binary-action structure.6 We believe ours is the

5 The early work of Bikhchandani, Hirshleifer, and Welch (1992) allowed for multiple states, but they
only identified failures of learning because they implicitly restricted attention to “bounded beliefs”; more
precisely, they assumed finite signals with full-support distributions.

6 Banerjee and Fudenberg (2004) and Smith and Sørensen (2020) consider “unordered” random sampling
models that also only allow for binary states and actions.
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first paper to consider the canonical sequential social learning problem with general ob-
servational networks and general state and action spaces. At a methodological level, we
develop a novel analysis based on continuity and compactness—rather than monotonicity
or other properties that are specific to binary states or actions—that uncovers the funda-
mental logic underlying a general improvement principle.

Substantively, our focus on multiple states and actions allows us to shed light on how
preferences and information jointly shape social learning. As already noted, their interplay
in determining learning has not received attention in the prior literature because of its focus
on binary states. The only exception we are aware of is Arieli and Mueller-Frank (2021,
Theorem 3), discussed in Section 3; their result assumes a special utility function and is
only for the complete network.

2. Model

There is a countable state space Ω, endowed with the discrete topology, and standard
Borel spaces of actions A and signals S. We allow each of these three sets to be finite or
infinite. An information or signal structure is given by a collection of probability measures
over S, one for each state, denoted by F (·|ω). Assume that for any ω and ω′, F (·|ω) and
F (·|ω′) are mutually absolutely continuous. It follows that each F (·|ω) has a density f(·|ω);
more precisely, this is the Radon-Nikodym derivative of F (·|ω) with respect to some refer-
ence measure that is mutually absolutely continuous with every F (·|ω′). Without further
loss of generality we assume f(·|·) > 0, so that no signal rules out any state.

The game. At the outset, a state ω is drawn from a common prior probability mass func-
tion µ0 ∈ ∆Ω.7 Then, an infinite sequence of agents, indexed by n = 1, 2, . . ., sequentially
select actions. An agent n observes both a private signal sn drawn from f(·|ω) and the
actions of some subset of her predecessors Bn ⊆ {1, 2, . . . , n − 1}, and then chooses her
action an ∈ A. Agents’ private signals are drawn independently conditional on the state,
and no agent observes either the state or any of her predecessors’ signals. Each observa-
tional neighborhood Bn is stochastically generated according to a probability distribution
Qn over all subsets of {1, 2, . . . , n − 1}, assumed to be independent across n, independent
of the state ω, and independent of any private signals. The distributions (Qn)n∈N constitute
the observational network structure and are common knowledge, but the realized neigh-
borhood Bn is the private information of agent n.

7 For any topological space X , ∆X denotes the set of Borel probability measures over X .
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Agent n’s information set thus consists of her signal sn, neighborhood Bn, and the ac-
tions chosen by the neighbors (ak)k∈Bn .8 Let In denote the set of all possible information
sets for agent n. A strategy for agent n is a (measurable) function σn : In → ∆A.

All agents are expected utility maximizers and have common preferences that depend
only on their own action and the state, represented by the utility function u : A × Ω → R.
We assume that utility is bounded: there is u ≥ 0 such that |u(·, ·)| ≤ u.

We study the Bayes Nash equilibria—hereafter simply equilibria—of this game. We
assume that for every belief there is an optimal action, so that an equilibrium exists.9

Remark 1. Appendix A describes a more general setting in which our main results are
proved. For example, Ω can be a closed subset of R and each u(a, ·) piecewise continu-
ous with A finite. We also do not require the signal distributions to be mutually absolutely
continuous.

Adequate learning. The full-information expected utility given a belief µ is the expected
utility under that belief if the state will be revealed before an action is chosen:

u∗(µ) :=
∑
ω∈Ω

max
a∈A

u(a, ω)µ(ω).

Given a prior µ0 and a strategy profile σ, agent n’s utility un is a random variable. Let
Eσ,µ0 [un] be agent n’s ex-ante expected utility. We say there is adequate learning if for every
prior µ0 and every equilibrium σ, Eσ,µ0 [un] → u∗(µ0). In words, adequate learning requires
that given any prior and equilibrium, no matter which state is realized, eventually agents
take actions that are arbitrarily close to optimal in that state.10 We say there is inadequate
learning if adequate learning fails.11

8 While we assume that each agent observes the identities of her neighbors as well as their chosen actions,
the Conclusion explains how our analysis extends to various cases of “random sampling” in which neigh-
bors’ identities are not observed. Our analysis also applies if agents receive arbitrary information about their
predecessors’ realized neighborhoods.

9 Existence of optimal actions is assured under standard assumptions, e.g., if A is compact and u(·, ·) is
suitably continuous. We also note that as there are no direct payoff externalities, strategic interaction is
minimal: any σn affects other agents only insofar as affecting how n’s successors update about signal sn
from the observation of action an. Hence, we could just as well adopt (weak) Perfect Bayesian equilibrium or
refinements.

10 Our notion of adequate learning is different from Arieli and Mueller-Frank’s (2021), who require learning
for all utility functions. Following Aghion, Bolton, Harris, and Jullien (1991), we use “adequate” to signify
that learning the state precisely is not necessary when some action is optimal in multiple states.

11 That we deem learning to be inadequate if there is some equilibrium in which learning fails, rather than
in every equilibrium, is innocuous given that there is no strategic interaction (cf. fn. 9). On the other hand,
the issue of whether learning fails at every prior rather than only at some priors is substantive. We return to
this issue in our Conclusion.
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We will also be interested in situations in which agents choose from a subset of actions,
referred to as a choice set.12 We say that there is (in)adequate learning for a choice set Ã ⊆ A if
there is (in)adequate learning when agents are restricted to choose from actions in Ã.

Expanding observations. As observed by Acemoglu, Dahleh, Lobel, and Ozdaglar (2011),
a necessary condition for adequate learning is that the network structure has expanding ob-
servations:

∀K ∈ N : lim
n→∞

Qn (Bn ⊆ {1, . . . , K}) = 0. (1)

The reason is that a failure of expanding observations means that for some K ∈ N, there
is an infinite number of agents each of whom, with probability uniformly bounded away
from 0, observes at most actions a1, . . . , aK . In that event, the agent cannot do better than
choosing her action based on only K + 1 signals.

Accordingly, we assume expanding observations. Leading examples of network struc-
tures with expanding observations include: (i) the classic complete network in which each
agent’s neighborhood is all her predecessors (formally, Qn(Bn = {1, . . . , n − 1}) = 1); (ii)
each agent only observes her immediate predecessor (Qn(Bn = {n− 1}) = 1); and (iii) each
agent observes a random predecessor (Qn(Bn = {k}) = 1/(n− 1) for all k ∈ {1, . . . , n− 1}).

3. Characterizations of Learning

3.1. Stationary Beliefs and Adequate Knowledge

The key to all our results on learning is Theorem 1 below, which simplifies the question
of adequate learning to a “one-shot updating” property of beliefs. To state that result, we
require two concepts concerning the value of information.

For any belief µ ∈ ∆Ω, let c(µ) := argmaxa∈A Eµ[u(a, ω)] denote the set of optimal ac-
tions under that belief. Abusing notation, for a degenerate belief on state ω we write c(ω).
Denoting the posterior after signal s when starting from belief µ by µs, we say that belief µ
is stationary if there is a ∈ c(µ) such that a ∈ c(µs) for µ-a.e. signal s. We say that belief µ
has adequate knowledge if there is a ∈ c(µ) such that a ∈ c(ω) for all ω ∈ Suppµ. So a belief
is stationary if an agent holding that belief does not benefit from observing a signal from
the given information structure.13 On the other hand, a belief has adequate knowledge

12 We restrict attention to choice sets such that for every belief there is an optimal action.
13 Some readers may find it helpful to note that in their setting, Smith and Sørensen (2000) refer to stationary

beliefs as “cascade beliefs”.
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if the agent would not benefit from observing a signal from any information structure, in
particular learning the state.

Any adequate-knowledge belief, such as a belief that puts probability one on a single
state, is stationary. In general, there can be stationary beliefs without adequate knowledge,
as seen in Figure 1a.

Theorem 1. There is adequate learning if and only if all stationary beliefs have adequate knowledge.

Theorem 1 provides a characterization of adequate learning that holds regardless of the
observational network structure, given our maintained assumption of expanding observa-
tions. Its “only if” direction is straightforward because our notion of learning considers all
priors: if the prior is stationary and has inadequate knowledge, then society is stuck with
all agents taking the prior-optimal action even though it is suboptimal in some states. More
important and subtle is the theorem’s “if” direction. It is inspired by earlier results, partic-
ularly Arieli and Mueller-Frank (2021, Lemma 1) and Lobel and Sadler (2015, Theorem 1),
but the logic in the current general setting of arbitrary networks and multiple states and
actions is novel. We defer this logic to Section 5, instead turning now to how we can build
on Theorem 1 for a more practicable characterization of learning. In particular, we seek a
more transparent condition on the combinations of preferences and information that yield
adequate learning.

3.2. Excludability

A key notion is whether information allows an agent to become arbitrarily sure about
a subset of states Ω′ relative to another subset Ω′′. To make that precise, let µs(Ω

′) denote
the posterior on states Ω′ induced by belief µ and signal s, and Prµ(S

′) be the probability of
signal set S ′ induced by belief µ.

Definition 1. A set Ω′ is distinguishable from another set Ω′′ if for any ε > 0 and µ ∈ ∆(Ω′ ∪ Ω′′)

with µ(Ω′) > 0, it holds that Prµ(s : µs(Ω
′) > 1− ε) > 0.

Note that Ω′ is distinguishable from Ω′′ if and only if every ω ∈ Ω′ is distinguishable
from Ω′′. Moreover, if Ω′ is distinguishable from Ω′′, then every subset of Ω′ is distinguish-
able from every subset of Ω′′. The following observation essentially reinterprets distin-
guishability directly in terms of the signal structure rather than posteriors.

Lemma 1. Ω′ is distinguishable from Ω′′ if for every ω′ ∈ Ω′ and ε > 0, there is a positive-
probability set of signals S ′ such that

∀ω′′ ∈ Ω′′,∀s ∈ S ′ :
f(s|ω′′)

f(s|ω′)
< ε.
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Conversely, this condition is also necessary if Ω′′ is finite.

We emphasize that the set S ′ in the lemma cannot depend on ω′′ ∈ Ω′′; for Ω′ to be dis-
tinguished from Ω′′, each ω′ ∈ Ω′ must be distinguished from all ω′′ ∈ Ω′′ simultaneously.
Consider the example of normal information: Ω ⊂ R and signals are normally distributed on
R with mean ω and fixed variance. When Ω = {1, 2, 3}, state 2 is distinguishable from
1 because f(s|1)/f(s|2) → 0 as s → ∞, and state 2 is distinguishable from 3 because
f(s|3)/f(s|2) → 0 as s → −∞. But state 2 cannot be distinguished from both 1 and 3

simultaneously, because min{f(s|1)/f(s|2), f(s|3)/f(s|2)} is bounded away from 0.

Distinguishability of each state from its complement is the condition of unbounded be-
liefs; this is termed “totally unbounded beliefs” by Arieli and Mueller-Frank (2021) and
is the multi-state extension of the two-state notion introduced by Smith and Sørensen
(2000). But with multiple states, unbounded beliefs is incompatible with familiar infor-
mation structures.

Remark 2. Under any monotone likelihood ratio property (MLRP) information structure,
no state ω is distinguishable from {ω′, ω′′} with ω′ < ω < ω′′.14 Consequently, if |Ω| > 2,
unbounded beliefs fails under the MLRP.

Fortunately, learning only requires certain subsets of states to be distinguished from
each other. For any two actions a1 and a2, let the preferred set Ωa1,a2 := {ω : u(a1, ω) >

u(a2, ω)} be the set of states in which a1 is strictly preferred to a2.

Definition 2. A utility function and an information structure jointly satisfy excludability if
for every a1 and a2, Ωa1,a2 is distinguishable from Ωa2,a1 .

Excludability is a joint condition on preferences and information. It requires that for
any pair of actions, a single agent can become arbitrarily certain that one action is strictly
better than the other, starting from any belief that does not exclude that event. Since exclud-
ability is defined using preferred sets, it is straightforward to deduce which sets must be
distinguishable for any given preferences; Lemma 1 then provides a set of likelihood-ratio
conditions on the information structure, without reference to beliefs.

Unbounded beliefs implies excludability for any preferences. Conversely, if unbounded
beliefs fails, then there is some state ω∗ that is not distinguishable from its complement, and
excludability fails when preferences are such that for some a1 and a2, Ωa1,a2 = {ω∗} while
Ωa2,a1 = Ω \ {ω∗}. Hence, excludability for all preferences is equivalent to unbounded

14 For ordered state and signals spaces, the MLRP holds if ∀s′ > s and ∀ω′ > ω, f(s|ω′)/f(s|ω) ≤
f(s′|ω′)/f(s′|ω).
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beliefs. But with multiple states, excludability can be substantially weaker for any given
(class of) preferences, as developed in Section 4.15 This matters because:

Theorem 2. Excludability implies adequate learning for every choice set. If excludability fails and
the number of states is finite, then there is inadequate learning for some choice set.

