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SA.1. Intermittently-public contests

This section provides details for Section 4.4 of the paper. We consider the class of
contests with intermittently-public information disclosure: the principal specifies a set of
times at which the entire history of successes to date is publicly disclosed; at other times,
there is no information disclosed. Formally, an intermittently-public disclosure policy is
a sequence (Mt, µt)t∈[0,T ] where, for an arbitrary set T ⊆ [0, T ], Mt = Ot and µt(o

t) = ot if
t ∈ T , and |Mt| = 1 if t 6∈ T .1 Define a mixture contest (with switching time t) as one that
implements public winner-takes-all (WTA) from time 0 to some time t ∈ [0, T ] and then
hidden equal-sharing (ES) from time t to T .

Proposition SA.1. Among intermittently-public contests, an optimal contest is a mixture contest
with some deadline T and switching time tS ∈ [0, T ]. Moreover,

1. If λw/2 < c, then tS = T = T PW (so the contest is public winner-takes-all),

2. If λw/N > c, then tS = 0 and T = THS (so the contest is hidden equal-sharing).

It bears highlighting that the above result is logically incomparable with Proposition 4
of the paper: Proposition SA.1 assumes a restricted set of information disclosure policies
but does not require rank monotonicity of the prize scheme.

An intuition for the form of the optimal mixture contest stems from our discussion
in Section 4.3 of the paper about how changes in the prior alter the principal’s choice
between public WTA and hidden ES: the latter is more beneficial when the agents’ beliefs
are lower. The formal proof of Proposition SA.1, presented at the end of this section, is

1 The analysis in this section also holds if the principal randomizes over disclosure times, so long as
randomization is independent of the history.
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constructive: given any intermittently-public contest C = (w(·), T , T ), with tC := sup T
and public belief ptC at tC , we construct a mixture contest that implements public WTA
until the public belief reaches ptC and hidden ES from then on, and we show that this
mixture contest weakly improves on the original contest C.

Similar to Corollary 1 in the paper, Proposition SA.1 provides simple sufficient con-
ditions for either public WTA or hidden ES to be optimal among intermittently-public
contests; these conditions are intuitive given our discussion of Proposition 3 and Corol-
lary 1 in the paper. Plainly, for N = 2 it is always optimal to use either public WTA or
hidden ES. When λw/c ∈ (2, N), the optimal mixture contest can have a deadline T and
a strictly interior switching time, tS ∈ (0, T ). The logic turns on the tradeoff between in-
creasing an agent’s expected reward from success versus increasing his belief that he can
succeed: as tS increases, the agent’s belief about the innovation’s feasibility from tS on
decreases, but his expected reward for success after tS increases because in expectation
the prize is shared with a smaller number of agents. Figure SA.1 presents an example in
which the optimal mixture contest has a strictly interior switching time.
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Figure SA.1 – Stopping time T as a function of switching time tS ∈ [0, T ] in a mixture contest.
Parameters are p0 = 0.9, c = 0.18, w = 1, λ = 0.4, and N = 3.

Proposition SA.1 shows that an optimal intermittently-public contest has a prize scheme
that is rank-monotonic: if agent i succeeds earlier than agent j in a mixture contest, then
i receives a weakly larger share of the prize than j. As mentioned in the paper, it there-
fore follows from Proposition 4 that no intermittently-public contest can improve on the
optimal cutoff-disclosure ES contest.
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Proof of Proposition SA.1. We first show that a mixture contest is optimal among intermittently-
public contests and then verify the sufficient conditions for the optimality of public WTA
and hidden ES.

Step 1. Consider an arbitrary contestC with prize schemew(si, s−i), intermittently-public
information disclosure policy T , and deadline T . We focus on symmetric equilibria and,
without loss of generality, define the deadline T so that agents exert positive effort at
T given no success by T . The aggregate cumulative effort up to T induced by contest
C (given no success by T ) is AT . We want to show that there exist t∗S ≥ 0, T ∗ ≥ t∗S ,
and a mixture contest with deadline T ∗ and switching time t∗S such that the aggregate
cumulative effort by T ∗ (given no success by T ∗) induced by this contest is A∗ ≥ AT . This
mixture contest will therefore weakly improve on C.

