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Abstract

We study a model of signaling in which agents are heterogeneous on two dimensions.

An agent’s natural action is the action taken in the absence of signaling concerns. Her

gaming ability parameterizes the cost of increasing the action. Equilibrium behav-

ior muddles information across the dimensions. As incentives to take higher actions

increase—due to higher stakes or more easily manipulated signaling technology—more

information is revealed about gaming ability, and less about natural actions. We ex-

plore a new externality: showing agents’ actions to additional observers can worsen

information for existing observers. Applications to credit scoring, school testing, and

web search are discussed.
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1. Introduction

In many signaling environments, there is a concern that agents’ gaming can lead to “mud-

dled” information. Google tries to prevent search engine optimization from contaminating

the relevance of its organic search results. The Fair Isaac Corporation keeps its precise credit

scoring formula secret to make it more difficult for consumers to game the algorithm. Edu-

cators worry that rich students have better access to SAT tutoring and test preparation than

do poor students, and so the test may be a flawed measure of underlying student quality.

Indeed, in March 2014, the College Board announced plans to redesign the SAT test, in part

to “rein in the intense coaching and tutoring on how to take the test that often gave affluent

students an advantage.” (New York Times, 2014)

In canonical signaling models (e.g., Spence, 1973), standard assumptions such as the

Spence-Mirrlees single-crossing condition ensure the existence of separating equilibria: equi-

libria that fully reveal agents’ private information. So the only welfare cost from gaming—i.e.,

strategic behavior—is through an increase in costly effort. Even though gaming may induce

an inefficient rat race, it does not lead to a reduction in market information.

This paper studies how gaming can worsen market information. We develop a model of

signaling in which agents have two-dimensional types. Both dimensions affect an agent’s cost

of sending a one-dimensional signal. The first dimension is an agent’s natural action, which is

the action taken (synonymous with the signal sent) in the absence of signaling concerns. The

second dimension is an agent’s gaming ability, which parameterizes the costs of increasing

actions beyond the natural level. In the credit scoring application, the signal is an agent’s

credit score; the natural action is the score the agent would obtain if this score would not

be disseminated; and gaming ability determines how costly it is for an agent to increase her

score. In the testing application, the natural action is the test score a student would receive

without studying, and gaming ability captures how easily the student can increase her score

by studying.

We assume that agents care about influencing a market’s belief about their quality on one

of the two dimensions, which we refer to as the dimension of interest.1 Situations abound in

which the dimension of interest is the natural action. For example, people with higher natural

credit scores default less often on loans; the credit market does not care about gaming ability

because this trait merely reflects one’s knowledge about how to manipulate credit scores.

1 More generally, beliefs on both dimensions could be relevant; we study such a case in Subsection 4.3.
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Similarly for search engine optimization, where higher natural actions correspond to more

relevant web pages. Yet, there are contexts in which the dimension of interest is the gaming

ability. In the testing environment, gaming ability would not be of interest to the market

if it solely represents “studying to the test”, but colleges or employers might value gaming

ability if it correlates with the ability to study more broadly. Or, in a job-market signaling

model, gaming ability may be correlated with intelligence and work ethic, while the natural

action—the amount of education that would be acquired if it were irrelevant to job search—

may capture a dimension of preferences for schooling that is unrelated to job performance.

We explore how the combination of heterogeneous gaming ability and natural actions

interact in determining the market’s information. In our formulation, detailed in Sec-

tion 2, each dimension of an agent’s type—natural action or gaming ability—satisfies a

single-crossing property. Thus, the effects of heterogeneity on any one dimension alone are

familiar. Indeed, if we were to assume homogeneity of natural actions and the dimension

of interest to be gaming ability, then our model would be similar to a canonical signaling

environment such as Spence (1973). If instead gaming ability were homogeneous and the

dimension of interest were the natural action, then our model would share similarities with,

for example, Kartik et al. (2007).2 In both cases, full separation would be possible.

With two dimensions of heterogeneity, the market is typically faced with muddled infor-

mation. Even though the market would like to evaluate an agent on her natural action (or

gaming ability), the information revealed about this dimension of an agent’s type is muddled

with irrelevant information about her gaming ability (or natural action). While agents who

take higher actions will tend to have both higher natural actions and higher gaming ability,

any observed action will generally not reveal either dimension. Intermediate actions might

come from an agent with a high natural action and a low gaming ability, an agent with a

low natural action and a high gaming ability, or an agent who is in-between on both.

A key contribution of this paper is to identify a relationship between the signaling costs

of cross types—pairs in which one has higher natural action but lower gaming ability than

the other. Our central assumption, formalized in Assumption 1 (part 4), is that at low

levels of signaling, differences in marginal cost are driven by differences in natural actions; at

higher levels of signaling, they depend more on differences in gaming ability. In other words,

as more gaming occurs, gaming ability becomes relatively more important in determining

2 Other signaling models with heterogeneity in natural actions include Bernheim (1994) and Bernheim
and Severinov (2003). There is also a parallel in the literature on earnings management, wherein a market
is assumed to observe a firm’s reported earnings but not its “natural earnings” (e.g., Stein, 1989).
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signaling costs.