(See Theorem 2′ in the appendix for a more general version of Theorem 2 that does not
require finiteness in the second statement. Hereafter, for brevity, we leave it as implicit that
it is Theorem 2′ rather than Theorem 2 we are invoking when discussing the necessity of
excludability for learning in an infinite state space.)

Excludability is sufficient for adequate learning because it ensures that wrong actions
can always be “displaced”, which by Theorem 1 is the key to social learning. More pre-
cisely, excludability guarantees that, no matter the choice set, all stationary beliefs have
adequate knowledge. Suppose a belief µ has inadequate knowledge, so that c(µ) ̸= c(ω∗)

for some state ω∗ ∈ Suppµ. (For simplicity, assume c(µ) and c(ω∗) are singletons.) Exclud-
ability implies that preferred set Ωc(ω∗),c(µ) is distinguishable from Ωc(µ),c(ω∗). Hence, with
positive probability, an agent who starts with belief µ will obtain a posterior that puts arbi-
trarily large probability on Ωc(ω∗),c(µ) relative to Ωc(µ),c(ω∗), in which event she strictly prefers
c(ω∗) to c(µ). Consequently, µ is not stationary.

We highlight that excludability does not guarantee that a wrong action can always be
displaced by the correct action. In other words, even though excludability guarantees that
given any wrong action—say, c(µ) when the true state is ω∗—a single agent can receive a
signal convincing her that c(µ) is worse than the correct action c(ω∗), there may be no signal
that leads the agent to take c(ω∗). When there are two states and finite actions, always
being able to displace a wrong action and always being able to take the correct action are
equivalent, as they both reduce to unbounded beliefs. But more generally, it is displacing
wrong actions that is fundamental for learning.

To illustrate the point concretely, consider the example depicted in Figure 2. There are
three states and three actions, Ω = A = {1, 2, 3}. The signal structure and preferences are
detailed in the figure’s caption. The correct action in each state ω is a = ω. Importantly,
unbounded beliefs fails yet there is excludability.16 Let agent n’s social belief be her belief

15 With only two states, Ω = {ω1, ω2}, excludability under any given nontrivial preferences is equivalent to
unbounded beliefs. (Nontrivial means that no action is optimal at all states.) For, there must be actions a1 and
a2 such that Ωa1,a2

= {ω1} and Ωa2,a1
= {ω2}; excludability requires these sets to be mutually distinguishable,

which is unbounded beliefs.
16 Unbounded beliefs fails because under normal information the middle state is not distinguishable from

its complement. Excludability can be verified by checking distinguishability of the preferred sets for each
pair of actions; alternatively, we note that the preferences satisfy single-crossing differences (SCD), and as
explained in Subsection 4.1, SCD and normal information imply excludability.
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about the state given only the history of her neighbors’ actions, prior to observing her own
private signal. When each agent observes all predecessors’ actions, Figure 2 shows two
representative numerically-simulated paths of social beliefs given the true state ω = 2. The
social belief starts at the prior, marked by a star in the figure, and then evolves as agents
take actions, as indicated by either of the arrowed paths. There is a range of beliefs, shaded
in grey, such that for any social belief in that range no signal can lead an agent to take the
correct action 2. As the prior is in this range, the first agent necessarily takes a wrong action:
either 1 (which occurs in the red path) or 3 (the blue path). Nevertheless, even though no
agent can take the correct action 2 for a while, society never gets stuck at a wrong action:
given that an agent’s predecessor chose a ∈ {1, 3}, there are signals (very high if a = 1

and very low if a = 3) that convince the agent that a is worse than the correct action 2,
and hence the agent will not take action a. At some point, after enough switching between
actions 1 and 3, the social belief is driven outside the grey region and it becomes possible
for an agent to take the correct action 2. Eventually, society settles on that action.

Figure 2: Two simulated social belief paths—one in red and one in blue—in a complete network.
There are three states labeled 1, 2, 3, and there is normal information (with standard deviation
1.2). There are three actions with respective state-contingent utilities (1, 0,−0.3), (0, 0.2, 0), and
(−0.3, 0, 1). The optimal action under uncertainty is delineated by the dashed lines. The true state
is 2, and society starts with the prior (0.35, 0.1, 0.55), marked by the black star. The grey shaded
region indicates beliefs at which no single signal can lead to state 2’s correct action. On each path, a
dot represents the social belief after an agent has acted, and arrows indicate the sequencing.

Turning to necessity in Theorem 2: for a fixed choice set, all stationary beliefs can have
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adequate knowledge (and hence there is adequate learning, by Theorem 1) even absent
excludability. But when excludability fails, there is some preferred set Ωa1,a2 that cannot be
distinguished from Ωa2,a1 . If Ω is finite, this means that when the choice set is {a1, a2}, a
belief that puts small probability on Ωa1,a2 relative to Ωa2,a1 is stationary and has inadequate
knowledge. Hence, Theorem 1 implies that excludability is necessary for learning when
we seek learning for all choice sets. The following example illustrates these points using
an infinite action set for convenience.

Example 1. Consider Ω = {0, 1}, A = [0, 1], and u(a, ω) = −(a− ω)2. This is an example of
“responsive preferences” (Lee, 1993; Ali, 2018). Fix any nontrivial signal structure and any
observational network structure satisfying expanding observations.

Adequate learning obtains by Theorem 1, because the only stationary beliefs have cer-
tainty on one of the two states. For, given any nondegenerate belief, with positive prob-
ability the posterior-optimal action will be different from the prior-optimal action, as the
uniquely optimal action equals the posterior expected state. However, excludability is
equivalent to the signal structure having unbounded beliefs, as for any a1 < a2, Ωa1,a2 = {0}
and Ωa2,a1 = {1}. So excludability is not necessary for adequate learning at choice set A.
But absent excludability there is inadequate learning at any non-singleton finite choice set.
For, there is then some state such that any prior that puts probability close to 1 on that state
will be stationary, but this prior has inadequate knowledge. □

The choice-set variation required by Theorem 2 comes “for free” when we seek an infor-
mational condition that ensures learning for a broad-enough class of preferences. Specif-
ically, it is sufficient that for any utility function in the class and any choice set, there is
another utility function that is identical on that set but makes all other actions dominated.
Since the class of all preferences has this property, and excludability for all preferences is
equivalent to the information structure having unbounded beliefs, Theorem 2 immediately
implies:

Corollary 1. An information structure yields adequate learning for all preferences if and only if it
has unbounded beliefs.

This corollary extends results from the prior literature, which are either for the complete
network (Arieli and Mueller-Frank, 2021, Theorem 1) or general networks but with only
two states (Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011, Theorem 2).

To our knowledge, the only prior exception to unbounded beliefs driving learning with
a discrete action space is the interesting example of Arieli and Mueller-Frank (2021, The-
orem 3). They consider the complete network and a special utility function, which they
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call “simple utility”, in which the payoff is 1 if the action matches the state and 0 other-
wise. For this case, they show that pairwise distinguishability—for any pair of states, each
is distinguishable from the other—is sufficient for learning. This result also follows from
Theorem 2; indeed, the theorem implies that learning obtains for general observational
networks. For, under simple utility, the preferred sets for actions a1 ̸= a2 are just {a1} and
{a2}, which means excludability is equivalent to pairwise distinguishability.

4. Applications

Excludability permits a study of informational conditions that assure adequate learning
for broad and widely-used classes of preferences. This section presents two such applica-
tions: one with a one-dimensional state, and one with a multi-dimensional state.

4.1. Learning in a One-Dimensional World

In this subsection we assume a totally ordered state space: for simplicity, Ω ⊂ R. A
function h : Ω → R is single crossing if either: (i) for all ω < ω′, h(ω) > 0 =⇒ h(ω′) ≥ 0; or
(ii) for all ω < ω′, h(ω) < 0 =⇒ h(ω′) ≤ 0. That is, a single-crossing function switches sign
between strictly positive and strictly negative at most once.

Definition 3. Preferences represented by u : A × Ω → R have single-crossing differences
(SCD) if for all a and a′, the difference u(a, ·)− u(a′, ·) is single crossing.

SCD is an ordinal property closely related to notions in Milgrom and Shannon (1994)
and Athey (2001), but, following Kartik, Lee, and Rappoport (2023), the formulation is
without an order on A.17 Ignoring indifferences, SCD requires that the preference over
any pair of actions can only flip once as the state changes monotonically. SCD is widely
satisfied in economic models; in particular, it is assured by supermodularity of u.

The key informational condition is that of distinguishing upper and lower sets from
each other. More precisely, we require that for any ω, {ω′ : ω′ ≥ ω} and {ω′ : ω′ < ω} are
distinguishable from each other, and {ω′ : ω′ > ω} and {ω′ : ω′ ≤ ω} are distinguishable
from each other. But since a set Ω′ is distinguishable from Ω′′ if and only if each ω ∈ Ω′ is
distinguishable from Ω′′, we can simplify as follows.

Definition 4. An information structure has directionally unbounded beliefs (DUB) if every ω

is distinguishable from {ω′ : ω′ < ω} and also from {ω′ : ω′ > ω}.

17 SCD is equivalent to there existing some order on A with respect to which Athey’s (2001) “weak single-
crossing property of incremental returns” holds.
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Crucially, DUB does not require any state ω to be distinguishable from any subset of
states containing both a higher and a lower state than ω. Rather, using Lemma 1, we can
view DUB as only requiring that for any state ω, there are signals that are arbitrarily more
likely in ω relative to all ω′ < ω, and also other signals that are arbitrarily more likely in ω

relative to all ω′ > ω.

A leading example of DUB information is normal information. More generally, for any
MLRP information structure, DUB can be easily checked because it reduces to pairwise dis-
tinguishability.18 We note that when A is finite, pairwise distinguishability is inescapable
(even without the MLRP) for adequate learning in any rich-enough class of preferences.19

Our main result in this subsection is:

Proposition 1. If preferences have SCD and the information structure has DUB, then there is
adequate learning. Conversely, if the information structure violates DUB and there are at least two
actions, then there are SCD preferences for which there is inadequate learning.

The result says that not only is DUB a sufficient informational condition for adequate
learning under any SCD preferences, but it also necessary to assure learning for all SCD
preferences.

Here is the logic for sufficiency. Recall that Ωa,a′ denotes the states in which action a

is strictly preferred to a′. SCD implies non-reversal of strict preferences: for any a and
a′, either inf Ωa,a′ ≥ supΩa′,a or inf Ωa′,a ≥ supΩa,a′ . DUB says that every upper (resp.,
lower) set of states and its strict lower (resp., strict upper) set are distinguishable from each
other. Therefore, SCD and DUB together guarantee excludability, and so Proposition 1’s
first statement follows from Theorem 2.

We would like to caution against the following intuition. Under SCD preferences, any
inadequate-knowledge belief µ has distinct optimal actions at the extreme states of µ’s
support. DUB information then guarantees learning because the extreme states can be
distinguished from their complements, and so µ is not stationary. While valid for finite
states, this is not a generally applicable intuition. Indeed, the following example shows

18 Regardless of the MLRP, DUB implies pairwise distinguishability. To see why the converse is true given
the MLRP, consider the case of finite states. Note that for any ω′ > ω, f(s|ω′)/f(s|ω) → ∞ as s → supS (the
ratio is increasing by MLRP, and it diverges by pairwise distinguishability); similarly, the ratio goes to 0 as
s → inf S. Hence, for any ω′ and ε > 0, the condition in Lemma 1 is met for Ω′ = {ω′} and Ω′′ = {ω′′ : ω′′ <
ω′} when S′ is any sufficiently small upper set of signals, while for Ω′′ = {ω′′ : ω′′ > ω′} the condition is met
when S′ is any sufficiently small lower set. For an infinite state space, the intuition is the same but we appeal
to the monotone convergence theorem.

19 “Rich-enough” here means that for any two states, there is a preference in the class such that the optimal
actions in those two states are disjoint.

15



that pairing DUB with distinct optimal actions at all states is not a robust principle for
learning.

Example 2. Let Ω = Z and A = Z ∪ {a∗}. In any state ω, the utility from any integer action
a is given by quadratic loss, u(a, ω) = −(a − ω)2, whereas the action a∗ is a “safe action”,
u(a∗, ω) = −ε for a small constant ε > 0.20 So any action ω is uniquely optimal in state ω

but worse than the safe action a∗ in every other state. Plainly, SCD is violated.