Suppose, towards contradiction, that A∗ < AT for all t∗S ≥ 0 and T ∗ ≥ t∗S . Then
max{APW , AHS} < AT , whereAPW andAHS are the aggregate cumulative efforts induced
respectively in an optimal public WTA and optimal hidden ES contest.

Let tC be the last time at which information is disclosed in contest C; more precisely,
tC := sup T . By Proposition 2 in the paper, tC > 0. Consider a history of no success. The
agents’ belief at tC is equal to the public belief;2 denote this belief by ptC . Since agents
are willing to exert positive effort at some point t ∈ [tC , T ] (recall that, without loss, T is
defined so that agents exert positive effort at T given no success by T ), and an agent’s
reward for success at any such point cannot be strictly larger than the prize w, we must
have ptC ≥ c

λw
. It follows that there is a public WTA contest that induces full effort by

each agent until the public belief reaches pPW ≤ ptC . Let t∗ be the time at which the belief
reaches ptC in a public WTA contest and denote by ÃPW the aggregate cumulative effort
induced by this contest over [0, t∗].

Next, note that given the public belief ptC at tC , the continuation game in contest C has
hidden disclosure. Consider an optimal hidden ES contest starting with a prior belief p0 =

ptC . Denote by T̃HS and ÃHS respectively the stopping time and the aggregate cumulative
effort induced by such a contest. By Proposition 2 in the paper, ÃHS is weakly larger than
the aggregate cumulative effort induced by contest C over [tC , T ]. Let T ∗ := t∗ + T̃HS .

We will show that a mixture contest with switching time t∗ and deadline T ∗ induces
aggregate cumulative effort A∗ := ÃPW + ÃHS , which implies that it weakly improves on
contest C, contradicting the hypothesis that A∗ < AT . Let pi,t be agent i’s belief at time

2 This is immediate if sup T ∈ T . Otherwise, letting Ωi,z denote all information an agent i has at time z
and p(Ωi,z) the agent’s belief given this information, the claim follows from the fact that the definition of tC
implies p(Ωi,z)→ ptC as z → tC .
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t, where this belief is updated given public disclosure from time 0 until t∗ and hidden
disclosure from t∗ until T ∗. Denote by w the agent’s expected reward for success at any
time t ≥ t∗ given no success by t∗, and let A−i,z denote (i’s conjecture of) the aggregate
effort exerted by i’s opponents at time z so long as they have not succeeded by z. The
agent’s problem is:

max
(ai,t)t∈[0,T∗]

∫ t∗

0

(wpi,tλ− c) ai,te−
∫ t
0 pi,zλ(ai,z+A−i,z)dzdt

+ e−
∫ t∗
0 pi,zλ(ai,z+A−i,z)dz

∫ T ∗

t∗
(wpi,tλ− c) ai,te−

∫ t
t∗ pi,zλai,zdzdt.

The belief pi,t is decreasing and the expected reward for success is also (weakly) decreas-
ing because w ≤ w. Hence, an optimal strategy for agent i is a stopping strategy: for
t ≤ t∗, ai,t = 1 if wpi,tλ ≥ c and ai,t = 0 otherwise; for t > t∗, ai,t = 1 if wpi,tλ ≥ c and
ai,t = 0 otherwise. It follows that if a public WTA contest induces ÃPW until time t∗ given
no continuation game, it also induces ÃPW until time t∗ when the continuation game is
a hidden ES contest. Finally, starting from t∗, the continuation game is the same as that
under a hidden ES contest starting at time 0 with prior belief p0 = ptC . Therefore, this
mixture contest induces A∗ = ÃPW + ÃHS .

Step 2. We now verify the sufficient conditions for the optimality of hidden ES and public
WTA given in the proposition. Consider a mixture contest with switching time tS . The
stopping time T for any agent i is given by:

c

λw
= Pr[some j 6= i succ. in [tS , T ] | no one did by tS , i didn’t by T ]︸ ︷︷ ︸

α(tS)

L[tS ,T ]

+ Pr[no j 6= i succ. in [tS , T ] | no one did by tS , i didn’t by T ]︸ ︷︷ ︸
1−α(tS)

Pr[G | no succ. by T ],

where

L[tS ,T ] :=
N−1∑
n=1

Pr[n opponents succ. btw tS and T | at least one did, no succ. by tS ]

(
1

n+ 1

)
.