The core of our analysis concerns comparative statics on equilibrium information on the di-

mension of interest. We establish that when agents’ incentives to take high actions increase—

because the stakes in signaling go up, for instance, or the costs of signaling go down—the

muddled information reveals more about an agent’s gaming ability and less about her natu-

ral action. Hence, as a search engine like Google becomes more popular and the stakes for

web sites to game its algorithm grow, Google searches can become less informative—even

after Google adjusts its algorithm to account for this extra gaming. Notwithstanding, our

analysis clarifies that while higher stakes lead to less information on one dimension, they

generate more information on the other.

Section 3 establishes these comparative statics globally in a canonical “two-by-two” setting

and provides general results for small and large signaling stakes. Section 4 develops a linear-

quadratic-elliptical specification: signaling benefits are linear in the market belief; costs are

quadratic; and the types are jointly elliptically distributed. This specification affords a sharp

equilibrium characterization and additional comparative-statics results.

In Subsection 5.1 we consider the value of giving agents more information about how to

manipulate signals, for example by making the inner working of the signaling technology

more transparent. A more transparent algorithm will lower the costs of signaling for all

agents, increasing the incentives to take higher actions. Therefore, when the dimension of

interest is the natural action, the market becomes less informed as the algorithm is made

more transparent. This analysis explains why evaluators often try to obscure the details of

their evaluation metrics, such as the College Board keeping past SAT questions secret for

many years: it improves the informativeness of its test.3

It bears emphasis that it is not gaming per se that reduces information about natural ac-

tions; for example, if web sites were all equally prone to engage in search engine optimization,

then their efforts could wash out and leave observers well informed. Rather, muddled infor-

mation is driven by the fact that there is unobservable heterogeneity across agents in how

prone they are to gaming. This provides an explanation for why, in addition to announcing

changes to the SAT itself in March 2014, the College Board also announced provision of free

online test preparation to “level the playing field”. Such a policy disproportionately helps

those with low intrinsic gaming ability (i.e., poor families). By reducing heterogeneity on

gaming ability, it should improve market information about natural actions.

3 There are, of course, alternative mechanisms by which opacity can improve welfare in other contexts.
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In Subsection 5.2 we explore a novel tradeoff in making a signal available to new observers.

With more observers tracking her actions, an agent’s stakes in signaling grow. At higher

stakes, the signal becomes less informative about the natural action. So there is a negative

informational externality on those observers who already had access to the signal. In the

context of credit scoring, allowing employers and insurance companies to use credit reports

will improve information in those markets, but at a cost of reducing the information available

in the loan market. The social value of information across markets can decline after the signal

is made available to new markets.

Muddled information—information loss on the dimension of interest owing to other di-

mensions of private information—is not a new phenomenon in signaling environments.4 See,

among others, Austen-Smith and Fryer (2005), Bénabou and Tirole (2006), Esteban and

Ray (2006) and Bagwell (2007) in the economics literature, and Dye and Sridhar (2008) and

Beyer et al. (2014) in the earnings-management accounting literature. As already mentioned,

our main contribution is developing the comparative statics of market information when it

is muddled and uncovering the general forces underlying these comparative statics.

The closest antecedent in this respect is the innovative work of Fischer and Verrecchia

(2000). They study a linear-quadratic-normal model (also seen in Bénabou and Tirole

(2006)) that is related to our linear-quadratic-elliptical specification in Section 4 with the

dimension of interest being the natural action. Their motivation is a manager’s report of

firm earnings given private information on both true earnings (analogous to our natural

action) and her own objectives (analogous to our gaming ability). Among other things,

Fischer and Verrechia show how “price efficiency”—the information on true earnings con-

tained in reported earnings—changes with parameters. For reasons explained in Section 4,

we use elliptical distributions with bounded support rather than normal distributions. The

linear-quadratic-normal and -elliptical specifications are appealing in their tractability. In

particular, they yield a scalar measure of information that one can combine with explicit

equilibrium computation to deduce comparative statics. However, owing to the limitations

of functional form assumptions and algebraic calculations, we believe that a proper under-

standing of the underlying forces requires a more general analysis based on more fundamental

4 Early work on signaling with multidimensional types (Quinzii and Rochet, 1985; Engers, 1987) establishes
the existence of fully separating equilibria under suitable “global ordering” or single-crossing assumptions.
As already noted, our model satisfies single-crossing within each dimension but not globally. See Araujo
et al. (2007) for a multidimensional-type model in which it is effectively as though single-crossing fails even
within a single dimension, which leads to “counter-signaling” equilibria. Feltovich et al. (2002) makes a
related point in a model with a single-dimensional type.
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assumptions. We aspire for Sections 2 and 3 of the current paper to elucidate these more

general forces.

