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SA.1. Proof of Proposition 1

We prove the result more generally for contracts with lockouts. Fix a contract C = (�,W0, b, l).
The result is trivial if � = ;, so assume � 6= ;. Let T = max�. For any period t 2 � with
t < T , define the smallest successor period in � as �(t) = min{t0 : t0 > t, t0 2 �}; moreover, let
�(0) = min�.

Given any action profile for the agent, the agent’s time-zero expected discounted payoff
when his type is ✓ 2 {L,H} and the principal’s time-zero expected discounted payoff only
depend upon a contract’s induced vector of discounted transfers, say (⌧t)t2� when success is ob-
tained in period t and on the discounted transfer when there is no success. Hence, it suffices
to construct a penalty contract, bC, and bonus contract, eC, that induce the same such vector of
transfers as C.

To this end, define the penalty contract bC = (�,cW0,bl) as follows:

(a) For any t such that t < T and t 2 �, blt = lt � bt + ��(t)�tb�(t).

(b) blT = lT � bT .

(c) cW0 = W0 + ��(0)b�(0).

Define the bonus contract eC = (�,fW0,eb) as follows:

(a) For any t 2 �, ebt = bt �
P

s�t,s2�
�s�tls.

(b) fW0 = W0 +
P

t2�
�tlt.

Consider first the discounted transfer induced by each of these three contracts if success is
not obtained. For C, it is W0 +

P

t2� �
tlt. For bC, it is

cW0 +

X

t2�

�tblt = W0 + ��(0)b�(0) +
X

t2�,t<T

�t
�

lt � bt + ��(t)�tb�(t)
�

+ �T (lT � bT ) = W0 +

X

t2�

�tlt,
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where the first equality follows from the definition of bC and the second from algebraic sim-
plification. For eC, since there are no penalties, the corresponding discounted transfer is just
fW0 = W0 +

P

t2� �
tlt. Hence, all three contracts induce the same transfer in the event of no

success.

Next, for any s 2 �, consider a success obtained in period s. The discounted transfer in this
event in C is W0 +

P

t2�,t<s �
tlt + �sbs. For bC, since there are no bonuses, it is

cW0 +

X

t2�,t<s

�tblt = W0 + ��(0)b�(0) +
X

t2�,t<s

�t
�

lt � bt + ��(t)�tb�(t)
�

= W0 +

X

t2�,t<s

�tlt + �sbs,

where again the first equality uses the definition of bC and the second follows from simplification.
For eC, since there are no penalties, the corresponding discounted transfer is

fW0 + �sebs = W0 +

X

t2�

�tlt + �s

 

bs �
X

t�s,t2�

�t�sls

!

= W0 +

X

t2�,t<s

�tlt + �sbs,

where again the first equality is by definition of eC and the second from simplification. Hence,
all three contracts induce the same transfer in the event of success in any period s 2 �.

SA.2. Proof of Proposition 2

We use a monotone comparative statics argument. Recall expression (B.20), which was the por-
tion of the principal’s objective that involves a stopping time for the low type, T :

V (T, �0, µ0, c, �,�
L,�H

) := (1� µ0)

"

�0

T
X

t=1

�t
�

1� �L
�t�1 �

�L
� c
�

� (1� �0)

T
X

t=1

�tc

#

�µ0�0

8

>

>

<

>

>

:

T
P

t=1
�tl

L

t (T )
h

�

1� �H
�t
�

�

1� �L
�t
i

�

T
P

t=1
�tc
h

�

1� �H
�t�1

�

�

1� �L
�t�1

i

9

>

>

=

>

>

;

,

where l
L

t (T ) is given by (6) in Theorem 3. The second-best stopping time, tL, is the T that maxi-
mizes V (T, ·).1 To establish the comparative statics of tL with respect to the parameters, we show
that V (T, ·) has increasing or decreasing differences in T and the relevant parameter.

Substituting l
L

t (T ) from (6) into V (·) above yields

V (T, �0, µ0, c, �,�
L,�H

) = (1� µ0)

"

�0

T
X

t=1

�t
�

1� �L
�t�1 �

�L
� c
�

� (1� �0)

T
X

t=1

�tc

#

1 While the maximizer is generically unique, recall that if multiple maximizers exist we select the largest one.
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� µ0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�c
T�1
P

t=1
�t (1� �)

�0(1��L
)

t�1
+1��0

�L(1��L)t�1

h

�

1� �H
�t
�

�

1� �L
�t
i

�c�T
�0(1��L

)

T�1
+1��0

�L(1��L)T
L�1

h

�

1� �H
�T

�

�

1� �L
�T
i

��0

T
P

t=1
�tc
h

�

1� �H
�t�1

�

�

1� �L
�t�1

i

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.