Consider normal information. There are full-support priors µ such that the posterior
probability µs(ω) is uniformly bounded away from 1 across signals s and states ω (see
Supplementary Appendix SA.3 for details). For any such prior, for small enough ε > 0, the
safe action a∗ is optimal after every signal. In other words, any such prior is stationary but
has inadequate knowledge. So Theorem 1 implies inadequate learning. □

The argument for the necessity of DUB in Proposition 1 is as follows. Take any state ω∗,
any two actions a1 ̸= a2, and consider the following SCD utility: for all ω < ω∗, u(a1, ω) = 1

and u(a2, ω) = 0; for all ω ≥ ω∗, u(a1, ω) = 0 and u(a2, ω) = 1; and otherwise u(a, ω) = −1.
Since all actions except a1 and a2 are dominated and can be ignored, Theorem 2 implies
that for there to be adequate learning, Ωa1,a2 = {ω : ω < ω∗} and Ωa2,a1 = {ω : ω ≥ ω∗} must
be distinguishable. In particular, ω∗ is distinguishable from its lower set. An analogous
argument shows that ω∗ is distinguishable from its upper set. Since ω∗ is arbitrary, DUB
holds.

While our main point in this subsection is that DUB is the correct informational con-
dition for adequate learning under SCD preferences, it is also worth noting that for any
preferences violating SCD, one can show that there are DUB information structures—e.g.,
normal information—with inadequate learning at some choice set. In this sense SCD and
DUB are a minimal pair of sufficient conditions.

4.2. Learning in a Multi-Dimensional World

We now turn to a multi-dimensional environment: A,Ω ⊂ Rd for some integer d ≥ 1.21

For instance, A = {1, 2, 3}2 can represent a set of feasible policies, Ω = {1, 2, 3}2 society’s
ideal policy, and individuals have quadratic-loss preferences u(a, ω) = −∥a− ω∥2. Is there
a natural class of information structures for which learning obtains?

More generally, consider the following class of preferences:

20 Strictly speaking, quadratic-loss utility with Ω = Z violates our maintained assumption of bounded
utility, but we ignore that to keep the example succinct.

21 We view any x ∈ Rd as a column vector and denote its transposition by x′ and its standard Euclidean
norm by ∥x∥.
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Definition 5. Preferences are intermediate if for all a1 ̸= a2, either Ωa1,a2 = ∅ or Ωa1,a2 = Ω or
there are h ∈ Rd and c ∈ R such that Ωa1,a2 = {ω : h · ω > c}.

Introduced by Grandmont (1978), intermediate preferences have preferred sets that
are either trivial or half spaces; so if ω, ω′ ∈ Ωa1,a2 , then for any λ ∈ (0, 1) and ω′′ =

λω + (1 − λ)ω′ ∈ Ω, it holds that ω′′ ∈ Ωa1,a2 . A leading family, subsuming quadratic-
loss preferences, is weighted Euclidean preferences: u(a, ω) = −l((a − ω)′W (a − ω)), for
some d × d symmetric positive definite matrix W and strictly increasing loss function
l : R+ → R+.22 Another salient example, discussed by Caplin and Nalebuff (1988, Sec-

tion 5), is the constant-elasticity-of-substitution utility u(a, ω) =
(∑d

i=1 ω(i)(a(i))
r
)1/r

where
a(i) and ω(i) denote the respective i-th coordinates, and r ̸= 0 is a parameter.

Turning to information, we focus on the familiar class of location-shift information struc-
tures: S = Rd and there is a density g : Rd → R++, called the standard density, such that
f(s|ω) = g(s−ω). We restrict attention to standard densities that are uniformly continuous.
The following property will be crucial.

Definition 6. A location-shift information structure is subexponential if there are p > 1 and
M > 0 such that g(s) < exp(−∥s∥p) for all ∥s∥ > M .

A subexponential density has a thin tail in the sense that it eventually decays strictly
faster than the exponential density. Our leading example of a subexponential location-shift
information structure is multivariate normal information: there is some covariance matrix
Σ such that the distribution of signals in state ω is N (ω,Σ). Here the standard density is
that of N (0,Σ), and Definition 6 is verified by taking any exponent p ∈ (1, 2) and any large
M > 0. Subexponential information can fail unbounded beliefs; for example, this is the
case for normal information when Ω contains non-extreme states, i.e., there is some state in
the interior of the convex hull of Ω.

The main result of this subsection is:

Proposition 2. If preferences are intermediate and the information structure is subexponential
location-shift, then there is adequate learning.

The result follows from Theorem 2 and the next lemma, which says that all half spaces
are distinguishable from their complements under subexponential location-shift informa-

22 To confirm that these are intermediate preferences, note that by simple algebraic manipulation,

(a1 − ω)′W (a1 − ω)− (a2 − ω)′W (a2 − ω) = (a1 − a2)
′W (a1 + a2 − 2ω).

Hence, ω ∈ Ωa1,a2
if and only if (a1−a2)

′W (a1+a2−2ω) > 0, or equivalently, h·ω > c where h = 2(a2−a1)
′W

and c = (a2 − a1)
′W (a1 + a2).
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tion. Since the nontrivial preferred sets for intermediate preferences are half spaces, the
lemma implies that this combination of preferences and information yields excludability.

Lemma 2. For a subexponential location-shift information structure, the sets {ω : h · ω > c} and
{ω : h · ω < c} are distinguishable from each other for any h ∈ Rd and c ∈ R.

The exponent p being strictly larger than 1 in the definition of subexponential is essential
for the lemma. To see that, consider the double-exponential standard density g(s) = c ·
exp(−∥s∥) with c > 0 a constant of integration. This density is not subexponential, and
indeed the conclusion of Lemma 2 fails: no two states ω ̸= ω′ are distinguishable from each
other because f(s|ω′)/f(s|ω) = g(s − ω′)/g(s − ω) ≤ exp (∥ω′ − ω∥) for any signal s. The
failure of pairwise distinguishability implies inadequate learning even with a binary state
when the action set is discrete and preferences are nontrivial.

We can provide an intuition for Lemma 2 by considering a bivariate normal standard
density, g(s) = exp (−s′Σs/2) /

√
2π with Σ a 2 × 2 covariance matrix. Take an arbitrary

hyperplane h, as illustrated in Figure 3. We seek to distinguish the half space to the right
of h from its complementary half space to the left. It is sufficient to distinguish an arbitrary
single state ω1 to the right of h from all the states to the left. Figure 3 shows how to construct
a sequence of signals verifying that distinguishability. For a sequence of cn → 0, select sn on
the iso-density ellipse of level cn given state ω1 so that the direction of h is tangent with the
ellipse at sn. For all n, the “ellipsoid distance” between sn and ω1,

√
(sn − ω1)′Σ(sn − ω1),

is then smaller than the ellipsoid distance between sn and any state to the left of h (such as
ω2 and ω3) by some fixed amount. Due to the normal distribution being subexponential, as
cn → 0 the likelihood ratio g(sn−ω)

g(sn−ω1)
→ 0 uniformly across ω to the left of h.

We make two further comments regarding Proposition 2. First, in the one-dimensional
environment of Subsection 4.1, SCD is more or less equivalent to preferred sets being half
spaces, and DUB is equivalent to the distinguishability of half spaces from their comple-
ments in the sense of Lemma 2. Proposition 2 can thus be viewed as an extension of Propo-
sition 1 to a multi-dimensional world; the restriction to location-shift information allows
us to unpack the kind of information that yields the requisite half-space distinguishability.

Second, a location-shift information structure does not have to be subexponential to
guarantee learning for all intermediate preferences. But it can be shown that if the standard
density g : Rd → R is superexponential in the sense that there are p ∈ (0, 1) and M > 0 such
that g(s) ≥ exp(−∥s∥p) for all ∥s∥ > M , then learning fails for all nontrivial intermediate
preferences when A is finite.
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Figure 3: The logic underlying Lemma 2 for a bivariate normal standard density. We seek to dis-
tinguish ω1 from the solid black line. The ellipses are iso-density signals of a given level at the
states ω1, ω2, and ω3. As sn grows along the dotted line, corresponding to lower iso-density levels,
min{f(sn|ω2)/f(sn|ω1), f(sn|ω3)/f(sn|ω1)} → 0.

5. Theorem 1 and a General Welfare Bound

We now return to the general characterization of adequate learning, Theorem 1, to ex-
plain how it is derived. The theorem is best understood as a corollary of a welfare bound
regardless of whether there is learning. Stating that result requires some notation. Abusing
notation, let

u(µ) := max
a∈A

∑
ω

u(a, ω)µ(ω)

be an agent’s expected utility when she takes an optimal action under belief µ. Recalling
that µs denotes the posterior given a belief µ and signal s, let

I(µ) :=

(∑
ω∈Ω

∫
S

u(µs) dF (s|ω)µ(ω)

)
− u(µ)

be the expected utility improvement from observing a private signal at belief µ. Observe
that I(µ) = 0 for any stationary belief µ. We write ΦBP ⊂ ∆∆Ω to denote the set of Bayes-
plausible distributions of beliefs: φ ∈ ΦBP ⇐⇒ Eφ[µ] = µ0. Again abusing notation, we
write u(φ) := Eφ[u(µ)] for the expected utility of an agent under the distribution of beliefs

19



φ, and analogously write I(φ) := Eφ[I(µ)]. It follows that

ΦS :=
{
φ ∈ ΦBP : I(φ) = 0

}
is the set of Bayes-plausible distributions of beliefs that are supported on the set of station-
ary beliefs. (We have suppressed the dependence of ΦBP and ΦS on the prior µ0.)

Building on a notion mentioned by Lobel and Sadler (2015), we can now define the
cascade utility level as

u∗(µ0) := inf
φ∈ΦS

u(φ).

In words, u∗(µ0) is the lowest utility level that an agent can get if her Bayes-plausible dis-
tribution of beliefs is supported on stationary beliefs. Our welfare bound is that eventually
all agents are assured a utility level of at least u∗(µ0). More precisely:

Theorem 3. In any equilibrium σ, lim infn Eσ,µ0 [un] ≥ u∗(µ0).

The “if” direction of Theorem 1 readily follows from Theorem 3: when all stationary be-
liefs have adequate knowledge, a correct action is taken almost surely for any distribution
of stationary beliefs, hence u∗(µ0) = u∗(µ0), and we have adequate learning.

The conclusion of Theorem 3 would be straightforward if we were assured that agents
eventually hold stationary beliefs. However, there are networks (with expanding obser-
vations) in which with positive probability the beliefs of an infinite number of agents are
bounded away from the set of stationary beliefs; see Example SA.1 in Supplementary Ap-
pendix SA.1.

Instead, we prove Theorem 3 via an improvement principle, as suggested by Banerjee and
Fudenberg (2004) and developed by Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and
others. The foundation in our general setting is a novel compactness-continuity argument.
First, Lemma 4 in the appendix establishes that ΦBP is compact when both ∆Ω and ∆∆Ω

are endowed with the Prohorov metric generated from the metric on Ω. The idea when
Ω is countable is that although the prior µ0 can be supported on an infinite set, it must
concentrate an arbitrarily large mass on only finitely many states. Consequently, for any
δ > 0, there is a finite subset of states Ω′ such that any Bayes-plausible distribution of
beliefs puts at least 1 − δ probability on beliefs that put at least 1 − δ probability on Ω′.
Using Prohorov’s Theorem, we then deduce that ΦBP is compact. Second, we show that
the utility function u(φ) and the improvement function I(φ) are continuous (Lemma 5 in
the appendix), and thus uniformly continuous on ΦBP .

Now consider any ε-neighborhood of the set of Bayes-plausible distributions supported
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on stationary beliefs, call it (ΦS)ε. If an agent’s distribution of beliefs is in (ΦS)ε, then her
ex-ante expected utility is at least close to u∗, as u(φ) ≥ u∗ on ΦS and u(φ) is uniformly
continuous. On the other hand, if the distribution is not in (ΦS)ε, then there is some strictly
positive minimum utility improvement that the agent obtains (as the complement of (ΦS)ε

is closed, hence compact, and I(φ) is continuous).

We can then apply an improvement principle. The idea is as follows, where we con-
sider deterministic networks for simplicity. Expanding observations guarantees that we
can partition society into “generations” such that an agent in one generation observes a
predecessor who is in either the previous generation or the current generation. We in-
ductively argue that the lowest ex-ante utility in each generation is either close to u∗ or
increases by a fixed amount compared to the previous generation. Consider an agent’s dis-
tribution of social beliefs, φ. Her utility u(φ) must be at least the lowest ex-ante expected
utility of the previous generation, because the current agent can just mimic the agent with
the largest index she observes.23 Then, as explained in the previous paragraph, either u(φ)
is at least close to u∗ (when φ is in (ΦS)ε), or the agent can improve upon u(φ) by at least
some fixed amount. Thus, the lowest ex-ante expected utility in each generation increases
by a fixed amount until it becomes at least close to u∗. Since ε was arbitrary, it follows that
eventually all agents’ utility must be higher than a level arbitrarily close to u∗, which is the
conclusion of Theorem 3.