We should note that there are arguments for incomplete revelation of information even

when agents have one-dimensional types satisfying single crossing. Separation may be pre-

cluded if there are bounds on the signal space, in which case there can be bunching at the

edges of the type space (Cho and Sobel, 1990). However, this does not seem relevant for

applications such as school testing or credit scores where few people have perfect scores.5

Indeed, if bunching at the edges is ever a problem, it may be possible to simply expand the

signal space: a test can be made more difficult. On the other hand, there are critiques of the

focus on separating equilibria even when these exist (Mailath et al., 1993); recently, Daley

and Green (2014) note that separating equilibria need not be strategically stable when the

market exogenously receives sufficiently precise information about the agents. Another rea-

son why the market may not be able to perfectly infer the agent’s type is that the signaling

technology may be inherently noisy (Matthews and Mirman, 1983), although this can again

be a choice object (Rick, 2013).

2. The Model

We study a reduced-form signaling game. An agent takes an observable action; we will

sometimes refer to “agents” for expositional convenience. The agent has two-dimensional

private information—her type—that determines her cost of taking a single-dimensional ac-

tion. The agent chooses an action and then receives a benefit that depends on an observer’s

belief about her type.

2.1. Types and signaling costs

The agent takes an action, a ∈ A ≡ R. The agent’s type, her private information, is

θ = (η, γ), drawn from a cumulative distribution F with compact support Θ ⊂ R × R++.

We write Θη and Θγ for the projections of Θ onto dimension η and γ respectively. The first

dimension of the agent’s type, η, which we call her natural action, represents the agent’s

intrinsic ideal point, or the highest action that she can take at minimum cost.6 The second

dimension, γ, which we call gaming ability, parameterizes the agent’s cost of increasing her

5 In 2014, less than 0.1% of students taking the SAT got a perfect 2400; the 99th percentile score was
2250 (College Board, 2014b). Also in 2014, only about 1% of the U.S. population had a perfect FICO credit
score of 850; less than 20% of people had a score between 800 and 850 (Wall Street Journal, 2015).

6 We will abuse notation by using the same symbols to denote both dimensions and realizations.
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action above the natural level: a higher γ will represent lower cost. (It will be helpful to

remember the mnemonics θ for type, η for natural, and γ for gaming.) The cost for an

agent of type θ = (η, γ) of taking action a is given by C(a, η, γ), also written as C(a, θ).

Using subscripts on functions to denote partial derivatives in the usual manner, we make

the following assumption on signaling costs.

Assumption 1. The cost function C : R×R×R++ → R is differentiable, twice-differentiable

except possibly when a = η, and satisfies:

1. For all γ and a ≤ η, C(a, η, γ) = 0.

2. For all γ and a > η, Caa(a, η, γ) > 0.

3. For all γ and a > η, Caη(a, η, γ) < 0 and Caγ(a, η, γ) < 0.

4. For any η < η and γ < γ, Ca(·, η, γ)/Ca(·, η, γ) is strictly increasing on [η,∞) and

there exists aor > η such that Ca(a
or, η, γ) = Ca(a

or, η, γ).

Together, parts 1 and 2 of Assumption 1 say that (i) the natural action a = η is an agent’s

highest cost-minimizing action, with cost normalized to zero; (ii) the agent can costlessly

take actions below her natural action (“free downward deviations”); (iii) the marginal cost

of increasing her action is zero at her natural action; and (iv) the agent incurs an increasing

and convex cost to take actions above this level. Part 3 of the assumption stipulates that the

marginal cost of increasing one’s action is lower for agents with either higher natural actions

or higher gaming ability. Consequently, C(·) satisfies decreasing differences (and hence a

single-crossing property) among ordered types: if a < a and θ < θ in the component-wise

order, then C(a, θ) − C(a, θ) ≥ C(a, θ) − C(a, θ), with a strict inequality so long as a is

strictly larger than θ’s natural action.

The fourth part of Assumption 1 places structure on how C(·) behaves for pairs of cross

types, where one type, (η, γ), has a strictly higher natural action but a strictly lower gaming

ability than the other, (η, γ). At low actions, the type with the higher η (and lower γ) has a

lower marginal cost of increasing its action. But this type’s marginal cost grows faster than

the other type’s. There is some cutoff action, aor, at which the marginal-cost ordering of the

two types reverses: at higher actions the type with the higher γ (and lower η) now has a

lower marginal cost of increasing its action. We refer to the action aor as the order-reversing

action for the given pair.
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Assumption 1 implies the existence of another cutoff action, one at which the cross types

share an equal signaling cost. We denote this action by ace and refer to it as the cost-

equalizing action. For any action below ace, the type with lower γ (but higher η) bears a

lower cost, whereas the relationship is reversed for actions above ace.

Lemma 1. For any η < η and γ < γ, there exists ace > aor such that C(ace, η, γ) =

C(ace, η, γ). Furthermore, for any a > η, sign[C(a, η, γ)− C(a, η, γ)] = sign[ace − a].

(All proofs are in the Supplementary Appendices unless otherwise noted.)

Figure 1 summarizes the implications of Assumption 1 when Θ consists of four types:

a low type, (η, γ); two intermediate cross types, (η, γ) and (η, γ); and a high type, (η, γ).

Subsection 2.3 elaborates on the economics of the Assumption.