(SA.1)

After some algebraic manipulation, we obtain

V (T + 1, �0, µ0, c, �,�
L,�H

)� V (T, �0, µ0, c, �,�
L,�H

)

= �T+1

8

<

:

(1� µ0)

h

�0

�

1� �L
�T �

�L
� c
�

� (1� �0)c
i

�µ0c
�0(1��L

)

T
+1��0

(1��L)T�L

�

1� �H
�T �

�H
� �L

�

9

=

;

. (SA.2)

(SA.2) implies that V (T, �0, µ0, c, �,�
L,�H

) has increasing differences in (T, �0), because

@

@�0
[V (T + 1, �0, ·)� V (T, �0, ·)] = �T+1

8

<

:

(1� µ0)

h

�

1� �L
�T �

�L
� c
�

+ c
i

+µ0c
1�
(

1��L
)

T

(1��L)T�L

�

1� �H
�T �

�H
� �L

�

9

=

;

> 0.

It thus follows that tL is increasing in �0. Similarly, (SA.2) also implies

@

@c
[V (T + 1, c, ·)� V (T, c, ·)] = �T+1

8

<

:

� (1� µ0)

h

�0

�

1� �L
�T

+ (1� �0)

i

�µ0
�0(1��L

)

T
+1��0

(1��L)T�L

�

1� �H
�T �

�H
� �L

�

9

=

;

< 0,

and hence t
L is decreasing in c.

To obtain the comparative static of tL in µ0, we compute

@

@µ0
[V (T + 1, µ0, ·)� V (T, µ0, ·)] = �T+1

8

<

:

�

h

�0

�

1� �L
�T �

�L
� c
�

� (1� �0)c
i

�c
�0(1��L

)

T
+1��0

(1��L)T�L

�

1� �H
�T �

�H
� �L

�

9

=

;

. (SA.3)

Recall that the first-best stopping time tL is such that �0(1��L
)

tL�1

�0(1��L)t
L�1+1��0

�L
� c, which is equivalent

to �0

�

1� �L
�tL�1 �

�L
� c
�

� (1� �0) c � 0. Thus, for T + 1  tL,

�0

�

1� �L
�T �

�L
� c
�

� (1� �0) c � 0. (SA.4)
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Combining (SA.3) and (SA.4) implies

@

@µ0
[V (T + 1, µ0, ·)� V (T, µ0, ·)]  ��T+1c

�0

�

1� �L
�T

+ 1� �0

(1� �L
)

T �L

�

1� �H
�T �

�H
� �L

�

< 0.

It follows that tL is decreasing in µ0.

We next consider the comparative statics of tL with respect to �L and �H . For �L, note that
since T + 1  tL and the first-best stopping time is increasing in ability starting at �L, the social
surplus from the low type (given by the expression in the first square brackets in (SA.1)) has
increasing differences in (T,�L

), and the low type’s expected marginal product given work up

to T + 1, �L

T+1�
L, is increasing in �L. Therefore, substituting �0(1��L

)

T
+1��0

(1��L)T�L
=

�0

�
L
T+1�

L
in (SA.2),

we obtain

@

@�L

⇥

V (T + 1,�L, ·)� V (T,�L, ·)
⇤

= �T+1

8

>

<

>

:

(1� µ0) �0

h

�

1� �L
�T

� T
�

1� �L
�T�1 �

�L
� c
�

i

+µ0c
�

1� �H
�T �0

�
L
T+1�

L

✓

1 +

�H��L

�
L
T+1�

L

@
⇣
�
L
T+1�

L
⌘

@�L

◆

9

>

=

>

;

> 0,

which implies that tL is increasing in �L.

That tL can increase or decrease in �H follows from the fact that (SA.2) yields

@

@�H

⇥

V (T + 1,�H , ·)� V (T,�H , ·)
⇤

=� �T+1µ0c
�0

�

1� �L
�T

+ 1� �0

(1� �L
)

T �L

h

�

1� �H
�T

� T
�

1� �H
�T�1 �

�H
� �L

�

i

,

whose sign can vary with parameters. Specifically, let (�0, µ0, c, �,�
L
) = (0.95, 0.1, 0.215, 0.8, 0.25),

which results in a first-best stopping time tL = 5. Consider three values of �H : �H
1 = 0.45,

�H
2 = 0.5, and �H

3 = 0.55. The corresponding first-best stopping times are tH1 = 6, tH2 = 5, and
tH3 = 5. One can verify that the low type’s second-best stopping time, tL, increases (from 3 to 4)
when �H increases from �H

1 to �H
2 while it decreases (from 4 to 0) when �H increases from �H

2 to
�H
3 .