Although previous authors have deduced versions of Theorem 1 and Theorem 3 in
special environments, what allows us to establish these two general results is our novel
proof methodology. We highlight two distinctions with Lobel and Sadler (2015, Theorem
1), which is the most related existing result to Theorem 3. They consider a binary-state
binary-action model. In that setting, they establish a welfare bound of “diffusion utility”,
which is the utility obtained by a hypothetical agent who observes an information structure
that contains only the strongest signals (an “expert agent”, in their terminology). Our
cascade utility is more fundamentally tied to when learning stops, as it is defined using
stationary beliefs. It is not hard to see that in general, no matter the number of states or
actions, cascade utility is always at least as high as (the natural extension of) diffusion
utility; Remark 5 in Appendix C elaborates. Typically the ranking will be strict, although
Lobel and Sadler (2015) note that cascade and diffusion utilities coincide in their binary-
state binary-action setting. Methodologically, Lobel and Sadler’s argument for a minimum
improvement, like that of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011), owes to certain

23 With stochastic networks, the fact that an agent can obtain any observed predecessor’s ex-ante expected
utility through mimicking relies on our assumption that players’ observation neighborhoods are drawn inde-
pendently. Otherwise, whether a player has observed some predecessor may correlate with that predecessor
realizing a lower utility.
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monotonicity that does not extend beyond their binary-binary setting.

Remark 3. Our approach to proving Theorem 3 can be adapted to address belief conver-
gence. Since expanding observations is compatible with the observational network having
multiple components, one cannot expect the social belief to converge even in probabil-
ity.24 Furthermore, there can be a positive probability that the social belief is not eventually
even in a neighborhood of the set of stationary beliefs, as already noted. Nevertheless,
there are reasonable conditions under which convergence to the stationary set does ob-
tain. Consider deterministic networks and assume that society can be covered by finitely
many subsequences such that in each subsequence agent nk observes nk−1. Then, denoting
agent n’s (random) social belief by µn, it holds that for all ε > 0, limn→∞ Pr(µn ∈ Sε) = 1,
where Sε denotes the ε-neighborhood of the set of stationary beliefs. See Proposition SA.1
in Supplementary Appendix SA.1. We note that this result applies, in particular, to the
immediate-predecessor network and the complete network. The latter is special because
the social belief is then a martingale, which is assured to converge almost surely by the
martingale convergence theorem. For this case, Arieli and Mueller-Frank (2021, Lemma 1)
have established that the limit is stationary.

Remark 4. Theorem 3 can be used to quantify how a failure of excludability impacts wel-
fare. Proposition SA.2 in Supplementary Appendix SA.2 provides a formal result in this
vein. In particular, that result implies a sense in which an environment with “approximate
excludability” ensures that, eventually, agents’ ex-ante expected utilities are close to the
full-information utility.

6. Concluding Remarks

This paper has studied a general model of sequential social learning on observational
networks. Our main theme has been how learning turns jointly on preferences and infor-
mation when there are multiple states. We close by commenting on certain aspects of our
approach.

First, our model assumes “non-anonymous sampling”, i.e., whenever an agent sees
the action of some predecessor, she knows the identity of that predecessor. However, our
methodology extends to anonymous sampling, i.e., when each agent observes only the
frequencies of actions in their realized neighborhood, as in Smith and Sørensen (2020).

24 Consider an observational network consisting of two disjoint complete subnetworks: every odd agent
observes only all odd predecessors, and symmetrically for even agents. Given any specification in which
learning would fail on a complete network—such as the canonical binary state/binary action herding
example—there is positive probability of the limit belief among odd agents being different from that among
even agents.
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Our results apply in that case when expanding observations (condition (1)) holds for the
“induced network structure” (Q̃n)n∈N where each Q̃n is defined by first drawing a neigh-
borhood Bn according to Qn and then uniform-randomly drawing a single agent from Bn.
Appendix A (fn. 28) explains why. Interestingly, the condition coincides with Smith and
Sørensen’s (2020) “non-over-sampling” requirement. Note that expanding observations
for the induced network (Q̃n) is more demanding than expanding observations for (Qn);
this is not surprising since agents have less information when they cannot observe identi-
ties. Nevertheless, the requirement is satisfied, for example, when each agent observes the
action of a uniform-randomly drawn predecessor or the actions of all predecessors—in ei-
ther case, not observing their identities. But the requirement is violated when each agent n
observes either agent 1 or agent n−1, but doesn’t observe the identity (whereas expanding
observations holds here when the identity is observed).

Second, the notion of learning we have adopted considers all possible priors. While this
strengthens our sufficiency results, it correspondingly weakens our necessity results. With
only two states, learning at any single (nondegenerate) prior is equivalent to learning at all
priors. Our earlier working paper (Kartik, Lee, Liu, and Rappoport, 2022, Supplementary
Appendix SA.1) provides some analysis concerning the extent to which this is true with
multiple states.

Third, our analysis has not touched on the speed of learning/welfare convergence. For
binary states and the complete network, Rosenberg and Vieille (2019) deduce the condi-
tion on the likelihood of extreme posteriors that determines whether learning is, in certain
senses, efficient; they point out that their condition is violated by normal information. See
Hann-Caruthers, Martynov, and Tamuz (2018) as well.

Lastly, our work only addresses Bayesian learning with correctly specified agents. There
is a large literature on non-Bayesian social learning, surveyed by Golub and Sadler (2016).
There has also been recent interest in (mis)learning among misspecified Bayesian agents;
see, for example, Frick, Iijima, and Ishii (2020) and Bohren and Hauser (2021).
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Appendices
Appendix A contains the proofs for Theorems 1–3. Appendix B contains the proofs of

Proposition 1 and Lemma 2 (which proves Proposition 2). Appendix C contains the proof
of Lemma 1 and Remark 5 on cascade vs. diffusion utility .

A. Backbone Results

In this section, we prove our three theorems in the following setting, which is more
general than that described in the main text:

• The action space and signal space (A,A), (S,S) are standard Borel spaces;

• The state space Ω is equipped with a metric d and its Borel sigma-algebra, B(Ω), such
that (Ω, d) is a sigma-compact Polish space;25

• The utility function u(a, ω) has absolute value uniformly bounded by u and it is point-
wise equicontinuous when regarded as a collection of functions of ω indexed by a;
moreover, for every belief (Borel probability distribution over Ω), there exists an op-
timal action;

• The information/signal structure F (·|ω) is a Markov kernel from (Ω,B(Ω)) to (S,S)
that is continuous in ω in the total variation (TV) sense;

• The network structure is given by Q ≡ (Qn)n∈N, where each Qn is a probability mea-
sure over all neighborhoods, i.e., all subsets of {1, 2, . . . , n−1}, independent across n,
independent of the state ω, and independent of any private signals.

When Ω is countable as in the main text, we endow it with the discrete metric so that
the sigma-compactness and continuity requirements are trivially satisfied.

Discontinuous utilities. While we make a continuity assumption on preferences, our
main results hold for utilities satisfying the following condition that permits discontinu-
ities (cf. Remark 1):

Condition 1. There is a countable partition of Ω into Borel sets Bi and pointwise equicon-
tinuous functions vi : Ω → R uniformly bounded by u such that vi|Bi

= u.

To obtain our results for such utilities, we can define a new state space Ω̃ as a disjoint
union: Ω̃ :=

⊔
Ωi, where each Ωi is a copy of Ω. Choose any metric on Ω̃ that induces the

25 That is, (Ω, d) is a complete and separable metric space that can be represented as a countable union of
compact sets.
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disjoint union topology. Define a utility ũ on Ω̃ by ũ|Ωi
:= vi for each i. It follows that Ω̃

is sigma-compact Polish and ũ is pointwise equicontinuous and uniformly bounded. The
information structure is defined such that on each Ωi it is the same as before. Using our
results for the new setting, one can deduce Theorems 1–3 for the original setting.26

A.1. Overarching Probability Space and Beliefs

We now formalize the overarching probability space over all realizations of the state,
signals, observation neighborhoods, and actions. We also define formal objects correspond-
ing to agents’ social and posterior beliefs and distributions of beliefs.

Overarching probability space. Our probability space is constructed from three com-
ponents: the Markov kernel F and probability space (Ω,B(Ω), µ0); the network structure
Q ≡ (Qn)n∈N; each agent n’s strategy σn(·|aBn , Bn) as a Markov kernel from (A|Bn|,A|Bn|) to
(A,A) for each realization of neighborhood Bn.

Taken together, for the first n agents, we can define a probability space that describes
the joint distribution of their neighborhoods, signals, actions, and the states. Since all these
elements lie in standard Borel spaces, the Kolmogorov Extension Theorem guarantees ex-
istence of an overarching probability space (H∞,H∞,P) that is consistent with each finite
probability space (i.e., up to each agent n). We suppress the dependence of P on σ and µ0.

Beliefs. Given this overarching probability space, agent n’s social belief (i.e., her belief
after observing her neighbors and their actions, but before observing her private signal)
is P(·|aBn , Bn) and her posterior belief is P(·|aBn , Bn, sn). These beliefs are well-defined
because, as a countable product of standard Borel spaces, the overarching probability space
is a standard Borel space, and hence there exist regular conditional probabilities (Durrett,
2019, Theorem 4.1.17).

Distribution of beliefs. We denote by ∆Ω the space of beliefs (Borel probability measures
on Ω) equipped with the Prohorov metric, and by ∆∆Ω the space of belief distributions
(Borel probability measures on ∆Ω) also equipped with the Prohorov metric.

The social belief of agent n, µn, as a regular conditional probability, can be regarded as
a measurable function from (H∞,H∞,P) to (∆Ω,B(∆Ω)); see Crauel (2002, Remark 3.20).

26 More specifically, the results in the original setting are equivalent to the corresponding results in the
new setting restricted to priors/beliefs that put zero probability on the added states Ωi\Bi. We can use our
methodology to derive Theorems 1–3 in the new setting for such restricted beliefs.
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As Ω is a Polish space, so is ∆Ω. We define agent n’s distribution of social beliefs, φn, as the
push-forward measure of µn. Hence, φn ∈ ∆∆Ω since it is by definition a Borel probability
measure on ∆Ω.

A.2. Space of Bayes-Plausible Belief Distributions is Compact

Given a prior µ0 ∈ ∆Ω and a strategy profile σ, any agent’s belief distribution φ ∈ ∆∆Ω

must be Bayes plausible: ∫
A

µ(A) dφ(µ) = µ0(A), ∀A ∈ B(Ω). (2)

Let ΦBP ⊂ ∆∆Ω be the set of Bayes-plausible belief distributions; note that we suppress
the dependence of ΦBP on µ0.

Our goal is to establish (Lemma 4 below) that even though the set of belief distributions
∆∆Ω need not be compact, the subset of Bayes-plausible distributions ΦBP is. A key step is
the following lemma, which shows that any belief distribution φ ∈ ΦBP has to put a large
probability on a compact subset of ∆Ω.

Lemma 3. Let δ > 0 and {Ωi}i∈N be a sequence of compact sets with µ0(Ωi) ≥ 1 − ( δ
2i
)2, ∀i.

Defining Vδ := {µ ∈ ∆Ω : µ(Ωi) ≥ 1− δ
2i
, ∀i}, it holds that:

1. Vδ is compact;

2. φ(µ /∈ Vδ) < δ, ∀φ ∈ ΦBP .

Intuitively, in the lemma’s statement, the set Vδ contains all beliefs that put high proba-
bility on a set of states that the prior µ0 ascribes high probability to. The lemma concludes
that the set Vδ is compact and that any Bayes-plausible belief distribution must put high
probability on Vδ.

Proof. (Part 1) First, Vδ is closed. To see this, take any µk → µ and µk ∈ Vδ. Since each Ωi is
compact (and thus closed), weak convergence implies

lim sup
k

µk(Ωi) ≤ µ(Ωi), ∀i,

which implies µ(Ωi) ≥ 1− δ
2i

. Thus, µ ∈ Vδ, and hence Vδ is closed.

Next, the beliefs in Vδ are tight by definition. Hence, by Prohorov’s theorem, the closure
of Vδ, which is Vδ itself, is compact.
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(Part 2) Note that φ(µ /∈ Vδ) = φ(∪i{µ(Ωc
i) >

δ
2i
}) ≤

∑
i φ(µ(Ω

c
i) >

δ
2i
). For each i ∈ N,

we view µ(Ωc
i) as a non-negative random variable with distribution induced by φ. Since φ

is Bayes plausible, Eφ[µ(Ω
c
i)] = µ0(Ω

c
i) ≤ ( δ

2i
)2, which implies (using Markov’s inequality)

that φ(µ(Ωc
i) >

δ
2i
) < δ

2i
. This implies that φ(µ /∈ Vδ) <

∑
i

δ
2i
= δ. Q.E.D.

Given Lemma 3, we can use Prohorov’s theorem again to show:

Lemma 4. ΦBP is compact.

Proof. First, we prove that ΦBP is closed. Take any φk → φ and φk ∈ ΦBP , and want to
show that φ ∈ ΦBP , i.e., Eφ[µ(W )] = µ0(W ),∀W ∈ B(Ω).