η η ������
�

�(�� θ)

η γ

ηγ

η γ

η γ

Figure 1 – Cost curves when Θ = {η, η}×{γ, γ} with η < η and γ < γ. The solid red curve is
C(·, η, γ) and the solid blue curve is C(·, η, γ); the dashed red curve is C(·, η, γ) and the dashed
blue curve is C(·, η, γ). The C(·, η, γ) and C(·, η, γ) curves have equal slopes at aor.

Example 1. A canonical functional form is C(a, η, γ) = c(a, η)/γ. In this case the first

three parts of Assumption 1 reduce to requiring the analogous properties on c(a, η), with

the second requirement of part 3 automatically ensured. Since
Ca(a,η,γ)

Ca(a,η,γ)
= ca(a,η)

ca(a,η)
γ
γ
, a sufficient

condition for part 4 is that for any η < η, ca(·,η)
ca(·,η)

is strictly increasing on the relevant domain

with lim
a→∞

ca(a,η)
ca(a,η)

= 1. In particular, given any exponent r > 1, the cost function C(a, η, γ) =

(max{a− η, 0})r/γ satisfies Assumption 1. This family will be our leading example.7 ‖

7 In this family, for any pair of cross types (η, γ) and (η, γ), aor and ace can be computed as aor =
ηγk−ηγk

γk−γk
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2.2. Beliefs, payoffs, and equilibrium

There is one dimension of interest about the agent’s type, τ ∈ {η, γ}. After observing

the agent’s action, an observer or “market” forms a posterior belief βτ ∈ ∆(Θτ ) over the

dimension of interest, where ∆(X) is the set of probability distributions on a (measurable)

set X. The market evaluates the agent by the expected value of her type on dimension τ ,

which we denote τ̂ : τ̂ ≡ Eβτ [τ ]. We refer to τ̂ as the market belief about the agent. Gross

of costs, the value or benefit from signaling for an agent who induces belief τ̂ is denoted

V (τ̂ ; s), where s ∈ R++ parameterizes the signaling stakes. This benefit is independent of

an agent’s type. We maintain the following assumption about the benefit function.

Assumption 2. The benefit function, V (τ̂ ; s), is continuous and satisfies:

1. For any s, V (·; s) is strictly increasing.

2. V (·) has strictly increasing differences: for any τ̂ ′ > τ̂ , V (τ̂ ′; ·) − V (τ̂ ; ·) is strictly

increasing.

3. For any τ̂ ′ > τ̂ , V (τ̂ ′; s) − V (τ̂ ; s) → ∞ as s → ∞ and V (τ̂ ′; s) − V (τ̂ ; s) → 0 as

s→ 0.

In other words, the agent prefers higher market beliefs, and higher beliefs are more valu-

able when stakes are higher. The benefit of inducing any higher belief grows unboundedly as

stakes grow unboundedly, and analogously as stakes vanish. An example that we will refer to

is V (τ̂ ; s) = sv(τ̂) for some strictly increasing v(·). Note that higher stakes do not represent

greater direct benefits from taking higher actions; rather, they capture greater rewards to

inducing higher market beliefs.

Combining the benefits and costs of signaling, an agent of type θ = (η, γ) who plays

action a yielding beliefs τ̂ on dimension τ has net (von-Neumann Morgenstern) payoff

V (τ̂ ; s)− C(a, θ). This payoff function together with the prior distribution of types, F , in-

duces a signaling game in the obvious way. We focus on (weak) Perfect Bayesian equilibria—

simply equilibria, hereafter—of this signaling game: every type of the agent chooses its action

optimally given the market belief function τ̂(a), and the market belief is derived from Bayes

Rule on the equilibrium path (with no restrictions off path). Given that the agent cares

about the market belief on only one dimension of her type, equilibria cannot generally fully

and ace =
ηγl−ηγl

γl−γl , where k = 1/(r − 1) and l = 1/r.
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reveal both dimensions (cf. Stamland, 1999). We say that an equilibrium is separating if

it fully reveals the agent’s private information on the dimension of interest; an equilibrium

is pooling if it reveals no information on the dimension of interest; and an equilibrium is

partially-pooling if it is neither separating nor pooling. We say that two equilibria are equiv-

alent if they share the same mapping from types to (distributions over) the posterior belief,

βτ , and the same mapping from types to (distributions over) signaling costs.

The assumption of free downward deviations implies that equilibrium beliefs must be

monotone over on-path actions. More precisely, following the convention that sup ∅ = −∞:

Lemma 2. In any equilibrium, if a′ < a′′ are both on-path actions, then τ̂(a′) ≤ τ̂(a′′).

Moreover, for any equilibrium, there is an equivalent equilibrium in which (i) if a′ < a′′ are

both on-path actions, then τ̂(a′) < τ̂(a′′); and (ii) if a is an off-path action, then

τ̂(a) = max{min Θτ , sup{τ̂(a′) : a′ is on path and a′ < a}}.

The first statement of the lemma is straightforward. Part (i) of the second statement

follows from the observation that if there are two on-path actions a′ < a′′ with τ̂(a′) = τ̂(a′′),

then one can shift any type’s use of a′′ to a′ without altering either the market belief at a′

or any incentives. We will refer to this property as belief monotonicity, and without loss

of generality, we restrict attention to equilibria that satisfy it. Part (ii) assures that there

would be no loss in also requiring weak monotonicity of beliefs off the equilibrium path.