Finally, consider the comparative statics of the distortion, tL � t
L. By (3), tL is independent

of µ0 and �H , while we have just shown that tL is decreasing in µ0 and can increase or decrease
in �H . Therefore, tL � t

L is increasing in µ0 and can increase or decrease in �H depending on
parameters. To see that tL � t

L can increase or decrease in �0 as well, take the set of parameters
considered in Figure 2, (µ0, c, �,�

L,�H
) = (0.3, 0.06, 0.5, 0.1, 0.12). The figure shows that given

these parameters, tL � t
L decreases (from 12 � 10 = 2 to 15 � 14 = 1) when �0 increases from

0.85 to 0.89. If instead we take these parameter values but change only µ0 to µ0 = 0.7, we find
that the same increase in �0 leads to an increase in tL � t

L (from 12� 1 = 11 to 15� 1 = 14). The
comparative static of tL � t

L with respect to c and �L can be shown by similar computations.
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SA.3. Step 6 of Proof of Theorem 5

We remind the reader that Steps 1–5 of the proof of Theorem 5 are in Appendix C of the paper.

By the previous steps in the proof, we restrict attention to onetime-penalty contracts for the
low type such that the low type works in all periods t 2 {1, . . . , TL

} and the high type has a most-
work optimal stopping strategy. For an arbitrary such contract CL, let ˆt(CL

) denote the high
type’s most-work optimal stopping time, i.e. ˆt(CL

) := max{t 2 {1, . . . , TL
} : bas = 1 for all s =

1, . . . , t, ba 2 ↵H
(CL

)}. We now show that given TL, there exists an optimal onetime-penalty
contract for the low type CL

= (TL,WL
0 , l

L
TL) where ˆt(CL

) is given by

THL
(TL

) := min

n

t 2 {1, . . . , TL
} : �

H

t+1�
H < �

L

TL�L and (1� �H
)

t
 (1� �L

)

TL
o

,

and lLTL is given by

l
L

TL(TL
) := min

(

�

c

�
L

TL�L
,�

c

�
H

THL(TL)�
H

)

.

When not essential, we suppress the dependence of ˆt(CL
) on CL. We proceed by proving

five claims.

Claim 1: Given any onetime-penalty contract CL
= (TL,WL

0 , l
L
TL), ��

H

t̂+1�
H lLTL < c.

Proof: Suppose to contradiction that ��
H

t̂+1�
H lLTL � c. Then type H is willing to work one

more period after having worked for ˆt periods, contradicting the definition of ˆt. k

Claim 2: Given an optimal onetime-penalty contract CL
= (TL,WL

0 , l
L
TL), (1 � �H

)

t̂
 (1 �

�L
)

TL .

Proof: Suppose to contradiction that given an optimal contract CL
= (TL,WL

0 , l
L
TL), type H’s

most-work optimal stopping time ˆt is such that (1 � �H
)

t̂ > (1 � �L
)

TL . Then for any strategy
ea 2 ↵H

(CL
) where type H works for a total of et periods, (1� �H

)

et > (1� �L
)

TL . Now note that
given CL and ea, type H’s information rent is

�0l
L
TL

h

(1� �H
)

et
� (1� �L

)

TL
i

� �0c
TL
P

t=1
eat



t�1
Q

s=1

�

1� eas�
H
�

�

�

1� �L
�t�1

�

+c
TL
P

t=1
(1� eat)

h

(1� �0) + �0

�

1� �L
�t�1

i

.

Consider a modification that reduces lLTL by " > 0. By Claim 1, for " small enough, this modifi-
cation does not affect incentives, and by (1��H

)

et > (1��L
)

TL , the modification strictly reduces
type H’s information rent. But then CL cannot be optimal. k

5



Claim 3: In any onetime-penalty contract CL
= (TL,WL

0 , l
L
TL), if 1 2 ↵L

(CL
) then

lLTL  min

(

�

c

�
L

TL�L
,�

c

�
H

t̂(CL)�
H

)

. (SA.5)

Conversely, given any onetime penalty contract CL
= (TL,WL

0 , l
L
TL), if lLTL  min

⇢

�

c

�
L
TL�L

,� c

�
H
t �H

�

for some t  TL, then ˆt(CL
) � t and 1 2 ↵L

(CL
).