Take any open set W ∈ B(Ω). For any µk → µ, it holds that µ(W ) ≤ lim inf µk(W ). In
other words, µ(W ) (as a function of µ) is lower semi-continuous. By properties of weak
convergence, it follows that Eφ[µ(W )] ≤ lim inf Eφk

[µ(W )] = µ0(W ). That is, the mean
measure of φ ascribes a smaller probability than µ0 to any open set.

Now observe that W c ⊆ ∪x∈W cB1/n(x) for any n. Hence,

Eφ[µ(W
c)] ≤ lim

n
Eφ[µ(∪x∈W cB1/n(x))] ≤ lim

n
µ0(∪x∈W cB1/n(x)) = µ0(W

c),

where the second inequality is from the previous result applied to open sets ∪x∈W cB1/n(x),
and the last equality follows from W c = ∩n ∪x∈W c B1/n(x) (and this equality holds because
W c is closed). Therefore, Eφ[µ(W )] = µ0(W ).

Since Eφ[µ] and µ0 agree on all open sets, and open sets generate B(Ω), Eφ[µ] and µ0

agree on all sets in B(Ω). This establishes that φ ∈ ΦBP .

Finally, Ω being sigma-compact implies that for any δ, there is an increasing sequence
of compact sets {Ωi}i∈N such that Ω = ∪iΩi, and this sequence {Ωi} satisfies the hypotheses
in Lemma 3. The lemma guarantees that there is a compact set Vδ such that φ(Vδ) < δ for
all φ ∈ ΦBP , hence ΦBP is tight. Prohorov’s theorem now implies that the closure of ΦBP ,
which is ΦBP itself, is compact. Q.E.D.

A.3. Continuity of Various Functions

We next define some functions of interest, some of which were already defined in the
main text but are now defined for the more general setting considered in the appendix.

Let u(µ) be the expected utility that an agent can get at belief µ:

u(µ) := sup
a∈A

∫
Ω

u(a, ω) dµ(ω).
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Let uF (µ) be the expected utility that an agent can get at belief µ, if she can choose an action
after observing her private signal:

uF (µ) := sup
β:S→A

∫
Ω

∫
S

u(β(s), ω) dF (s|ω) dµ(ω).

Finally, let u∗(µ) be the full information utility at µ:

u∗(µ) :=

∫
Ω

sup
a∈A

u(a, ω) dµ(ω).

Our continuity assumptions on the utility function and the information structure allow
us to prove:

Lemma 5. u, uF , u∗ are continuous in µ.

To prove Lemma 5, we use Theorem 2.2.8 in Bogachev (2018), which we restate without
proof for our context as the following claim:

Claim 1. Let µk → µ. If Γ is a uniformly bounded and pointwise equicontinuous family of func-
tions on Ω, then

lim
k

sup
f∈Γ

∣∣∣∣∫
Ω

f dµk −
∫
Ω

f dµ

∣∣∣∣ = 0.

Proof of Lemma 5. By assumption, Γ := {u(a, ω)}a∈A, viewed as a family of functions of ω
indexed by a, is uniformly bounded and pointwise equicontinuous.

Consider the function u∗. Since the supremum of the pointwise equicontinuous func-
tions u∗(ω) := supa u(a, ω) is continuous in ω, the definition of weak convergence implies
that u∗(µ) is continuous in µ.

Now consider the function u. Its continuity follows from

|u(µk)− u(µ)| =
∣∣∣∣sup
f∈Γ

∫
Ω

f dµk − sup
f∈Γ

∫
Ω

f dµ

∣∣∣∣ ≤ sup
f∈Γ

∣∣∣∣∫
Ω

f dµk −
∫
Ω

f dµ

∣∣∣∣ ,
which converges to 0 as µk → µ, by Claim 1.

Lastly, suppose we establish that ΓF :=
{∫

S
u(β(s), ω) dF (s|ω)

}
β:S→A

, as a family of
functions of ω indexed by β, is pointwise equicontinuous.27 Then, as ΓF is uniformly
bounded, Claim 1 implies that uF (µ) is continuous, proving the lemma.

27 Here we assume β are (measurable) pure strategies for notation clarity. The same argument works for
mixed strategies, in which case β would be Markov kernels.
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To establish the pointwise equicontinuity of ΓF , observe that ∀ω, ω′ and ∀β,∣∣∣∣∫
S

u(β(s), ω) dF (s|ω)−
∫
S

u(β(s), ω′) dF (s|ω′)

∣∣∣∣ (3)

≤
∣∣∣∣∫

S

(u(β(s), ω)− u(β(s), ω′)) dF (s|ω)
∣∣∣∣+ ∣∣∣∣∫

S

u(β(s), ω′) dF (s|ω)−
∫
S

u(β(s), ω′) dF (s|ω′)

∣∣∣∣ .
Fix any ω and any ε > 0. Since {u(a, ω)}a∈A is pointwise equicontinuous, there exists δ1

such that d(ω′, ω) < δ1 implies the first term on the right-hand side of inequality (3) to be
smaller than ε/2 (regardless of β(s)). The second term is smaller than 2udTV (F (·|ω), F (·|ω′))

(where TV represents total variation), and by the continuity assumption of the information
structure, there exists δ2 > 0 such that d(ω′, ω) < δ2 implies dTV (F (·|ω), F (·|ω′)) < ε/4u.
Therefore, if d(ω′, ω) < min{δ1, δ2}, then the right-hand side of inequality (3) is less than ε

(regardless of β(s)). It follows that ΓF is pointwise equicontinuous. Q.E.D.

Now define the utility improvement I(µ) and the utility gap G(µ) at µ as:

I(µ) := uF (µ)− u(µ), G(µ) := u∗(µ)− u(µ).

By Lemma 5, I(µ) and G(µ) are continuous. Lastly, with an abuse of notation, define
u(φ) := Eφ[u(µ)], I(φ) := Eφ[I(µ)], and G(φ) := Eφ[G(µ)] as the corresponding functions
over distributions of beliefs. Since u(µ), I(µ), and G(µ) are continuous, so are u(φ), I(φ),
and G(φ).

We note that a belief µ is stationary if and only if I(µ) = 0, and a belief µ has adequate
knowledge if and only if G(µ) = 0. To confirm these points, consider stationary beliefs. If
there is an action that is a.s. optimal regardless of the signal, then I(µ) = 0. Conversely,
if no action is a.s. optimal regardless of the signal, then for any action there is a positive-
probability set of signals for which that action is strictly suboptimal; hence uF (µ) > u(µ),
and I(µ) > 0. The argument for adequate knowledge beliefs is similar.

A.4. Proofs for Backbone Results

Logically, Theorem 3 =⇒ Theorem 1 =⇒ Theorem 2. So we prove the results in that
order.

Proof of Theorem 3. We prove the result in two steps. In Step 1 below, we prove that if
agent n’s social belief distribution φn, which is her belief distribution incorporating the
observation of her neighborhood’s actions but not her private signal, is not close to being
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supported on only stationary beliefs, then her utility Eσ,µ0 [un], which is the ex-ante ex-
pected utility under equilibrium σ after observing the private signal, improves from u(φn)

by some positive amount bounded away from zero. In Step 2 below, we use the expanding
observations assumption to establish that this minimum improvement propagates through
the network until eventually agents obtain at least arbitrarily close to their cascade utility
level.

Step 1: Recall the set of Bayes-plausible belief distributions that are supported by sta-
tionary beliefs, ΦS := {φ ∈ ΦBP : I(φ) = 0}, and the cascade utility, u∗ := infφ∈ΦS u(φ).

Take any ε > 0, and let (ΦS)ε denote the ε-neighborhood of ΦS . An agent n’s belief
distribution φn must be Bayes plausible, so φn ∈ ΦBP . Since u(φ) is uniformly continuous
on ΦBP (as u(φ) is continuous, and ΦBP is compact), if φn ∈ (ΦS)ε, then u(φn) ≥ u∗ − γ(ε)

for some γ(·) such that γ(ε) → 0 when ε → 0. If, on the other hand, φn ∈ Φ+ := ΦBP\(ΦS)ε,
then I(φn) > 0 because φn puts positive probability on {µ : I(µ) > 0}. Since (ΦS)ε is
open, Φ+ is a closed subset of a compact set ΦBP ; hence Φ+ is compact, and since I(φ) is
continuous, it attains a minimum over Φ+ at some φ ∈ Φ+. Thus, if φn ∈ Φ+ the agent
obtains an improvement I(φn) ≥ I(φ) > 0.

Step 2: We will argue that for any ε > 0, Eσ,µ0 [un] ≥ u∗ − γ(ε) once n is large enough.
Since ε is arbitrary, taking ε → 0 implies lim infn Eσ,µ0 [un] ≥ u∗, which completes the proof.

For a given ε > 0, let δ = I(φ)

4u
> 0, let N0 = 1, and define Nk for k = 1, 2, . . . sequentially

such that for all n ≥ Nk, Qn(maxb∈Bn b < Nk−1) < δ. Expanding observations ensures that
such Nk exist.

We claim that, for any agent n ≥ Nk, Eσ,µ0 [un] ≥ αk := min{u∗ − γ(ε),
kI(φ)

2
− u}. Since

α0 = −u, clearly Eσ,µ0 [un] ≥ α0 for any n ≥ N0. Suppose the claim holds for all agents
n′ ≥ Nk−1. Take any agent n ≥ Nk. Agent n’s neighborhood is drawn independently of ev-
erything that has happened before, so conditional on agent n observing an agent n′ ≥ Nk−1,
even without her private signal agent n can achieve a utility of at least αk−1 by imitating
agent n′. Hence, u(φn) ≥ (1 − δ) · αk−1 + δ · (−u).28 If φn ∈ (ΦS)ε, then by definition
u(φn) ≥ u∗ − γ(ε), and thus Eσ,µ0 [un] ≥ u(φn) ≥ u∗ − γ(ε) ≥ αk. If φn /∈ (ΦS)ε, then agent n

28 If agents do not observe the identities associated with the observed actions of their predecessors, an agent
can uniform-randomly select one of the actions they observe to imitate. So long as the “induced network
structure” (i.e., a network structure (Q̃n) wherein each Q̃n is defined by first drawing a neighborhood Bn

from Qn and then uniform-randomly drawing a single agent from Bn) satisfies expanding observations, the
current proof goes through without change using the induced network structure.
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can improve her utility by at least I(φ), and so

Eσ,µ0 [un] ≥ (1− δ)αk−1 + δ · (−u) + I(φ)

≥ αk−1 +
I(φ)

2
(because αk−1 ≤ u and δ =

I(φ)

4u
)

≥ αk.

Since the definition of αk implies that there is a finite K such that for all k ≥ K, αk =

u∗ − γ(ε), it follows that for all n ≥ NK , Eσ,µ0 [un] ≥ u∗ − γ(ε). Q.E.D.

Proof of Theorem 1. The “only if” direction is straightforward. If there is a stationary be-
lief without adequate knowledge, then when the prior is that belief there is an equilibrium
where each agent ignores her signal and action history and obtains a utility that is strictly
below the full-information utility level.

For the ”if” direction, fix any prior µ0 and equilibrium σ. Since all stationary beliefs
have adequate knowledge, I(µ) = 0 implies G(µ) = 0. Thus, for any φ ∈ ΦS , φ({µ : I(µ) =

0}) = φ({µ : G(µ) = 0}) = 1, which implies G(φ) = u∗(φ) − u(φ) = 0. Moreover, because
µ0 is the mean measure of φ,

u∗(φ) = Eφ

[∫
Ω

sup
a

u(a, ω) dµ

]
=

∫
Ω

sup
a

u(a, ω) dµ0 = u∗(µ0),

which implies u(φ) = u∗(µ0). As a result, u∗(µ0) = infφ∈ΦS u(φ) = u∗(µ0). It follows from
Theorem 3 that lim infn Eσ,µ0 [un] ≥ u∗(µ0). Since Eσ,µ0 [un] ≤ u∗(µ0) for all n, it further
follows that Eσ,µ0 [un] → u∗(µ0). As µ0 and σ are arbitrarily, we have adequate learning.

Q.E.D.

Next we state and prove a more general version of Theorem 2. For any n ∈ N, define
Ωn

a1,a2
:= {ω : u(a1, ω)− u(a2, ω) >

1
n
}.

Theorem 2′. Excludability implies adequate learning at every choice set. There is inadequate learn-
ing for choice set {a1, a2} if Ωa1,a2 is not distinguishable from Ωn

a2,a1
for some n.

Note that when Ω is finite, or the utility difference between any pair of actions is bounded
away from zero, a failure of excludability is equivalent to the condition for necessity in the
theorem holding for some a1, a2. Hence Theorem 2 is implied by Theorem 2′.

Proof of Theorem 2′. (First statement) First note that excludability (under the full choice
set A) implies excludability under any choice subset A′ ⊆ A. So we fix an arbitrary A′ ⊆ A
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and show that excludability under that subset implies adequate learning at that choice
subset. In what follows, the domain of actions should be understood as A′, and we denote
a typical element by a′.