Remark 1. By free downward deviations, there is always a pooling equilibrium in which all

types play a = min Θη.

Remark 2. If the agent has private information only on the dimension of interest, with

the component of her type on the other dimension known to the market, then there is a

separating equilibrium. More generally, if there are no cross types in Θ then there is a

separating equilibrium due to the single-crossing property.

2.3. Discussion of the model

Assumptions. Two of our assumptions warrant additional discussion. The first is free

downward deviations (part 1 of Assumption 1): an agent can costlessly take any action

below her natural action. As noted above, free downward deviations ensures that equilibrium

beliefs are monotonic in actions and that a pooling equilibrium always exists. These two

properties are common features of signaling games. The fact that free downward deviations
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guarantees the properties simplifies our analysis. In making the assumption, though, we

are primarily motivated by applications. It is much easier to make web pages appear to be

of lower than higher quality; it is obvious how to wreck one’s credit score but not how to

raise it; and it is virtually costless to get questions wrong on a test, whereas getting more

questions right is difficult.

Notwithstanding, in some settings there may be a direct cost of deviating downwards.

An accountant manipulating financial reports, as in Fischer and Verrecchia (2000), cannot

easily make them look worse than they truly are; lowering one’s credit score by failing to

pay a bill on time may incur monetary costs; or, as in Kartik (2009), agents make dislike

lying regardless of the direction in which they lie.8

The mechanism explored in our paper does not turn on the assumption of free downward

deviations. Indeed, take any equilibrium strategy profile in which each type’s action is weakly

above her natural action. This strategy profile would remain an equilibrium even with costly

downward deviations—unplayed lower actions would now be even less attractive. Section 4

studies a specification of the model and a class of equilibria in which actions are in fact

never below natural actions. Hence, the results therein would be unchanged if downward

deviations were made costly.

The second assumption to highlight, our key assumption, is part 4 of Assumption 1: for

any pair of cross types, the ratio of marginal costs of the high natural action type to the high

gaming ability type is increasing in the action. The interpretation is that as more gaming

occurs—i.e, as agents choose higher actions—cost differences become less driven by variation

in natural actions, and more by variation in gaming ability. In the credit scoring example,

suppose Anne has a natural credit score of 675 and low gaming ability, while Bob has a lower

natural score, 600, but a higher gaming ability. If both agents aim for a credit score around

700, Anne’s marginal cost of score improvement is lower than Bob’s: Anne can address the

most obvious flaws on her credit history while Bob has already made a lot of changes from his

natural behavior. At higher scores around 800, though, Bob’s marginal cost of improvement

is lower than Anne’s: both Anne and Bob must engage in a lot of gaming to reach this level,

and Bob is the one who knows more about how to game or is better at it.

In many settings, over the relevant range of actions, we think our key assumption is likely

to be valid. On the other hand, one can conceive of violations. For instance, no matter

8 In the sender-receiver lying cost application, η represents a payoff-relevant state for the receiver, a is
the sender’s message, and the sender’s lying cost is given by, say, −(a− η)2/(2γ). The parameter γ captures
how much the sender dislikes lying. Kartik (2009) studies a related model without heterogeneity on γ.
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the amount of studying (gaming), only those with sufficiently high natural ability (natural

actions) might be able to attain the highest scores on an IQ test. It turns out, however, that

the assumption is crucial for the comparative statics on how market information responds

to changes in stakes. Indeed, we view one of our main contributions as identifying the role

and importance of such an assumption. In the conclusion of the paper we discuss how our

analysis helps shed light on situations in which the assumption may not be satisfied.

Applications. Our analysis considers either the natural action or the gaming ability as

the possible dimension of interest.

Natural action as the dimension of interest. The main applications we are motivated by are

school tests, web search, and credit scores. Heterogeneity of natural actions reflects that

agents would take different actions absent signaling concerns. Students get different SAT

scores prior to studying; web sites are more or less relevant for a given query; and even

without a formal credit score, consumers differ in their propensity to pay bills on time. This

natural action is of direct interest to the colleges admitting students, people searching the

web, and banks offering loans.

There are a number of (non-exclusive) sources for heterogeneity in gaming ability in these

applications. One is underlying skills: some students may simply be more facile at studying.

Another is that agents could have heterogeneous understanding of how to game a signal due

to differing experience or information. Some students may have access to tutors with better

practice materials; professional web designers are more attuned than amateurs to search

engine optimization techniques; and some consumers do not know strategies to improve

one’s credit score, as evidenced by the large genre of books on the subject.

Agents may also have different preferences for gaming: students vary in how much they

enjoy or dislike studying. Those who enjoy it more face a lower cost of increasing their test

scores. When gaming involves monetary costs, we can also interpret those with access to more

money as having a lower disutility of spending money relative to the signaling benefits. In

particular, the College Board worries that richer students can better afford private tutoring

and test prep courses for its SAT test (College Board, 2014a).9

When there are unethical approaches to gaming, differences in “integrity” could affect

agents’ preferences towards gaming. In addition to studying for exams, students can find

9 Our analysis will imply that a student’s score should be interpreted differently based on the available
information about her wealth—an issue that is much debated in college admissions.
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ways to cheat. Web sites can engage in undesirable behaviors like “webspam” or “black hat

SEO” to improve their search rankings. Colleges can and sometimes do engage in dubious

activities to affect their US News & World Report (US News) rankings (e.g., New York

Times, 2008).