Proof: For the first part of the claim, assume to contradiction that there is CL
= (TL,WL

0 , l
L
TL)

such that 1 2 ↵L
(CL

) but (SA.5) does not hold. Suppose first that � c

�
L
TL�L

 �

c

�
H
t̂ �H

. Then type

L is not willing to work for TL periods; having worked for TL
� 1 periods, type L’s incentive

compatibility constraint for effort in period TL is ��
L

TL�LlLTL � c, which is not satisfied with
lLTL > �

c

�
L
TL�L

. Suppose next that � c

�
L
TL�L

> �

c

�
H
t̂ �H

. Then type H is not willing to work for ˆt

periods; having worked for ˆt � 1 periods, type H is willing to work one more period only if
��

L

t̂ �
H lLTL � c, which is not satisfied with lLTL > �

c

�
H
t̂ �L

.

For the second part of the claim, assume lLTL  min

⇢

�

c

�
L
TL�L

,� c

�
H
t �H

�

. Consider first type L.

The proof is by induction. Consider the last period, TL. Since no matter the history of effort the
current belief is some �L

TL � �
L

TL , it is immediate that ��L
TL�

LlLTL � c, and thus it is optimal for
type L to work in the last period. Now assume inductively that it is optimal for type L to work
in period t + 1  TL no matter the history of effort, and consider period t with belief �L

t . The
inductive hypothesis implies that

� �L
t+1�

L

8

<

:

lLTL(1� �L
)

TL�(t+1)
� c

TL
X

s=t+2

�

1� �L
�s�(t+2)

9

=

;

� c. (SA.6)

Therefore, at period t:

��L
t �

L

8

<

:

�c+ (1� �L
)

2

4lLTL(1� �L
)

TL
�(t+1)

� c

TL
X

s=t+2

�

1� �L
�s�(t+2)

3

5

9

=

;

� ��L
t �

L



�c+ (1� �L
)

✓

�

c

�L
t+1�

L

◆�

= c,

where the inequality uses (SA.6) and the equality uses �L
t+1 =

�L
t (1��L)

1��L
t +�L

t (1��L)
.

Finally, consider type H . By Lemma 3 and the fact that lLt = 0 for all t = 1, . . . , TL
� 1, type

H is indifferent between any two action plans a and a0 such that # {t : at = 0} = # {t : a0t = 0}.
Thus, without loss, we restrict attention to stopping strategies, and we only need to show that
it is optimal for type H to stop at s � t. Note that for any s < t, given that type H has worked
consecutively until and including period s, ��

H

s+1�
H lLTL � c, and thus type H does not want to

stop at s. k
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Claim 4: There exists an optimal onetime-penalty contract CL
= (TL,WL

0 , l
L
TL) satisfying lLTL �

min

⇢

�

c

�
L
TL�L

,� c

�
H
t̂ �H

�

.

Proof: Suppose, to contradiction, the claim is false. Given an optimal onetime-penalty con-
tract for type L, CL

= (TL,WL
0 , l

L
TL), and type H’s most-work optimal stopping strategy ba, type

H’s information rent is

�0l
L
TL [(1� �H

)

t̂
� (1� �L

)

TL
]� �0c

t̂
P

t=1

h

�

1� �H
�t�1

�

�

1� �L
�t�1

i

+c
TL
P

t=t̂+1

h

(1� �0) + �0

�

1� �L
�t�1

i

.

Consider a modification that increases lLTL by " > 0. By Claim 4 being false and Claim 3, for "
small enough, working in all periods t = 1, . . . , TL remains optimal for type L, and ba remains
optimal for type H . But then Claim 2 implies that type H’s information rent either goes down
or remains unchanged with the modification, and thus there exists an optimal contract CL

=

(TL,WL
0 , l

L
TL) where the claim is true. k

Claim 5: There is an optimal onetime-penalty contract CL
= (TL,WL

0 , l
L
TL) with ˆt(CL

) = THL
(TL

).

Proof: Take an arbitrary optimal contract CL
= (TL,WL

0 , l
L
TL). By Claims 1 and 3, ˆt(CL

)

satisfies �H

t̂(CL)+1�
H < �

L

TL�L. By Claim 2, ˆt(CL
) satisfies (1��H

)

t̂(CL)
 (1��L

)

TL . Thus, all that
remains to be shown is that there exists CL where ˆt(CL

) is the smallest period t 2 {1, . . . , TL
}

that satisfies these two conditions. Suppose to contradiction that this claim is false. Then ˆt(CL
)�

1 also satisfies the conditions; that is, �
H

t̂(CL)�
H < �

L

TL�L and (1 � �H
)

t̂(CL)�1
 (1 � �L

)

TL .