Theorem 1 implies that we need only show that any µ ∈ ∆Ω with inadequate knowl-
edge is not stationary. So take any µ ∈ ∆Ω with inadequate knowledge and any a∗ ∈ c(µ).
Since there is inadequate knowledge, µ(∪a′Ωa′,a∗) > 0, i.e., there is a positive measure of
states where a∗ is not optimal. The continuity of u(a′, ω) − u(a∗, ω) implies that Ωn

a′,a∗ are
open sets for any a′ and n. Since Ω is Polish, it is second-countable and hence has a count-
able basis. Therefore, each open set Ωn

a′,a∗ , and hence the open set ∪a′Ωa′,a∗(= ∪a′ ∪n Ω
n
a′,a∗),

is a union of countably many basic open sets. Since µ(∪a′Ωa′,a∗) > 0, at least one basic open
set contained in Ωn

a′,a∗ for some a′ and n has strictly positive measure, i.e., µ(Ωn
a′,a∗) > 0.

Now denote µ′(·) := µ(·|Ωa∗,a′ ∪ Ωn
a′,a∗) as the corresponding conditional probability.

Since Ωa′,a∗ is distinguishable from Ωa∗,a′ by excludability, so is Ωn
a′,a∗ .29 Therefore, for any

ε > 0 there exists a set of signals S ′ such that Prµ′(S ′) > 0 and µ′
s(Ω

n
a′,a∗) > 1 − ε for all

s ∈ S ′. The utility improvement upon observing any s ∈ S ′ by switching from a∗ to a′ is
therefore bounded below by ( 1

n
(1−ε)−2uε)µs(Ωa∗,a′∪Ωn

a′,a∗), as the expected improvement
on Ω\(Ωa∗,a′ ∪ Ωn

a′,a∗) is nonnegative. For small ε > 0, 1
n
(1 − ε) − 2uε > 0. Furthermore,

integrating µs(Ωa∗,a′ ∪ Ωn
a′,a∗) over s ∈ S ′ yields Prµ′(S ′)µ(Ωa∗,a′ ∪ Ωn

a′,a∗) > 0. Hence, the
ex-ante improvement is bounded below by ( 1

n
(1− ε)− 2uε) Prµ′(S ′)µ(Ωa∗,a′ ∪Ωn

a′,a∗) > 0. It
follows that I(µ) > 0, and thus µ is not stationary.

(Second statement) Suppose there are two actions a1, a2 and an n such that Ωa1,a2 is not
distinguishable from Ωn

a2,a1
. This means there exists µ ∈ ∆(Ωa1,a2 ∪Ωn

a2,a1
) with µ(Ωa1,a2) > 0

such that µs(Ωa1,a2) ≤ 1 − ε for some ε > 0 and µ-a.e. s. Consider µ′ ∈ ∆(Ωa1,a2 ∪ Ωn
a2,a1

)

with a small µ′(Ωa1,a2) > 0 such that µ′(·|Ωa1,a2) = µ(·|Ωa1,a2) and µ′(·|Ωn
a2,a1

) = µ(·|Ωn
a2,a1

).
Under µ′, upon observing signal s, the posterior on Ωa1,a2 satisfies

µ′
s(Ωa1,a2)

µ′
s(Ω

n
a2,a1

)
=

µs(Ωa1,a2)/µ(Ωa1,a2)

µs(Ωn
a2,a1

)/µ(Ωn
a2,a1

)

µ′(Ωa1,a2)

µ′(Ωn
a2,a1

)
≤ 1− ε

ε

µ(Ωn
a2,a1

)

µ(Ωa1,a2)

µ′(Ωa1,a2)

µ′(Ωn
a2,a1

)

for µ-a.e. s. Hence, by choosing µ′ so that µ′(Ωa1,a2 )

µ′(Ωn
a2,a1

)
is arbitrarily small, the ratio µ′

s(Ωa1,a2 )

µ′
s(Ω

n
a2,a1

)
can

be made arbitrarily small uniformly over s.

Under µ′, after observing s, the expected improvement by switching from a2 to a1 is
bounded above by 2uµ′

s(Ωa1,a2) − 1
n
µ′
s(Ω

n
a2,a1

), which is strictly negative when µ′
s(Ωa1,a2 )

µ′
s(Ω

n
a2,a1

)
is

small. Therefore, for µ′-a.e. s, a2 is strictly better than a1, and thus µ′ is stationary for
choice set {a1, a2}. However, since µ′(Ωa1,a2) > 0, the belief µ′ has inadequate knowledge.

29 In fact, excludability is equivalent to: Ωn
a1,a2

is distinguishable from Ωa2,a1
for all a1, a2 and n.
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Theorem 1 implies there is inadequate learning for choice set {a1, a2}. Q.E.D.

B. Applications

We now specialize to the main text’s setting: Ω is countable, endowed with the discrete
metric, and F (·|ω) are absolutely continuous with respect to each to other, and so there are
densities f(·|ω) > 0.

B.1. SCD Preferences & DUB Information

Proof of Proposition 1. Sufficiency follows directly from Theorem 2. For necessity, first ob-
serve that if the information structure fails DUB, then there exists some state ω∗ such that
ω∗ is not distinguishable from its lower set (or from its upper set, which has a symmetric
argument). Fix any pair of distinct actions a1 and a2, and define the following SCD prefer-
ences: for ω < ω∗, u(a1, ω) = 1 and u(a2, ω) = 0; for ω ≥ ω∗, u(a1, ω) = 0 and u(a2, ω) = 1;
and any other actions are strictly dominated. It follows that Ωa2,a1 is not distinguishable
from {ω : u(a1, ω) − u(a2, ω) > 1

2
}. By Theorem 2′, there is inadequate learning when the

choice is {a1, a2}, and since all other actions are strictly dominated, also for the full choice
set A. Q.E.D.

B.2. Intermediate Preferences & Location-Shift Information

The proof of Lemma 2 is more involved than the intuition given in the main text using
Figure 3, because in general one cannot explicitly identify the sequence of signals that
establishes distinguishability of the relevant two sets.

We will use the following claim in proving Lemma 2. For any h, x ∈ Rd, let ∥x∥h := h · x
be the “signed distance” of x in direction h, i.e., between x and the hyperplane {z : h·z = 0}.
Note that ∥ · ∥h is linear, so ∥x− x′∥h = ∥x∥h − ∥x′∥h.

Claim 2. If a standard density g is subexponential, then for any s with ∥s∥h > 0, and ε ∈ (0, 1),
there is s with ∥s− s∥h ≥ 1 such that:

1. sup{s′:∥s′−s∥h≥1/∥s∥h}
g(s′)
g(s)

< ε; and

2. sup{s′:0<∥s′−s∥h<1/∥s∥h}
g(s′)
g(s)

< 2.

Proof. Suppose not, to contradiction. Then there exists s with ∥s∥h > 0 and ε ∈ (0, 1) with
the following property: for every s with ∥s − s∥h ≥ 1, we can find s′ with ∥s′ − s∥h > 0

such that either (i) ∥s′ − s∥h ≥ 1/∥s∥h and g(s′)
g(s)

≥ ε, or (ii) 0 < ∥s′ − s∥h < 1/∥s∥h and
g(s′)
g(s)

≥ 2. For an arbitrary choice of s′ given s, we define ks := ∥s′ − s∥h. That means, for
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each s with ∥s− s∥h ≥ 1, we have ks > 0 and a signal s′ with ∥s′ − s∥h = ks such that either
(i) g(s′)

g(s)
≥ ε ≥ εks∥s∥h (because ks∥s∥h ≥ 1), or (ii) g(s′)

g(s)
≥ 2 > εks∥s∥h (because ε < 1).

We construct a sequence of signals (si)
∞
i=1. First, take any s1 such that ∥s1 − s∥h = 1.

Then, for all i > 1, take any si given si−1 as explained in the previous paragraph. Note that
for all i, ∥si − si−1∥h = ksi−1

, so ∥si∥h = (∥s∥h + 1) +
∑i−1

j=1 ksj .

First, suppose that
∑∞

i=1 ksi = ∞, so that limi→∞ ∥si∥h = ∞. It holds that for all si,
g(si)
g(s)

≥ g(s1)
g(s)

ε(ksi−1+···+ks1 )∥s∥h = g(s1)
g(s)

ε(∥si∥h−∥s∥h−1)∥s∥h , which in turn implies that

(∥si∥h − ∥s∥h − 1)∥s∥h log(ε) + log(g(s1)) ≤ log(g(si)). (4)

However, since g is subexponential, and ∥si∥h ≤ ∥si∥∥h∥, there is p > 1 such that for all
large enough i,

log(g(si)) < −
(
∥si∥h
∥h∥

)p

. (5)

The left-hand side of inequality (4) is linear in ∥si∥h while the right-hand side of inequality
(5) has exponent p > 1, so for large enough i these inequalities are in contradiction.

Next, suppose instead limi→∞ ∥si∥h < ∞. Then there is N such that for all i ≥ N , we
have ksi < 1/∥s∥h and thus g(si+1)

g(si)
≥ 2. It follows that limi→∞

g(si)
g(sN )

≥ limi→∞ 2i−N = ∞. This
contradicts the boundedness of g (being a density, g is bounded because it is uniformly
continuous). Q.E.D.

Proof of Lemma 2. Without loss, we only prove that {ω : h ·ω > c} is distinguishable from
{ω : h · ω < c}.

We use Claim 2 iteratively to construct a signal sequence (s∗i )
∞
i=1. Choose any s∗1 with

∥s∗1∥h > 0, and for i > 1, choose any s∗i such that ∥s∗i − s∗i−1∥h ≥ 1 that satisfies (i)
sup{s′:∥s′−s∗i ∥h≥1/∥s∗i−1∥h}

g(s′)
g(s∗i )

< 1
i−1

and (ii) sup{s′:0<∥s′−s∗i ∥h<1/∥s∗i−1∥h}
g(s′)
g(s∗i )

< 2. This construc-
tion is well-defined by Claim 2, with limi→∞ ∥s∗i ∥h = ∞.

As noted after Definition 1, it is sufficient to prove that any ω ∈ {ω : h · ω > c} is
distinguishable from {ω : h · ω < c}.30 So take any such ω and µ with µ(ω) > 0. Define
si := s∗i + ω. It follows that for all i,

∥ω − ω∥h < 0 =⇒ f(si|ω)
f(si|ω)

=
g(si − ω)

g(si − ω)
=

g(s∗i + (ω − ω))

g(s∗i )
< 2, (6)

30 We note that this uses the assumption of countable states.
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and
∥ω − ω∥h ≤ − 1

∥s∗i−1∥h
=⇒ f(si|ω)

f(si|ω)
=

g(s∗i + (ω − ω))

g(s∗i )
<

1

i− 1
, (7)

and thus,

µ({ω : h · ω < c}|si)
µ(ω|si)

≤
∑

∥ω−ω∥h<0 µ(ω)f(si|ω)
µ(ω)f(si|ω)

<
1

i− 1

∑
∥ω−ω∥h≤−1/∥s∗i−1∥h

µ(ω)

µ(ω)
+ 2

∑
−1/∥s∗i−1∥h<∥ω−ω∥h<0 µ(ω)

µ(ω)
.

(8)

The last expression can be taken arbitrarily small because ∥s∗i−1∥h → ∞ as i → ∞.

It remains only to show that the above argument holds for a positive measure of signals
rather than just a single si. Since g is uniformly continuous, there is a neighborhood of si,
say Si, over which (6) and (7) hold with slightly relaxed bounds; for instance, the bounds
can be relaxed to 4 and 2/(i− 1), respectively. This establishes the analog of inequality (8)
for all signals in Si with the relaxed bounds. Since we have assumed g(·) > 0, each Si has
positive measure, so we conclude ω is distinguishable from {ω : h · ω < c}. Q.E.D.

C. Other Material

Proof of Lemma 1. As noted before the lemma, Ω′ is distinguishable from Ω′′ if and only if
each ω′ ∈ Ω′ is distinguishable from Ω′′. So fix any ω′ ∈ Ω′.

We first prove that if the lemma’s condition holds, then ω′ is distinguishable from Ω′′.
Take any probability measure µ ∈ ∆({ω′}∪Ω′′) such that µ(ω′) > 0. By assumption, for any
ε > 0 there exists a positive-probability set of signals S ′ such that f(s|ω′′)

f(s|ω′)
< ε,∀ω′′ ∈ Ω′′,∀s ∈

S ′. It follows that for all s ∈ S ′,

µ(ω′|s) = f(s|ω′)µ(ω′)∑
ω̃∈{ω′}∪Ω′′ f(s|ω̃)µ(ω̃)

=
µ(ω′)

µ(ω′) +
∑

ω̃∈Ω′′
f(s|ω̃)
f(s|ω′)

µ(ω̃)
>

µ(ω′)

µ(ω′) + ε
.

Since for any ε > 0 we can find a positive-probability set of signals S ′ satisfying the above
inequality, we conclude that for any ε > 0, Prµ(s : µs(Ω

′) > 1− ε) > 0.