One can also interpret an agent’s gaming ability as parameterizing her private benefits :

if C(a, η, γ) = c(a, η)/γ, then the net payoff function V (τ̂ ; s) − c(a, η)/γ represents the

same preferences as the payoff function γV (τ̂ ; s)− c(a, η). Intuitively, it is indistinguishable

whether rich students have a lower cost of paying for coaching relative to their benefit from

higher scores, or whether these students have a higher benefit (in dollar terms) relative to the

monetary cost of such coaching. Alternatively, some web site owners are more interested in

attracting hits than others. In related applications, managers value the market’s evaluation

of their firm’s earnings differently (Fischer and Verrecchia, 2000), and individuals vary in

how much they care about their social image (Bénabou and Tirole, 2006).

Gaming ability as the dimension of interest. There are contexts in which what we refer

to as the gaming ability would be the dimension of interest. Indeed, Spence’s (1973) frame-

work of job-market signaling is precisely one in which the market values “gaming” ability,

because the ability to “game” by completing undesirable schooling at lower cost is positively

correlated with productivity. While the simplest version of Spence (1973) has a homoge-

neous natural action of acquiring no education, there may in fact be underlying preference

variation over education that is irrelevant to employers. Similarly, pre-existing variation in

SAT scores might arise from differences in socioeconomic status or high school quality while

“gaming” ability correlates with a broader ability to study and learn new skills. (Colleges

or employers could value a mix of both dimensions; see Subsection 4.3.)

Other applications for gaming ability as the dimension of interest emerge when gaming

ability is reinterpreted as private benefits, as discussed above. For instance, better students

may tend to have a stronger preference to attend better colleges, expecting to get more out

of the experience. Colleges would then prefer to admit those students with higher private

benefits. Esteban and Ray (2006) make a related point in the context of signaling quality

for license procurement.

2.4. Measuring information and welfare

The natural measure for agent welfare is the expected payoff across types, E[V (τ̂ ; s)− C(a, θ)].

We say that allocative efficiency is the expected benefit from signaling gross of signaling costs:

12



E[V (τ̂ ; s)]. Besides these standard quantities, our focus in this paper will be on the amount

of information revealed about the dimension of interest of the agent’s type, τ .

Recall that βτ ∈ ∆(Θτ ) is the market posterior (the marginal distribution) over the di-

mension of interest, τ . From the ex-ante point of view, any equilibrium induces a probability

distribution over βτ , which is an element of ∆(∆(Θτ )). In any equilibrium, the expectation

over βτ must be the prior distribution over τ . Equilibria may differ, however, in the distri-

bution they induce over βτ . A separating equilibrium is fully informative about τ : after any

on-path action, βτ will be degenerate. A pooling equilibrium is uninformative about τ : after

any on-path action, βτ is simply the prior over τ . To compare informativeness of equilibria

in between these two extremes, we will use the canonical partial ordering of Blackwell (1951,

1953). We say that a distribution of beliefs or posteriors is more informative than another if

the former is a mean-preserving spread of the latter.10 An equilibrium e′ is more informative

about τ than an equilibrium e′′ if the distribution of βτ under e′ is more informative than

that under e′′.

As the agent’s signaling benefit depends only on the market’s posterior mean on the

dimension of interest, τ̂ , we will also be interested in information specifically about τ̂ rather

than about the entire distribution βτ . An equilibrium e′ is more informative about τ̂ than

e′′ if the distribution of τ̂ under e′ is a mean-preserving spread of the distribution under

e′′.11 An equilibrium is uninformative about τ̂ if the distribution it induces over τ̂ is a

point mass at the prior mean of τ ; it is fully informative about τ̂ if every on-path action

reveals the agent’s true mean on the dimension of interest. Note that an equilibrium can be

uninformative about τ̂ even if the equilibrium is informative about τ . On the other hand,

an equilibrium is fully informative about τ̂ if and only if it is fully informative about τ . In

general, the partial order on equilibria generated by information about τ̂ is finer than that

generated by information about τ : more informative about τ implies more informative about

τ̂ , but more informative about τ̂ does not necessarily imply more informative about τ .12

Comparing equilibria according to their informativeness is appealing because of the fun-

damental connection between this statistical notion and allocative efficiency E[V (τ̂ ; s)]. If

10 Throughout this paper, we use the terminological convention that binary comparisons are always in the
weak sense (e.g., “more informative” means “at least as informative as”) unless explicitly indicated otherwise.

11 Our notion of informativeness about τ̂ is the same as Ganuza and Penalva’s (2010) integral precision.
Informativeness about τ̂ is prior-dependent, unlike informativeness about τ .