We can rewrite this condition as

c

λw
=
p0e
−NλtSe−λ(T−tS)

(
1− e−(N−1)λ(T−tS)

)
p0e−NλtSe−λ(T−tS) + (1− p0)︸ ︷︷ ︸

α(tS)

1−e−λ(T−tS)N(
1−e−λ(T−tS)

)
N
− e−λ(N−1)(T−tS)

1− e−λ(T−tS)(N−1)︸ ︷︷ ︸
L[tS,T ]
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+

[
1−

p0e
−NλtSe−λ(T−tS)

(
1− e−(N−1)λ(T−tS)

)
p0e−NλtSe−λ(T−tS) + (1− p0)

]
︸ ︷︷ ︸

1−α(tS)

p0e
−NλT

p0e−NλT + (1− p0)︸ ︷︷ ︸
Pr[G | no success by T ]

. (SA.1)

Observe that α(tS) is decreasing in tS ; L[tS ,T ] is decreasing in T and increasing in tS ;
Pr[G | no success by T ] is decreasing in T ; and the RHS of (SA.1) is decreasing in T .

Suppose first that λw
2
< c. Then for any tS and T , L[tS ,T ] <

c
λw

. Given T , it follows that
Pr[G | no success by T ] > c

λw
, as otherwise (SA.1) would not hold with equality. Conse-

quently, if tS increases, (1−α(tS)) and L[tS ,T ] increase and thus the RHS of (SA.1) increases.
This implies that T must increase when tS increases (so that the RHS decreases and re-
mains equal to the LHS), and therefore setting tS = T is optimal.

Suppose next that λw
N
> c. Then for any tS and T , L[tS ,T ] >

c
λw

. Given T , it follows that
Pr[G | no success by T ] < c

λw
, as otherwise (SA.1) would not hold with equality. Note that

a change in tS now causes two opposing effects on the RHS of (SA.1): on the one hand,
reducing tS increases α(tS), which increases the RHS of (SA.1), but on the other hand it
reduces L[tS ,T ], which reduces the RHS of (SA.1). We show that if λw

N
> c, the net effect of

reducing tS to zero on the RHS of (SA.1) is positive, which implies that T must increase
and therefore setting tS = 0 is optimal.

To show this, note that by (SA.1), (1−α(tS)) Pr[G | no success by T ] = c
λw
−α(tS)L[tS ,T ],

and hence α(0)L[0,T ] + (1− α(0)) Pr[G|no success by T ] is equal to

α(0)L[0,T ] +
1− α(0)

1− α(tS)

( c

λw
− α(tS)L[tS ,T ]

)
. (SA.2)

We need to show that (SA.2) is greater than c
λw

. (SA.2) can be rewritten as

p0e
−λT

p0e−λT + 1− p0

(
1− e−λTN

(1− e−λT )N
− e−λT (N−1)

)
+
p0e
−λT−λt(N−1) + (1− p0)
p0e−λT + 1− p0

c

λw

− p0e
−λT−λt(N−1) + (1− p0)
p0e−λT + 1− p0

p0e
−λT−λt(N−1)

p0e−λT−λt(N−1) + (1− p0)

(
1− e−λN(T−t)

(1− e−λ(T−t))N
− e−λ(T−t)(N−1)

)
.

Some algebra then shows that (SA.2) is greater than c
λw

if and only if

1− e−λTN

(1− e−λT )N
− e−λt(N−1)(1− e−λN(T−t))

(1− e−λ(T−t))N
− c

λw

(
1− e−λt(N−1)

)
≥ 0.
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By assumption, c
λw

< 1
N

; thus, again doing some algebra, it suffices to show that

1− e−λTN

(1− e−λT )
− e−λt(N−1) − e−λNT+λt

(1− e−λ(T−t))
− 1 + e−λt(N−1) ≥ 0.