We next prove that if ω′ is distinguishable from Ω′′, and Ω′′ is finite, then the lemma’s
condition holds. Consider any µ uniformly distributed over {ω′} ∪ Ω′′. The distinguisha-
bility of ω′ from Ω′′ implies that for every ε > 0 there is a positive-probability set of signals
S ′ such that ∀s ∈ S ′ we have

∑
ω̃∈Ω′′ f(s|ω̃)
f(s|ω′)

< ε, and so f(s|ω̃)
f(s|ω′)

< ε for every ω̃ ∈ Ω′′. Q.E.D.

37



Remark 5. Lobel and Sadler’s (2015) definition of diffusion utility is tailored to their binary-
binary model. In general, we can define it as the highest utility an agent can obtain from
any Bayes-plausible distribution of beliefs that is supported on the set of feasible poste-
riors (i.e., those available under the given information structure and the prior); call the
corresponding signal structure the expert signal structure.

Let us now argue that diffusion utility is lower than cascade utility. Notice that diffu-
sion utility must be lower than first drawing a posterior from an arbitrary Bayes-plausible
distribution of stationary beliefs and then drawing a signal from the expert signal structure,
because this “combined” signal structure is Blackwell more informative than just the expert
signal structure. But in the combined structure, the expert signal has no value by definition
of stationary beliefs, and so the combined signal structure provides a utility equal to that
from the (arbitrary Bayes-plausible) distribution of stationary belief distributions.

Diffusion utility and cascade utility coincide with two states and two actions, as noted
by Lobel and Sadler’s (2015). But adding even one action can break this coincidence, e.g.,
if the third action is a “safe” action—one that is optimal only for some interval of interior
beliefs—that shrinks the set of stationary beliefs. For a starker example, recall Example 1
with Ω = {0, 1}, A = [0, 1], and u(a, ω) = −(a − ω)2. Any nontrivial information struc-
ture leads to learning, with the stationary beliefs being just 0 and 1. So the cascade utility
is the full-information utility of 0, whereas diffusion utility will be strictly lower absent
unbounded beliefs.
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Supplementary Appendices

SA.1. Belief Convergence

This section elaborates on Remark 3. Our discussion in this section focuses on deter-
ministic networks.

One may expect the social belief to be eventually close to the stationary set with high
probability: after all, when an agent’s social belief is not close to the stationary set, her
private information gives her a welfare improvement bounded away from zero; expand-
ing observations should propagate these improvements, which implies (since utility is
bounded) that they must eventually vanish. However, the following is a counterexam-
ple.31

Example SA.1. Consider binary states with a uniform prior, binary signals with symmetric
precision (less than 1), and binary actions with simple utility. The network is as follows:
agents 1 and 2 observe no one; for odd n ≥ 3, agent n observes agent n − 2; for even
n > 3, agent n observes agent n − 1 and agent 2. So there is expanding observations.
In this network, the odd agents form an immediate-predecessor network and there is an
equilibrium where a cascade along this subsequence starts from agent 3.

Now consider even agents. Consider the positive-probability event in which agents 1
and 2 take different actions. An even agent n > 3 observes agents n−1 and 2, which, given
the equilibrium behavior of odd agents, is equivalent to observing agents 1 and 2. So the
social belief of every even agent n > 3 equals the prior, which is bounded away from the
stationary set.32 □

The “problem” in Example SA.1 is that even though each of the even agents (n > 3)
is getting a welfare improvement bounded away from zero, these improvements are not
passed on to any future agents, and all future even agents continue to have social beliefs
bounded away from the stationary set. In other words, expanding observations is not

31 Absent expanding observations, there are trivial counterexamples using the empty network.
32 The example illustrates that with positive probability social beliefs may not eventually converge to the

set of stationary beliefs. But the point also holds for posterior beliefs, not just social beliefs. For simplicity,
consider the same example but with an additional signal that is uninformative. Call the two actions a and b.
Consider an equilibrium in which the first agent plays a upon receiving the uninformative signal, while the
second agent plays b upon receiving the uninformative signal. Then, in the event that the first agent plays b
and the second agent plays a, the path of social beliefs for agents n ≥ 3 is identical to the example above: odd
agents are in a cascade, while even agents’ social belief is just the prior. With positive probability, an even
agent will now receive an uninformative signal, whereafter her posterior belief lies outside the stationary set.
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enough to validate the intuition described before the example. The following proposition
identifies a reasonable condition on the network that is sufficient.

Proposition SA.1. Assume there exist finitely many subsequences of agents {nk,j}
Nj

k=1 (j = 1, . . . , J <

∞, 1 ≤ Nj ≤ ∞) such that agent nk,j observes nk−1,j , and every agent in society is in at least one
of the subsequences. Then, for all ε > 0, limn→∞ φn(µn ∈ Sε) = 1.

The proposition’s assumption encompasses canonical examples like the complete net-
work and the k-immediate-predecessor networks (i.e., every agent observes the last k

agents) for any k ≥ 1. But it rules out any network in which infinite number of agents
are not observed by any of their successors, which explains why it does not apply to Ex-
ample SA.1.

Proof of Proposition SA.1. Along any subsequence j, u(φnk,j
) ≥ u(φnk−1,j

) + I(φnk−1,j
) by

the improvement principle, given that nk−1,j is observable to nk,j . It follows that
∑Nj

k=1 I(φnk,j
) ≤

2u. Hence, society’s total improvement is bounded:
∑

n I(φn) ≤ 2uJ .

Now fix any ε, δ > 0. Consider Vδ/2 defined in Lemma 3. The lemma established that
Vδ/2 is compact and φ(µ /∈ Vδ/2) < δ/2, ∀φ ∈ ΦBP . Since Sε is open, K := (Sε)c ∩ Vδ/2 is
compact. Next we argue P(µn ∈ K i.o.) = 0. Suppose, to contradiction, P(µn ∈ K i.o.) > 0.
Then

∑
n P(µn ∈ K) = ∞ by the Borel-Cantelli lemma. Since K is compact and I(·) > 0 on

K, I(·) achieves its minimum in K at some µ ∈ K with I(µ) > 0. So the total improvement
is
∑

n I(φn) ≥ I(µ)
∑

n P(µn ∈ K) = ∞, which contradicts
∑

n I(φn) ≤ 2uJ .

Observe that P(µn ∈ K i.o.) = 0 implies φn(µn ∈ K) < δ/2 for all large n. Therefore,
for all large n, φn(µn ∈ (Sε)c) ≤ φn(µn ∈ K) + φn(µn /∈ Vδ/2) < δ. We conclude that for all
ε > 0, limn→∞ φn(µn ∈ Sε) = 1. Q.E.D.

Remark 6. If ∆Ω is compact (e.g., Ω itself is compact), we can replace Vδ/2 in the proof with
∆Ω, so that K = (Sε)c. Then the argument in the proof’s second paragraph shows that
P(µn ∈ (Sε)c i.o.) = 0, i.e., the social belief converges to the stationary set almost surely
rather than only in probability.

SA.2. ε-Excludability

This section elaborates on Remark 4. Say that for any ε ∈ (0, 1/2) a set of states Ω′ is ε-
distinguishable from Ω′′ if for any µ ∈ ∆(Ω′ ∪Ω′′) with µ(Ω′) > ε, there is a positive-measure
set of signals S ′ such that µ(Ω′|s) > 1−ε for all s ∈ S ′. A utility function and an information
structure jointly satisfy ε-excludability if Ωa1,a2 and Ωa2,a1 are ε-distinguishable from each
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other, for any pair of actions a1, a2. Note that ε-excludability implies ε′-excludability for all
ε′ > ε, and excludability is equivalent to ε-excludability for all ε > 0.

Proposition SA.2. Let Ω be finite. For all ε ∈ (0, 1/2), ε-excludability implies that in any equilib-
rium σ, lim infn Eσ,µ0 [un] ≥ u∗(µ0)− 2u ε

1−ε
|Ω|.

Before proving Proposition SA.2, we give an example illustrating the result’s use.

Example SA.2. There are three states, ω ∈ {1, 2, 3}, SCD preferences, and Laplace informa-
tion:

f(s|ω) = 1

2b
exp

(
−|s− ω|

b

)
,

where b > 0 is a scale parameter; a smaller b corresponds to more precise information.

It is straightforward to verify that no two states can be distinguished from each other.33

Therefore, not every stationary belief has adequate knowledge (so long as preferences are
nontrivial), and by Theorem 1 there is inadequate learning.

Nonetheless, we claim that ε-excludability holds for any ε such that ε > 1
1+exp( 1

2b
)
. To see

this, observe that since the information structure has MLRP and preferences satisfy SCD,
we can focus on ε-distinguishing state 3 from 2 (or, equally, 2 from 1).34 When ε > 1

1+exp( 1
2b

)
,

we have ε
1−ε

exp(1/b) > 1−ε
ε

, so there exist signals that move the prior (0, 1 − ε, ε) to a
posterior of at least 1− ε on state 3, which implies ε-distinguishability of state 3 from 2.

Proposition SA.2 implies that in any equilibrium, lim inf Eσ,µ0 [un] ≥ u∗(µ0)−6u exp(− 1
2b
).

This quantitative welfare bound yields, in particular, convergence to the full-information
utility u∗(µ0) as b → 0. □

Proof of Proposition SA.2. Take any stationary belief µ, and let a be an optimal action at
belief µ. For each state ω, take any aω ∈ c(ω), and consider µω(·) := µ(·|{ω} ∪ Ωa,aω). If
µω(ω) ≤ ε, then µ(ω) ≤ ε, so (u(aω, ω)− u(a, ω))µ(ω) ≤ 2uε.

Consider the other case of µω(ω) > ε. For any s ∈ S, because u(a, ω′)− u(aω, ω
′) ≤ 0 for

each ω′ /∈ Ωa,aω , and µ is stationary,∑
ω′∈{ω}∪Ωa,aω

(u(a, ω′)− u(aω, ω
′))µ(ω′|s) ≥

∑
ω′∈Ω

(u(a, ω′)− u(aω, ω
′))µ(ω′|s) ≥ 0.

33 For any pair of states ω ̸= ω′, and any signal s, the likelihood ratio f(s|ω)/f(s|ω′) ≤ exp(2/b).
34 By MLRP, only arbitrarily large signals can distinguish a state from a lower state, and for large s the

likelihood ratio f(s|3)/f(s|2) < f(s|3)/f(s|1), so considering adjacent states is sufficient for ε-excludability.
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Then,

(u(aω, ω)− u(a, ω))µω(ω|s) ≤
∑

ω′∈Ωa,aω

(u(a, ω′)− u(aω, ω
′))µω(ω

′|s)

≤ 2u

 ∑
ω′∈Ωa,aω

µω(ω
′|s)

 = 2u(1− µω(ω|s)).

By ε-excludability, there exists a positive-measure set of signals S ′ such that, for any s ∈ S ′,
µω(ω|s) > 1− ε, which implies that u(aω, ω)− u(a, ω) ≤ 2u ε

1−ε
.

In either case (µω(ω) ≤ ε or µω(ω) > ε), we have (u(aω, ω)− u(a, ω))µ(ω) ≤ 2u ε
1−ε

. Since
Ω is finite, ∑

ω∈Ω

(u(aω, ω)− u(a, ω))µ(ω) ≤ 2u
ε

1− ε
|Ω|.

Namely, the utility gap u∗(µ)− u(µ) ≤ 2u ε
1−ε

|Ω|, for any stationary belief µ.

Finally, for any φ ∈ ΦS ,

u∗(µ0)− u(φ) = Eφ[u
∗(µ)− u(µ)] ≤ 2u

ε

1− ε
|Ω|.

By taking infimum of u(φ) across φ ∈ ΦS , we obtain u∗(µ0) ≥ u∗(µ0)− 2u ε
1−ε

|Ω|, and subse-
quently by invoking Theorem 3, we conclude that in any equilibrium σ, lim infn Eσ,µ0 [un] ≥
u∗(µ0)− 2u ε

1−ε
|Ω|. Q.E.D.

SA.3. Details on Example 2

For Example 2, we show here how to construct a full-support prior such that the pos-
terior probability is uniformly bounded away from 1 across signals and states. Take any
prior µ such that for some c > 0, min

{
µ(n−1)
µ(n)

, µ(n+1)
µ(n)

}
> c for all n (e.g., a double-sided ge-

ometric distribution). Denoting the posterior after signal s by µs, the posterior likelihood
ratio satisfies

µs({n− 1, n+ 1})
µs(n)

=
f(s|n− 1)

f(s|n)
µ(n− 1)

µ(n)
+
f(s|n+ 1)

f(s|n)
µ(n+ 1)

µ(n)
> c

(
f(s|n− 1)

f(s|n)
+

f(s|n+ 1)

f(s|n)

)
.

As the last expression is the sum of a strictly positive decreasing function of s and a strictly
positive increasing function of s, it is bounded away from 0 in s. The bound is independent
of n because normal information is a location-shift family of distributions. Therefore, the
posterior likelihood ratio is uniformly bounded away from 0, and hence, the posterior µs(n)

is uniformly bounded away from 1.
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SA.4. Learning at a Fixed Prior

For tractability, our discussion in this section assumes a complete network.