12 If Θτ is binary, then the posterior mean τ̂ is a sufficient statistic for the posterior distribution βτ . In this
case, more informative about τ̂ does imply more informative about τ , and uninformative about τ̂ implies
uninformative about τ .
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the benefit function V (·; s) is convex, then for fixed stakes there is higher allocative efficiency

when the beliefs about τ̂ are more informative (and hence also when the beliefs about τ are

more informative). If V (·; s) is concave, the opposite holds: allocative efficiency is maximized

by pooling all types and leaving the market belief at the prior. For a linear V (·; s), allocative

efficiency is independent of the information about τ̂ .

We are primarily motivated by situations where information has an allocative benefit,

corresponding to a weakly convex benefit function. Consider, for instance, a market in

which consumers (agents) bring differing service costs to a firm that provides them a product.

Revealing information about consumer costs means that higher cost consumers will be offered

higher prices. This information transfers surplus from high cost to low cost consumers but

also improves the efficiency of the allocation. Appendix A provides an explicit example

relating the demand curve for a product to the shape of a convex benefit function.

3. The Effect of Stakes on Muddled Information

3.1. A 2× 2 setting

This section considers a 2 × 2 setting: Θ ⊆ {η, η} × {γ, γ}, with η < η and γ < γ. We

will be able to establish global comparative statics here on the informativeness of equilibria

with respect to the stakes.

First, to develop intuition, consider a special case in which the prior’s support is the two

cross types, (η, γ) and (η, γ). Call (η, γ) “the natural type,” as it has the higher natural ac-

tion, and (η, γ) “the gamer.” With only these cross types, the following observation suggests

why information about the natural action decreases with stakes while information about the

gaming ability increases.

Observation 1. When Θ = {(η, γ), (η, γ)}:

1. If τ = η, then there is a threshold s∗η > 0 such that a separating equilibrium exists if

and only if s ≤ s∗η; for all s > s∗η, a partially-pooling equilibrium exists; and as s→∞,

all equilibria are approximately uninformative.13

2. If τ = γ, then there are thresholds 0 < s∗∗γ < s∗γ such that all equilibria are pooling if

s ≤ s∗∗γ ; and a separating equilibrium exists if and only if s ≥ s∗γ.

13 See Subsection 3.2 for a definition of approximately uninformative. It suffices in the present context
that for any ε > 0, there is an s > 0 such that when s > s, in any equilibrium and for any on-path action a,
|η̂(a)− E[η]| < ε.
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The logic driving the observation is worth going through. First suppose the dimension

of interest is the natural action (τ = η), so that both types want to be thought of as the

natural type. If stakes are low, one separating equilibrium has both types playing their

natural actions, at zero cost. The natural type obviously prefers not to deviate downwards

even though it could do so for free; and the gamer is unwilling to bear the cost of mimicking

the natural type. On the other hand, there cannot be a separating equilibrium when stakes

are high. The gamer would be willing to take any action below the cost-equalizing action,

ace, to be thought of as the natural type; and the natural type cannot separate by taking an

action above ace, as any such action would be less costly for the gamer.

When the dimension of interest is the gaming ability (τ = γ), both types want to be

thought of as the gamer. Separation now requires high stakes, as the gamer cannot separate

by taking an action below ace. At high enough stakes, there will be an a > ace such that

only the gamer would be willing to take a in order to be thought of as the gamer. On the

other hand, at low enough stakes, the gamer would not be willing to take any action above

η; by free downward deviations, the natural type can costlessly mimic the gamer, and hence

only pooling equilibria exist.

In addition to separating and pooling equilibria, there can be partially-pooling equilibria.

One—but not necessarily the only—form of partial pooling is as follows. Pick any action

a1 ∈ [η, aor), where aor is the order-reversing action. There is a corresponding action a2 ∈
(aor, ace] such that the gamer and the natural type bear the same incremental cost of moving

from a1 to a2. At high enough stakes, regardless of the dimension of interest, there is

a partially-pooling equilibrium in which both types mix over these two actions.14 The two

types can both be indifferent because they pay the same additional cost and receive the same

additional signaling benefit when increasing their action from a1 to a2. If the dimension of

interest is the natural action, these equilibria are the only informative ones at high enough

stakes. But they become uninformative as stakes go to infinity: the belief at the lower action

a1 must converge to the belief at the higher action a2 in order for the signaling benefit of

increasing from a1 to a2 to remain constant (equal to the unchanging cost difference).

So, with only cross types, as summed up in Observation 1, when τ = η the market can

14 When both types mix in this fashion, no action in (a1, a2) can be taken; however, there may be on-path
actions above a2 or below a1. By Assumption 1 part 4, the gamer has a lower incremental cost than the
natural type of moving to actions above a2, and also a larger cost reduction of moving to actions below a1.
So any actions besides a1 and a2 can only be taken by the gamer. Since beliefs must be monotonic on path,
the gamer can take an action below a1 when τ = η and above a2 when τ = γ. When τ = η, however, at
sufficiently high stakes the gamer would no longer be willing to reveal itself by taking an action below a1.
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get full information at low stakes but approximately no information at high stakes. When

τ = γ, there is no information at low stakes but there can be full information at high stakes.