This inequality holds with equality when t = 0, and a routine computation verifies that
the derivative of the LHS with respect to t is non-negative for all N ≥ 2. Q.E.D.

SA.2. Discounting

This section provides details for the claims about discounting in Section 5.4 of the pa-
per. Suppose that the principal and the agents discount future payoffs at rate r ≥ 0. We
first study public WTA and hidden ES contests and then compare the two.

Public WTA. In a public WTA contest, agent i’s problem can be written as

max
(ai,t)t∈[0,T ]

∫ T

0

(pi,tλw − c) ai,te−rte−
∫ t
0 pi,zλ(ai,z+A−i,z)dzdt. (SA.3)

This formulation assumes that the principal pays out the prize money to the first success-
ful agent immediately after he succeeds; it is clear that this is optimal for the principal.
Since pi,t is decreasing, the unique solution to (SA.3) is ai,t = 1 if pi,t ≥ pPW and ai,t = 0

otherwise, where pPW = c
λw

as defined in equation (10) in the paper. Therefore, the aggre-
gate cumulative effort induced by a public WTA contest is invariant to discounting, and
is given by NT PW in equation (11) of the paper.

Hidden ES. Consider a hidden ES contest with deadline T . We begin by showing that it
is without loss of optimality to focus on symmetric equilibria in which each agent i exerts
zero effort from time 0 until some time t̃ ∈ [0, T ] and full effort from t̃ until T . In turn, it
is then without loss of optimality to focus on hidden ES contests in which the deadline is
such that all agents exert full effort at all times in the contest.

Agent i’s payoff from a strategy ai := (ai,t)t∈[0,T ] in a hidden ES contest is

U (ai) = − (1− p0)
∫ T

0

cai,te
−rtdt+ p0

∫ T

0

(
λwHSe−rT − ce−rt

)
ai,te

−λattdt,

where
∫ T
0
cai,te

−rtdt is agent i’s discounted cost of effort conditional on the bad state,
wHSe−rT is the discounted expected reward for success, and e−λa

t
i is the agent’s belief
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that he will not succeed by time t (recall, ati :=
∫ t
0
ai,zdz). Rearranging terms yields

U (ai) =− (1− p0) c
∫ T

0

ai,te
−rtdt+ p0w

HSe−rT
∫ T

0

λai,te
−λatidt

− p0c
∫ T

0

e−rtai,te
−λatidt. (SA.4)

Let t̃ := T − aTi . We construct the following strategy for i:

ãi,t :=

{
0 if t < t̃,
1 otherwise.

By construction, ati ≥ ãti for t ∈ [0, T ] with equality at t = T . Moreover, for any k ∈ [0, T ] ,∫ k

0

λai,te
−λatidt =

∫ k

0

e−λa
t
id
(
λati
)

= 1− e−λaki ≥ 1− e−λãki =

∫ k

0

λãi,te
−λãtidt,

where the inequality holds with equality if k = T . Hence,∫ T

0

ai,te
−rtdt ≥

∫ T

0

ãi,te
−rtdt,∫ T

0

e−rtai,te
−λatidt ≥

∫ T

0

e−rtãi,te
−λãtidt,∫ T

0

λai,te
−λatidt =

∫ T

0

λãi,te
−λãtidt.

It follows from (SA.4) that U (ai) ≤ U (ãi). It is thus without loss of optimality to focus on
a hidden ES contest in which agents exert full effort from time 0 until some deadline T .

We next solve for the amount of experimentation induced by a hidden ES contest in the
presence of discounting. Given the result above, take a hidden ES contest with deadline
T in which ai,t = 1 for all t ∈ [0, T ] and i ∈ N . Agent i’s expected payoff is

U (ai) = − (1− p0)
∫ T

0

ce−rtdt+ p0

∫ T

0

(
λwHSe−rT − ce−rt

)
e−λtdt.
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For any x ∈ [0, T ) and ε > 0 such that x+ ε < T, consider the following deviation for i:3

axi,t :=

{
1 if t ∈ [0, x] ∪ [x+ ε, T ],
0 if t ∈ (x, x+ ε).