By Claims 3 and 4, lLTL = min

⇢

�

c

�
L
TL�L

,� c

�
H
t̂(CL)�

H

�

, and thus since �
H

t̂(CL)�
H < �

L

TL�L, lLTL =

�

c

�
H
t̂(CL)�

H
< �

c

�
L
TL�L

. It follows that type H’s incentive constraint in period ˆt(CL
) binds; i.e., type

H is indifferent between working and shirking at ˆt(CL
) given that he has worked in all periods

t = 1, . . . , ˆt(CL
) � 1 and will shirk in all periods t = ˆt(CL

) + 1, . . . , TL. Hence, both a stopping
strategy that stops at ˆt(CL

) and a stopping strategy that stops at ˆt(CL
) � 1 are optimal for type

H given CL, and type H’s information rent is the same for either of these two action plans. Type
H’s information rent can thus be written as

�0l
L
TL [(1� �H

)

t̂(CL)�1
� (1� �L

)

TL
]� �0c

t̂(CL)�1
P

t=1

h

�

1� �H
�t�1

�

�

1� �L
�t�1

i

+c
TL
P

t=t̂(CL)

h

(1� �0) + �0

�

1� �L
�t�1

i

.

Now consider a modified contract, bCL, obtained from CL by increasing lLTL by " > 0. Since
lLTL = �

c

�
H
t̂(CL)�

H
, a stopping strategy that stops at ˆt(CL

) is no longer optimal for type H under

bCL. Since lLTL < �

c

�
L
TL�L

and lLTL < �

c

�
H
t̂(CL)�1�

H
, for " small enough, 1 2 ↵L

(

bCL
) and a stopping
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strategy that stops at ˆt(CL
) � 1 remains optimal for type H under bCL. Then ˆt(bCL

) =

ˆt(CL
) � 1,

and since (1 � �H
)

t̂(CL)�1
 (1 � �L

)

TL , type H’s information rent either goes down or remains
unchanged with the modification, so bCL is optimal. If ˆt(bCL

) = THL
(TL

), we are done. Other-
wise, we can apply the argument to ˆt(bCL

) and repeat until we eventually arrive at the desired
contract CL with ˆt(CL

) = THL. k

SA.4. Details for Subsection 7.1

Here we provide a formal result for the discussion in Subsection 7.1 of the paper.

Theorem 7. Even if project success is privately observed by the agent, the menus of contracts identified

in Theorems 3–6 remain optimal and implement the same outcome as when project success is publicly

observable.

Proof. It suffices to show that in each of the menus, each of the contracts would induce the
agent (of either type) to reveal project success immediately when it is obtained. Consider first
the menus of Theorem 3 and Theorem 5: for each ✓ 2 {L,H}, the contract for type ✓, C✓, is a
penalty contract in which l✓t  0 for all t. Hence, no matter which contract the agent takes and
no matter his type, it is optimal to reveal a success when obtained. For the implementation in
Theorem 4, observe from (8) that type L’s bonus contract has the property that �bLt+1  bLt for all
t 2 {1, . . . , t

L
�1}; moreover, this property also holds in type L’s bonus contract in Theorem 6 and

in type H’s bonus contracts in both Theorem 4 and Theorem 6, as these contracts are constant-
bonus contracts. Hence, under all these contracts, it is optimal for the agent of either type to
disclose success immediately when obtained. Q.E.D.

SA.5. Details for Subsection 7.2

Here we provide a formal result for the discussion in Subsection 7.2 of the paper.

Theorem 8. Assume tH > tL, � = 1, and that all transfers must be non-negative. In any optimal menu

of contracts, each type ✓ 2 {L,H} is induced to work for some number of periods, t
✓
``, where t

L
``  t

H
`` .

Relative to the first-best stopping times, tH and tL, the second best has t
H
``  tH and t

L
``  tL. The

principal can implement the second best using a bonus contract for type H , CH
= (t

H
`` ,W

H
0 , bH), and a

constant-bonus contract for type L, CL
= (t

L
``,W

L
0 , b

L
), such that

1. bL =

c

�
L

tL``
�L

;

2. Type H gets a rent: UH
0 (CH ,↵H

(CH
)) > 0;

3. If t
L
`` > 0, type L gets a rent: UL

0 (C
L,↵L

(CL
)) > 0;

4. 1 2 ↵H
(CH

); 1 2 ↵L
(CL

); and 1 = ↵H
(CL

).
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Proof. The principal’s program is the following, called [P``]:

max

(CH ,CL,aH ,aL)
µ0⇧

H
0

�

CH , aH
�

+ (1� µ0)⇧
L
0

�

CL, aL
�

(P``)

subject to, for all ✓, ✓0 2 {L,H},

a✓
2 ↵✓

(C✓
), (IC✓

a)
U ✓
0 (C

✓, a✓
) � 0, (IR✓)

U ✓
0 (C

✓, a✓
) � U ✓

0 (C
✓0 ,↵✓

(C✓0
)), (IC✓✓0)

W ✓
0 , b

✓
t , l

✓
t � 0 for all t 2 �

✓. (``✓)

Note that the limited liability constraint for type ✓, (``✓), implies that this type’s participation
constraint, (IR✓), is satisfied. From now on, we thus ignore the constraints (IR✓).