The issue. The definition of adequate learning we adopted in Section 2 requires that
there is learning for all priors. In general, one may be interested in whether there is ad-
equate learning at some given (full-support) prior.35 Of course, our sufficient conditions—
e.g., Theorem 2’s excludability—remain sufficient, but fixing a prior raises the question of
whether the conditions are necessary. With only two states, the distinction between some
prior and all priors is immaterial: if adequate learning fails at any prior, then the only
adequate-knowledge beliefs are those with certainty on some state, and there is an open
ball of stationary beliefs around certainty on one of the states; hence, given any full-support
prior, there cannot be a belief path that converges to certainty on that state, implying a fail-
ure of adequate learning at all full-support priors.

However, with multiple states, a failure of adequate learning at some prior does not im-
ply an open ball of stationary beliefs around any adequate-knowledge belief. To illustrate,
consider Figure SA.1. Action a∗ is optimal at states 2 and 3 while a is optimal at state 1. Ad-
equate learning fails when the prior is µ because µ, which has support {1, 2}, is stationary
but has inadequate knowledge.36 Yet there is no open ball of stationary beliefs: no full-
support belief is stationary because the optimal actions are distinct at the extreme states 1

and 3, and the extreme states are distinguishable from their complements. This raises the
possibility that there is learning at some—or even all—full-support priors, with on-path
sequences of beliefs (which necessarily have full support at every finite time) converging
almost surely to adequate-knowledge beliefs without ever hitting any stationary belief (all
of which have non-full-support).

Some partial analysis. While we are unable to characterize learning at a fixed prior in
general, we provide some partial analysis below that we hope will be useful for future
research. We focus on obtaining an analog of Theorem 2 for a fixed prior.

First, we provide a lemma (Lemma SA.1) that connects the existence of certain on-path
histories to distinguishability. Second, we conjecture a result (Conjecture SA.1) and show
in Proposition SA.3 that, if the result is true, it combines with the lemma to deliver a fixed-

35 To be complete: there is adequate learning at prior µ0 if for every equilibrium strategy profile σ, Eσ,µ0 [un] →
u∗(µ0). Adequate (or inadequate) learning at a prior for a choice set is defined analogously.

36 In this example, preferences have SCD. But, consistent with Proposition 1, DUB is violated because state
2 is not distinguishable from state 1 or state 3.
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Figure SA.1: Preference regions among the actions a and a∗ shaded in blues. Under belief µ′,
posteriors are given by the black curve, while under belief µ, posteriors are given by the red line.

prior analog of Theorem 2. Third, we show that the conjecture is true in a class of problems
(Claim SA.1).

Lemma SA.1. Take an aribtrary ω∗ ∈ Ω and set of states Ω′ ⊆ Ω\{ω∗}. State ω∗ is distinguishable
from Ω′ if there exist an equilibrium under a full-support prior and a history of actions h∞ such that
P(h∞|ω∗) = 0, and P(h∞|ω) is bounded away from 0 across ω ∈ Ω′.

The lemma ties the asymptotic probabilities of on-path histories to the information
structure of an individual agent. The formal proof of the lemma is provided at the end
of this appendix, but to see the intuition, suppose that the relevant h∞ in the hypothesis of
the lemma is some eventual herd on some action a ∈ A, i.e., h∞ = {hm, a, a, a, , ...} with hm

some finite subhistory. If h∞ has 0 probability in state ω∗, it must be because in an infinite
number of periods, agents have positive probability of obtaining signals which overturn
the herd on a, i.e., result in them taking some other action than a. However, the probability
of this history is positive for states in Ω′. This means that the probability of signals that
overturn the herd must vanish over time at a fast enough rate in ω∗, but either not vanish
or vanish at a slow enough rate in each ω ∈ Ω′. In particular, there must exist overturning
signals whose probability gets arbitrarily large in state ω∗ relative to those in every ω ∈ Ω′,
which means ω∗ is distinguishable from Ω′.

Conjecture SA.1. Take any a1, a2 ∈ A, any full-support prior, and any equilibrium. If there is
adequate learning at that prior, choice set {a1, a2}, and equilibrium,37 then

∃h∞ and ε > 0 : P(h∞|ω) > ε,∀ω ∈ Ωa1,a2 . (SA.1)

The conjecture says that given any full-support prior, any binary choice set {a1, a2}, and
any equilibrium in which there is adequate learning, we can find a single history that oc-

37 That is, under the given prior µ0 and equilibrium σ, Eσ,µ0
[un] → u∗(µ0).
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curs with probability bounded away from 0 in all states in which a1 is strictly preferred
(and analogously, a different history for the states in which a2 is strictly preferred). To
appreciate the conjecture, let us focus for discussion on the case of finite states, nontrivial
information, and nontrivial preferences. First note that if Ωa1,a2 is a singleton—as is the
case with binary states—then it is straightforward that there is such a history, as there is
a herd almost surely and every herd begins at some finite time. When Ωa1,a2 is not a sin-
gleton, given adequate learning, the same logic shows that for each state in Ωa1,a2 , there
is a history that has positive probability in that state, namely one with a herd on a1. But
Conjecture SA.1 demands more: a single history that has positive probability in all states in
Ωa1,a2 . Nonetheless, the conjecture seems intuitive: (up to tie-breaking issues) it would be
surprising for every infinite history that has positive probability in some ω ∈ Ωa1,a2 to have
zero probability in some other ω′ ∈ Ωa1,a2 , given that agents’ have the same ordinal prefer-
ences over the binary actions in both ω and ω′. For instance, consider a fully-informative
information structure and any nontrivial preferences. Clearly, given any choice set {a1, a2},
there are only two possible histories: either a1 in every period or a2 in every period. The
former has probability 1 in each ω ∈ Ωa1,a2 , and the latter has probability 1 in each ω ∈ Ωa2,a1

and so Conjecture SA.1 holds. Even though individuals’ private information distinguishes
states perfectly, the public history does not.

Proposition SA.3. If Conjecture SA.1 is true, then not only does excludability imply adequate
learning at every prior for every choice set, but moreover, if excludability fails, then there exists a
choice set with inadequate learning at every full-support prior.

Proof. That excludability implies adequate learning at every prior for every choice set is
implied by Theorem 2, with no need to invoke Conjecture SA.1. So we only prove the
second portion of the proposition, doing so by contraposition.

To that end, assume that for every choice set, there is some full-support prior at which
there is adequate learning in some equilibrium. For every binary choice set {a1, a2}, Con-
jecture SA.1 implies the existence of a history h∞ satisfying (SA.1) at the full-support prior
and equilibrium at which there is adequate learning. Since there is adequate learning,
eventually all agents must be taking a1 in h∞, which implies that P(h∞|ω∗) = 0 for each
ω∗ ∈ Ωa2,a1 . Then, taking Ω′ = Ωa1,a2 in Lemma SA.1 yields that ω∗ is distinguishable from
Ωa1,a2 . Since a1, a2 and ω∗ ∈ Ωa1,a2 are arbitrary, there is excludability. Q.E.D.

We have not been able to establish Conjecture SA.1 in general. However, we are able to
establish it when preferences satisfy SCD and the information structure satisfies the strict
MLRP (assuming, only for convenience, that the state space is discrete):
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Claim SA.1. Assume Ω ⊆ Z. If preferences satisfy SCD and the information structure satisfies the
strict MLRP, then Conjecture SA.1 is true.

The proof is at the end of this appendix. Combining Claim SA.1 and Proposition SA.3,
we see that under a complete network, the signal structure and preferences in Figure SA.1
entail inadequate learning at every full-support prior, such as µ′ in the figure. Note that
the figure’s signal structure satisfies strict MLRP because the black curve in Figure SA.1 is
concave vis-à-vis the 1–3 edge and approaches the 1 and 3 vertices.

Omitted Proofs

Proof of Lemma SA.1. Suppose not. Then there exist a belief µ ∈ ∆(Ω′ ∪ {ω∗}) with µ(ω∗) >

0 and a small ε > 0 such that for almost every signal s, the posterior µ(ω∗|s) ≤ 1 − ε. By
taking the conditional distribution of µ on Ω′, call it µ̃, and z := εµ(ω∗)

1−µ(ω∗)
∈ (0, 1), we obtain

for almost every s, ∫
Ω′
f(s|ω) dµ̃(ω) ≥ zf(s|ω∗). (SA.2)

Suppose there exist an equilibrium σ under a full support prior and history h∞ such
that P(h∞|ω∗) = 0, and P(h∞|ω) is bounded away from 0 across ω ∈ Ω′. Let an be the action
taken by agent n along h∞ and A−n := A\{an}. Let P(an|hn, ω) :=

∫
S
σ(an|s, hn)f(s|ω) ds be

the probability that agent n plays action an when the state is ω and the sub-history is hn. It
holds that:

∞∑
n=1

log(1− zP(A−n|hn, ω∗)) ≥
∞∑
n=1

log

(
1−

∫
Ω′
P(A−n|hn, ω) dµ̃(ω)

)
(using (SA.2))

=
∞∑
n=1

log

(∫
Ω′
P(an|hn, ω) dµ̃(ω)

)

≥
∞∑
n=1

∫
Ω′
log(P(an|hn, ω)) dµ̃(ω) (by Jensen’s inequality)

=

∫
Ω′

∞∑
n=1

log(P(an|hn, ω)) dµ̃(ω) (by Tonelli’s theorem)

=

∫
Ω′
log

(
∞∏
n=1

P(an|hn, ω)

)
dµ̃(ω)

> −∞ (as logP(h∞|ω) is bounded across ω ∈ Ω′). (SA.3)

Below we will invoke the fact that for arbitrary sequences (Sn) and (Tn) and constant
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c > 0, if limn→∞
Sn

Tn
= c > 0 and

∑
n Sn < ∞, then

∑
n Tn < ∞.38 Let Sn = − log(1 −

zP(A−n|hn, ω∗)) and Tn = − log(1−P(A−n|hn, ω∗)). Note that limn→∞
Sn

Tn
= z ∈ (0, 1) because

limx→0
log(1−zx)
log(1−x)

= z and (SA.3) implies limn→∞ P(A−n|hn, ω∗) = 0. The aforementioned
mathematical fact implies that

∞∑
n=1

log(1− P(A−n|hn, ω∗)) > −∞.

As P(an|hn, ω∗) = 1 − P(A−n|hn, ω∗), it further follows that
∏∞

n=1 P(an|hn, ω∗) > 0, which
contradicts P(h∞|ω∗) = 0. Q.E.D.

Proof of Claim SA.1. Take any information structure f with strict MLRP, and a utility
function u that has SCD. Then, take an equilibrium σ under a full support prior µ and
a binary choice set {a1, a2}. Since u has SCD, Ωa1,a2 and Ωa2,a1 are either an upper and lower
set or the other way around. We consider the case that a2 is preferred in higher states and
a1 is preferred in lower states. We omit an analogous proof for the other case.

We observe that P(a1|hn, ω) :=
∫
S
σ(a1|hn, s)f(s|ω) ds, the probability that agent n plays

action a1 given any finite history hn, decreases in ω. First, the probability σ(a1|hn, s) de-
creases in s. The social belief µ(·|hn) has full support, so strict MLRP of the information
structure implies that ∀s < s′, the posterior µ(·|hn, s′) strictly monotone likelihood-ratio
dominates µ(·|hn, s). By Theorem 2 of Athey (2002),

D(s) :=
∑
ω

(u(a2, ω)− u(a1, ω))µ(ω|hn, s)

is strictly single crossing in s, i.e., D(s) ≥ 0 =⇒ D(s′) > 0, ∀s′ > s. Hence, σ(a1|hn, s) is
decreasing in s. Since f satisfies strict MLRP, P(a1|hn, ω) is decreasing in ω.

Next, suppose there is adequate learning. So for each state ω ∈ Ωa1,a2 , there is an infinite
history with a herd on a1, h∞ = (. . . , a1, a1, . . .) that occurs with positive probability in ω.
In particular, if we let ω̃ = maxΩa1,a2 , then for any finite sub-history hn of h∞,

∀ω ≤ ω̃ : P(a1|hn, ω) ≥ P(a1|hn, ω̃) > 0,

38 For any c′ < c there exists N such that for all n > N , Sn/Tn ≥ c′, or Tn ≤ Sn/c
′. So

∑
n Tn ≤

∑
n≤N Tn +∑

n>N Sn/c
′ < ∞.
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and since h∞ has positive probability at ω̃ ∈ Ωa1,a2 , it follows that

∀ω ≤ ω̃ :
∞∏
n=1

P(a1|hn, ω) ≥
∞∏
n=1

P(a1|hn, ω̃) > 0. (SA.4)

This means P(h∞|ω) is uniformly bounded away from 0 for {ω : ω ≤ ω̃}. Since Ωa1,a2 ⊆ {ω :

ω ≤ ω̃}, this establishes Conjecture SA.1. Q.E.D.
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