Under this deviation, agent i’s expected payoff is

U (axi ) = − (1− p0)
(∫ x

0

ce−rtdt+

∫ T

x+ε

ce−rtdt

)
+ p0

∫ x

0

(
λwHSe−rT − ce−rt

)
e−λtdt

+p0

∫ T

x+ε

(
λwHSe−rT − ce−rt

)
e−λ(t−ε)dt.

The optimality of ai requires d
dε
U (axi ) |ε=0 ≤ 0 for all x ∈ [0, T ). Note that

d

dε
U (axi ) |ε=0 = (1− p0) ce−rx − p0

(
λwHSe−rT − ce−rx

)
e−λx

+ p0

∫ T

x

(
λwHSe−rT − ce−rt

)
λe−λtdt,

d

dx

d

dε
U (axi ) |ε=0 =− r (1− p0) ce−rx − rp0ce−(r+λ)x < 0.

Consequently, d
dε
U (axi ) |ε=0 ≤ 0 for all x ∈ [0, T ) if and only if d

dε
U (axi ) |ε=0,x=0 ≤ 0. We

compute

d

dε
U (axi ) |ε=0,x=0 = (1− p0) c− p0

(
λwHSe−rT − c

)
+ p0

∫ T

0

(
λwHSe−rT − ce−rt

)
λe−λtdt

= c− p0λwHSe−(λ+r)T − p0c
λ

λ+ r

(
1− e−(λ+r)T

)
.

The condition d
dε
U (axi ) |ε=0,x=0 ≤ 0 is thus equivalent to

λwHS
p0e
−(λ+r)T

1− p0 λ
λ+r

+ p0
λ
λ+r

e−(λ+r)T
≥ c.

Recall that wHS = w 1−e−λNT

(1−e−λT )N
. The above inequality further reduces to

1− e−λNT

(1− e−λT )N

p0e
−(λ+r)T

1− p0 λ
λ+r

+ p0
λ
λ+r

e−(λ+r)T
≥ c

λw
. (SA.5)

3 In what follows, we implicitly presume that if ai is suboptimal, then there must exist a profitable such
deviation. This is analogous to the one-step deviation principle in discrete-time games. Our approach can
be justified by studying a sequence of discrete-time games with period length ∆ → 0, and applying the
one-step deviation principle along the sequence of games.
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The LHS of (SA.5) is continuous and strictly decreasing in T . Thus, the aggregate cumu-
lative effort induced in a hidden ES contest with discount rate r is NTHSr , where THSr is
the unique solution to

1− e−λNTHSr(
1− e−λTHSr

)
N

p0e
−(λ+r)THSr

1− p0 λ
λ+r

+ p0
λ
λ+r

e−(λ+r)THSr
=

c

λw
. (SA.6)

Plainly, THSr is continuous in r. When r = 0, equation (SA.6) reduces to equation (16) in
the paper: THS0 = THS .

Public WTA versus Hidden ES. Analogous to our analysis in Section 4.3 in the paper,
we can compare the amount of experimentation induced by public WTA and hidden ES
in the presence of discounting by comparing the induced stopping times, T PW and THSr .
Since the LHS of (SA.6) is strictly decreasing in THSr , it holds that for any given discount
rate r, a hidden ES contest induces a strictly larger aggregate cumulative effort (and thus
a strictly higher probability of success) than a public WTA contest if and only if

1− e−λNTPW(
1− e−λTPW

)
N

p0e
−(λ+r)TPW

1− p0 λ
λ+r

+ p0
λ
λ+r

e−(λ+r)TPW
>

c

λw
. (SA.7)

This condition is continuous in r and reduces to condition (17) in the paper when r = 0.
As discussed in the paper, discounting also affects the computation of ex-ante payoffs in a
way that makes public WTA more beneficial than hidden ES: the principal can profit from
an agent’s innovation immediately following success in a public WTA contest, whereas
she must wait until the deadline in a hidden ES contest. Yet, if (SA.7) holds, a tradeoff
arises, and at least for a small discount rate hidden ES will still dominate public WTA.