Step 1: Bonus contracts

We show that it is without loss to focus on bonus contracts. Suppose by contradiction that in the
solution to [P``], for some ✓ 2 {L,H}, C✓

= (�

✓,W ✓
0 , b

✓, l✓) is not a bonus contract, i.e. l✓t 6= 0 for
some t 2 �

✓. We can construct an equivalent bonus contract eC✓
= (�

✓,fW ✓
0 ,
eb✓) as in the proof of

Proposition 1:

(a) For any t 2 �

✓, eb✓t = b✓t �
P

s�t,s2�✓

l✓s ,

(b) fW ✓
0 = W ✓

0 +

P

t2�✓

l✓t .

Note that by the limited liability constraint, C✓ has W ✓
0 � 0 and l✓t � 0 for all t 2 �

✓. Hence, eC✓

has fW ✓
0 � 0. Moreover, if eb✓t < 0 for some t 2 �

✓, then regardless of his type, the agent shirks in
period t under contract eC✓. Therefore, we can define another bonus contract, bC✓

= (

b

�

✓,fW ✓
0 ,
eb✓),

where t 2 b�✓ if and only if t 2 �

✓ and eb✓t � 0. Since under contract eC✓ the agent of either type
receives zero with probability one in all periods t in which eb✓t < 0, the incentives for effort for
both agent types and the payoffs for the principal and both agent types are unchanged in the
new contract bC✓ in which the agent is locked out in these periods. It follows that the bonus
contract bC✓ is equivalent to contract eC✓ and thus to the original contract C✓, and it satisfies
limited liability.

Step 2: Both types always work

We show that it is without loss to focus on bonus contracts in which each type is prescribed to
work in every period under his own contract. Suppose that there is a solution to [P``] in which,
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for some ✓ 2 {L,H}, C✓
=

�

�

✓,W ✓
0 , b

✓
�

induces a✓
6= 1. Consider contract bC✓

=

⇣

b

�

✓,W ✓
0 , b

✓
⌘

where t 2 b�✓ if and only if t 2 �

✓ and a✓t = 1. Notice that in any period t in which type ✓ shirks
under contract C✓, he receives zero with probability one; this is the same type ✓ receives under
contract bC✓ where he is locked out in period t. It follows that the incentives for effort for type
✓ and both the principal’s payoff from type ✓ and type ✓’s payoff do not change with the new
contract. Moreover, observe that for type ✓0 6= ✓, no matter which action he would take at t in
any optimal action plan under C✓, his payoff from bC✓ must be weakly lower because the lockout
in period t effectively forces him to shirk in period t and receive zero.

Step 3: Connected contracts

It is immediate that given � = 1, it is without loss to focus on connected bonus contracts: under
no discounting, nothing changes when a period t /2 �

✓ is removed from type ✓’s bonus contract,
C✓

= (�

✓,W ✓
0 , b

✓
). When a lockout period is removed, the future sequence of transfers and effort

is shifted up by one period, but this has no effect on the payoffs of the principal and the agent of
either type when there is no discounting.

Step 4: Relaxing the principal’s program

By Steps 1-3, we restrict attention to connected bonus contracts that induce each agent type to
work in each period under his own contract. We now relax the principal’s problem [P``] by
considering a weak version of (ICHL) in which type H is assumed to exert effort in all periods
t 2 {1, . . . , TL

} if he takes contract CL. Ignoring the participation constraints as explained above
and denoting the set of connected bonus contracts by C

b, the relaxed program, [RP``], is

max

(CH2Cb,CL2Cb)
µ0⇧

H
0

�

CH ,1
�

+ (1� µ0)⇧
L
0

�

CL,1
�

(RP``)

subject to

1 2 ↵L
(CL

), (ICL
a )

1 2 ↵H
(CH

), (ICH
a )

UL
0

�

CL,1
�

� UL
0

�

CH ,↵L
(CH

)

�

, (ICLH)
UH
0

�

CH ,1
�

� UH
0

�

CL,1
�

, (Weak-ICHL)
WL

0 , b
L
t � 0 for all t 2 {1, . . . , TL

}, (``L)
WH

0 , bHt � 0 for all t 2 {1, . . . , TH
}. (``H)

We will solve this relaxed program and later verify that the solution is feasible in (and hence
is a solution to) [P``].