SA.3. Convex effort costs

This section provides details for the claims about convex effort costs in Section 5.4 of
the paper. Let C : [0, 1] → R+ be a differentiable instantaneous effort cost function with
C ′ (0) = c > 0. We assume C is convex, which, given C ′(0) = c, implies C (ai,t) ≥ cai,t.4

We will show that the amount of experimentation induced in a public WTA contest and
in a hidden ES contest is the same as under a linear effort cost.

4 We could alternatively consider a sequence of cost functions that converge pointwise to the linear
cost function and analyze the corresponding sequence of Nash equilibria. For the purpose of finding the
stopping beliefs, it is convenient to directly assume C ′ (0) = c.
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Public WTA. In a public WTA contest, agent i’s problem can be written as

max
(ai,t)t∈[0,T ]

∫ T

0

(pi,tλwai,t − C (ai,t)) e
−
∫ t
0 pi,zλ(ai,z+A−i,z)dzdt. (SA.8)

Since pi,t is decreasing, the solution to (SA.8) has ai,t > 0 if and only if pi,t ≥ C′(0)
λw

= pPW .
Therefore, the stopping belief is the same as with the linear effort cost studied in the paper,
whereC (ai,t) = cai,t. Under a convex cost, instantaneous equilibrium effort will generally
be interior and evolving over time. Nevertheless, the aggregate cumulative effort induced
by a public WTA contest, AT , is uniquely determined by the stopping belief via

pPW =
p0e
−λAT

p0e−λA
T + (1− p0)

,

and hence is the same as under a linear effort cost.

Hidden ES. Consider a symmetric equilibrium of a hidden ES contest. Agent i’s prob-
lem is

max
(ai,t)t∈[0,T ]

∫ T

0

(
p
(1)
i,t λw

HSai,t − C (ai,t)
)
e−

∫ t
0 p

(1)
i,zλai,zdzdt,

where wHS is the expected reward for success. Let AT be the aggregate cumulative effort
in this equilibrium. Then

wHS = w
N−1∑
n=0

1

n+ 1

(
N − 1

n

)(
1− e−

λAT

N

)n
e−(N−1−n

N )λAT

= w
1− e−λAT(

1− e−λA
T

N

)
N
, (SA.9)

where the second equality follows from the proof of Proposition 2 in the paper. In a
symmetric equilibrium, ai,t > 0 if and only if p(1)i,t ≥

C′(0)
λwHS

; therefore, the stopping belief
satisfies

p
(1)
T =

c

λwHS
, (SA.10)

where

p
(1)
T =

p0e
−λA

T

N

p0e
−λAT

N + 1− p0
. (SA.11)
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Combining (SA.9), (SA.10), and (SA.11) yields that the aggregate cumulative effort in a
hidden ES contest, AT , satisfies

1− e−λAT(
1− e−λA

T

N

)
N

p0e
−λA

T

N

p0e
−λAT

N + 1− p0
=

c

λw
. (SA.12)

Recall that under a linear effort cost, the aggregate cumulative effort in a hidden ES con-
test is NTHS , where THS is given by equation (16) in the paper. Since the LHS of (SA.12)
and that of (16) are each decreasing functions of AT and NTHS respectively, it holds that
AT = NTHS , i.e., the aggregate cumulative effort in a hidden ES contest is unaffected by
the introduction of a convex cost.

SA.4. Multistage contests

Suppose that innovation requires obtaining a success in each of two stages, k ∈ {I, F},
where I stands for “intermediate” and F stands for “final”. Analogous to our baseline
model, whether a success in stage k is feasible depends on the stage-specific state θk ∈
{G,B}, which is fully persistent and unobservable. We assume that the states are inde-
pendently distributed and denote their respective prior probabilities by pk0 := Pr(θk = G).
We allow agents’ ability λ to be stage-specific, so that agent i succeeds with instantaneous
probability λkai,t at time t in stage k if θk = G and the agent exerts effort ai,t.

Consider the principal’s problem of designing an optimal contest given an arbitrary
total prize w < v, where v is the principal’s value of innovation (i.e., from having one
agent succeed in both stages). We assume pk0λkw > c for k ∈ {I, F}, as otherwise no
contest can induce innovation. As in our baseline analysis in the paper, the principal must
pay the entire prize w if innovation obtains; given w, her objective is then to maximize the
probability of innovation. As detailed further below, the principal will set a prize for each
stage. We extend rank-monotonicity to this multistage setting by assuming that if agent i
succeeds earlier than agent j in stage k, then i receives a weakly larger share of the prize
in stage k than j; moreover, if agent i participates in stage k, his share of the prize in this
stage is independent of agents’ outcomes in stage ` 6= k.5 More precisely, the principal
chooses (i) an “intermediate prize” wI and a sharing scheme (wIi (s

I))i∈N that allocates
wI as a function of agents’ success times in stage I ; (ii) a “final prize” wF and a sharing
scheme (wFi (sF ))i∈N that allocates wF as a function of agents’ success times in stage F ;
and (iii) an “advancement rule” ρ(sI) ∈ ∆(2N ) that determines (possibly stochastically)

5 While such a strong independence assumption is not needed for our analysis, it makes our points more
transparent and it also appears consistent with multistage contests often observed in practice.
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which agents advance to stage F as a function of agents’ success times in stage I . The
prizes must satisfy wI + wF = w and we require anonymity and rank-monotonicity on
(wIi (s

I))i∈N and (wFi (sF ))i∈N as well as ρ(sI) (so that if agent i succeeds earlier than agent
j in stage I , then i advances to stage F with a weakly higher probability than j). In
addition, the principal chooses (iv) deadlines T I and T F and (v) information disclosure
policies for each stage.

To illustrate how our results can be applied to this multistage setting, we focus on a
simple case in which all the uncertainty pertains to the intermediate stage, i.e. pI0 < 1

while pF0 = 1.6 We can show that the following multistage contest is optimal: in stage
I , the principal runs a cutoff-disclosure ES contest with a finite deadline T I and wI = 0;
one agent among those who succeeded by T I is selected via uniform randomization to
advance to stage F ; in stage F , the agent selected at T I (if any) is awarded the entire prize
w upon success in this stage, with deadline T F =∞.

The argument is as follows. Consider first stage F . Since pF0 = 1, a public WTA contest
maximizes the probability of success in stage F for any prize wF allocated to this stage.
Moreover, recall from Proposition 1 in the paper that the probability of success in a public
WTA contest is independent of the number of agents and increasing in the prize. Hence,
having only one agent work on stage F maximizes the probability of success on F for any
given prize wF , and given only one agent working on stage F , the probability of success
is increasing in wF .

Consider next stage I . The total prize agents receive for success in this stage is given by
the intermediate prize wI plus the value of advancing to stage F . Call the value of that to-
tal prizeW I . For any givenW I , Proposition 4 in the paper implies that a cutoff-disclosure
ES contest (with a cutoff n∗ that depends on λI ,W I , and c) maximizes the probability of
success in stage I . Moreover, recall that an ES prize scheme can be implemented by a
lottery, and the probability of success in an ES contest is increasing in the prize. Hence,
running a cutoff-disclosure ES contest in which each successful agent has an equal prob-
ability of receiving the prize maximizes the probability of success in stage I for any given
prize W I , and given such a cutoff-disclosure ES contest, the probability of success is in-
creasing in W I .

The preceding arguments imply that to maximize innovation, the principal can run a
cutoff disclosure ES contest in stage I , with the ES scheme implemented via lottery, and
have only one agent work on stage F . All that remains to be shown is that it is optimal
for the principal to set wI = 0, that is, to allocate the entire prize w to stage F and have

6 Bimpikis, Ehsani, and Mostagir (2014) also assume no uncertainty in the second stage of their setting.
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the value of succeeding in stage I be simply the continuation value of working on stage
F . To see why this is the case, note that the continuation value from being selected at T I

to advance to stage F is equal to wF − c/λF , and therefore an agent’s expected reward
for success in the cutoff disclosure ES contest of stage I is W IEn

[
1
n

∣∣n ≥ 1, T I
]

with W I =

wI + wF − c/λF . It is immediate that reducing wF by any amount ∆ > 0 and increasing
wI by the same amount would reduce the prize in stage F , and hence (weakly) reduce the
probability of success in that stage, while leaving unchanged an agent’s expected reward
for success and thus the probability of success in stage I .
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