10



Step 5: An optimal contract for the low type

Take any arbitrary connected bonus contract C = (T,W0, b). It follows from Step 3 of the proof
of Theorem 3 and the proof of Proposition 1 that type ✓’s incentive constraint for effort binds in
each period t 2 {1, . . . , T} under contract C if and only if b = b

✓
(T ), where b

✓
(T ) is defined as

follows:
b
✓

t (T ) = b
✓
(T ) :=

c

�
✓

T�
✓

for all t 2 {1, . . . , T}. (SA.7)

We can show that in solving program [RP``], it is without loss to restrict attention to constant-
bonus contracts for type L with bonus as defined in (SA.7). The proof follows from Step 4 in the
proof of Theorem 3. Take any arbitrary connected bonus contract CL

= (TL,WL
0 , b

L
) that induces

type L to work in each period t 2 {1, . . . , TL
}. We modify this contract into a constant-bonus

contract bCL
= (TL,cWL

0 ,
bbL) where bbL = b

L
(TL

) and the modified initial transfer cWL
0 is such that

UL
0 (C

L,1) = UL
0 (
bCL,1). We can show that this modification relaxes (Weak-ICHL) while keeping

all other constraints in [RP``] unchanged, and thus it allows to weakly increase the objective in
[RP``]. We omit the details as the arguments are analogous to those in Step 4 in the proof of
Theorem 3.

Step 6: Under-experimentation and positive rents for both types

We first show that the solution to [RP``] does not induce over-experimentation by either type:
TL

 tL and TH
 tH . It is useful for our arguments to rewrite the principal’s payoff by substi-

tuting with (1); we obtain that the objective in [RP``] can be rewritten as

µ0

8

<

:

�0

TH
X

t=1

�

1� �H
�t�1

�H
�

1� bHt
�

�WH
0

9

=

;

+ (1� µ0)

8

<

:

�0

TL
X

t=1

�

1� �L
�t�1

�L
�

1� bLt
�

�WL
0

9

=

;

.

(SA.8)

Suppose per contra that a solution to [RP``] has a menu of connected bonus contracts (CL,CH
)

such that T ✓ > t✓ for some ✓ 2 {L,H}. Without loss by Step 2, C✓
= (T ✓,W ✓

0 , b
✓
) induces type

✓ to work in each period t 2 {1, . . . , T ✓
}. Note that by the arguments in Step 5, type ✓’s in-

centive constraint for effort binds in each period of contract C✓ if and only if b✓t =

c

�
✓
T✓�✓

for all

t 2 {1, . . . , T ✓
}; hence, contract C✓ must have b✓t �

c

�
✓
T✓�✓

for all t 2 {1, . . . , T ✓
} and T ✓ > t✓

implies b✓t > 1 for all t 2 {1, . . . , T ✓
}. Using (SA.8), this implies that the principal’s payoff from

type ✓ is strictly negative if T ✓ > t✓. But then we can show that there exists a menu of connected
bonus contracts that satisfies all the constraints in [RP``] and yields the principal a strictly larger
payoff than the original menu (CL,CH

). This is immediate if the original menu induces both
TL > tL and TH > tH , as the principal gets a strictly negative payoff from each type in this case.
Suppose instead that the original menu is (C✓,C✓0

) with T ✓
 t✓ for type ✓ 2 {L,H} and T ✓0 > t✓

0

for ✓0 6= ✓. Then consider a menu (

bC✓, bC✓0
) where bC✓

=

bC✓0
= (T ✓, 0, b

✓
(T ✓

)). This menu trivially
satisfies all the constraints in the principal’s program. Moreover, compared to the original menu,
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this menu yields the principal a weakly larger payoff from type ✓ because it induces this type
to work for the same periods as C✓ with a (weakly) lower initial transfer and (weakly) lower
bonuses in each period t 2 {1, . . . , T ✓

}, and it yields the principal a strictly larger payoff from
type ✓0 because the payoff from this type under the new menu is non-negative given that the
bonus is b✓(T ✓

)  1 in each period t 2 {1, . . . , T ✓
}.

Next, we show that the solution to [RP``] yields a positive rent to type H (i.e. UH
0 (CH ,1) > 0)

and it also yields a positive rent to type L (i.e. UL
0 (C

L,1) > 0) if type L is not excluded. By the
limited liability constraints (``L) and (``H), UL

0 (C
L,1) � 0 and UH

0 (CH ,1) � 0. Moreover, given
limited liability, U ✓

0 (C
✓,1) = 0 for a type ✓ 2 {L,H} implies T ✓

= 0. Hence, if type ✓ is not
excluded, this type receives a strictly positive rent. All that is left to be shown is that the solution
to [RP``] cannot exclude type H , and thus it always yields UH

0 (CH ,1) > 0. First, suppose that
UL
0 (C

L,1) > 0 and UH
0 (CH ,1) = 0. Then since �

H

t �
H > �

L

t �
L for all t  tL (by the assumption

that tH > tL) and TL
 tL, it follows that UH

0 (CL,1) > UL
0 (C

L,1) > 0 = UH
0 (CH ,1), and thus

(Weak-ICHL) is violated. Next, suppose that U ✓
0 (C

✓,1) = 0 for both types ✓ 2 {L,H}. Then
T ✓

= 0 for both types ✓ 2 {L,H} and the principal’s payoff is zero. However, the principal can
then strictly improve upon this menu by using a menu of constant-bonus contracts bCL

=

bCH
=

(1, 0, b
H
(1)), where note that bH(1) < 1.

Step 7: The high type experiments more than the low type

We show that the solution to [RP``] must have TL
 TH . Suppose per contra that the solution

is a menu of connected bonus contracts {CL,CH
} such that TL > TH . Without loss by Step

5, let CL
= (TL,WL

0 , b
L
(TL

)). Note that by (Weak-ICHL), UH
0 (CH ,1) � UH

0 (CL,1). Moreover,
by Step 6, TL

 tL, which in turn implies TL < tH . But then it is immediate that a menu
(

eCL, eCH
) where eCL

=

eCH
= (TL, 0, b

L
(TL

)) yields the same amount of experimentation by type
L, strictly more efficient experimentation by type H , and payoffs UL

0 (
eCL,1)  UL

0 (C
L,1) and

UH
0 (

eCH ,1)  UH
0 (CH ,1), while satisfying all the constraints in [RP``]. It follows that (eCL, eCH

)

yields a strictly larger payoff to the principal than the original menu (CL,CH
), which therefore

cannot be optimal.

Step 8: Back to the original problem

We now show that the solution to the relaxed program [RP``] is feasible and thus a solution to
the original program [P``]. Recall that (given Steps 1-3) the only relaxation in program [RP``]
relative to [P``] is that [RP``] imposes (Weak-ICHL) instead of (ICHL). Thus, all we need to show
is that given a constant-bonus contract CL

= (TL,WL
0 , b

L
(TL

)) with length TL
 tL, it would be

optimal for type H to work in each period 1, . . . , TL. The claim follows from Step 6 in the proof
of Theorem 3 and the proof of Proposition 1. Q.E.D.
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SA.6. Details for Subsection 7.3

Here we provide details for the discussion in Subsection 7.3 of the paper.

Assume �0 = 1 and for simplicity that there is some finite time, T , at which the game ends.
Since �

✓

t = 1 for all ✓ 2 {L,H} and t 2 {1, . . . , T}, the high type always has a higher expected
marginal product than the low type, i.e. �H

t �
H

= �H > �
L

t �
L
= �L for all t. Consequently, the

methodology used in proving Theorem 3 can be applied, with the conclusions that if the optimal
length of experimentation for the low type is some T (constrained to be no larger than T ), the
optimal penalty contract for the low type is given by the analog of (6) with �

L

t = 1 for all t:

lLt =

(

� (1� �) c
�L if t < T,

�

c
�L if t = T,

and the portion of the principal’s payoff that depends on T is given by the analog of (SA.1) with
the simplification of �0 = 1:

bV (T ) = (1� µ0)

T
X

t=1

�t
�

1� �L
�t�1 �

�L
� c
�

�µ0

8

>

>

<

>

>

:

�

c
�L

T�1
P

t=1
�t (1� �)

h

�

1� �H
�t
�

�

1� �L
�t
i

�

c
�L �

T
h

�

1� �H
�T

�

�

1� �L
�T
i

�

T
P

t=1
�tc
h

�

1� �H
�t�1

�

�

1� �L
�t�1

i

9

>

>

=

>

>

;

.

Hence, for any T 2 {0, . . . , T � 1} we have the following analog of (SA.2):

bV (T + 1)�

bV (T ) = �T+1
h

(1� µ0)
�

1� �L
�T �

�L
� c
�

� µ0
c

�L

�

1� �H
�T �

�H
� �L

�

i

.

Clearly, bV (T + 1)�

bV (T ) > (<)0 if and only if

✓

1� �L

1� �H

◆T

> (<)

µ0c
�

�H
� �L

�

(1� µ0) (�L
� c)�L

.

Since the left-hand side above is strictly increasing in T , it follows that bV (T ) is maximized by
t
L
2 {0, T}. Hence, whenever it is optimal to have the low type experiment for any positive

amount of time, it is optimal to have the low type experiment until T , no matter the value of T .
Note that whenever exclusion is optimal (i.e. tL = 0) when �0 = 1, it would also be optimal for
all �0  1; this follows from the comparative static of tL with respect to �0 in Proposition 2.
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