Armed with this intuition, let us turn to global comparative statics. We seek to show

that information decreases in stakes when τ = η and increases in stakes when τ = γ, not

just for the case of two cross types but for the more general 2 × 2 type space. For any

given stakes, there are typically multiple equilibria; these equilibria need not all be ranked

by their (Blackwell) informativeness. We use the weak set order to compare equilibrium

sets: equilibrium set Q is more informative about τ than equilibrium set Q′, and Q′ is less

informative about τ than Q, if (i) for any equilibrium e ∈ Q there exists e′ ∈ Q′ with e

more informative about τ than e′, and (ii) for any e′ ∈ Q′ there exists e ∈ Q with e more

informative about τ than e′. Condition (i) is satisfied whenever the comparison is between all

equilibria at different parameters, simply by taking e′ ∈ Q′ to be a pooling equilibrium (which

always exists, as was noted in Remark 1). So it is only condition (ii) that has bite when

comparing sets of equilibria across parameters: for any equilibrium in the less informative

set, there is an equilibrium in the more informative set that is more informative.15

The following proposition is the main result of this subsection.

Proposition 1. In the 2× 2 setting, consider stakes s < s.

1. When τ = η, the set of equilibria under s is more informative about η than the set of

equilibria under s.

2. When τ = γ, the set of equilibria under s is less informative about γ than the set of

equilibria under s.

To prove Proposition 1, we first fix a dimension of interest, a level of stakes, and an

arbitrary equilibrium. We then look at nearby equilibria as we perturb the stakes. We

construct a path of new equilibria in which the belief distribution (continuously) becomes

more informative as stakes move in the appropriate direction: lower stakes when τ = η and

higher stakes when τ = γ. Formally:

Lemma 3. In the 2×2 setting, let Q(s) be the set of equilibria at stakes s > 0, and fix some

equilibrium e0 at stakes s0 > 0.

15 There may exist no “most informative” equilibrium in an equilibrium set. If we were to extend the
Blackwell (1951) partial ordering to a complete ordering, then our notion of equilibrium set Q being more
informative than equilibrium set Q′ (which contains a pooling equilibrium) would correspond to the most
informative element of Q being more informative than that of Q′.
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1. When τ = η, there is a function eη(s) from stakes s ∈ (0, s0] to an equilibrium in Q(s)

such that (i) eη(s0) = e0; (ii) the distribution of βη under eη(s) is continuous in s;16

and (iii) eη(s
′′) is less informative than eη(s

′) for any s′′ > s′.

2. When τ = γ, there is a function eγ(s) from stakes s ∈ [s0,∞) to an equilibrium in

Q(s) such that (i) eγ(s0) = e0; (ii) the distribution of βγ under eγ(s) is continuous in

s; and (iii) eγ(s
′′) is more informative than eγ(s

′) for any s′′ > s′.

Lemma 3 implies Proposition 1. The lemma’s proof is involved because, even in this 2×2

setting, an equilibrium can have many different combinations of binding incentive constraints.

We provide a sketch of the proof in Appendix C. The proof confirms that, starting at any

such combination, a suitable perturbed equilibrium can be found as the stakes go up (when

τ = γ) or down (when τ = η). The same basic logic applies in some form for each case:

to increase information about τ as the stakes vary, we shift mixing probabilities of high-τ

types from low actions with low beliefs to high actions with high beliefs, and/or shift mixing

probabilities of low-τ types from high actions to low actions. The main cases begin from an

equilibrium akin to the partially-pooling ones discussed in the context of Observation 1: the

two cross types are both indifferent between the same pair of on-path actions a1 ∈ [η, aor)

and a2 ∈ (aor, ace]. The low type, (η, γ), takes an action no larger than a1. The high type,

(η, γ), takes an action no smaller than a2.

Although Proposition 1 is stated for the entire set of equilibria, we conjecture that its

conclusion would also hold were attention restricted to equilibria satisfying stability-based

refinements such as D1 or divinity (Cho and Kreps, 1987; Banks and Sobel, 1987).17

3.2. General type spaces

For more general type spaces, Θ ⊂ R × R++, we are unable to get global comparative

statics on information as stakes vary. Instead, to extend the theme that observers tend to

be more informed about the natural action at low stakes and more informed about gaming

ability at high stakes, we generalize Observation 1. As stakes get arbitrarily small or large,

we provide results on the existence of separating equilibria, as well as conditions guaranteeing

that equilibria become approximately uninformative about τ̂ . Formally, we say that at high

(resp., low) stakes, equilibria are approximately uninformative about τ̂ if for any sequence

16 I.e., for a sequence s→ s∗, the corresponding distributions under s converge weakly to that under s∗.
17 Bagwell (2007) studies equilibria satisfying the intuitive criterion in a model with 2 × 2 types; he does

not analyze comparative statics of informativeness.
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of equilibria es at stakes s > 0, it holds that as s→∞ (resp., s→ 0), the distribution of τ̂

under es weakly converges to the uninformative distribution, a point mass at E[τ ].

First consider the natural action as the dimension of interest.

Proposition 2. Assume τ = η.

1. If |Θη| <∞, then at low stakes there is a fully informative equilibrium about η.

2. If Θ has any cross types, then at high stakes there is no fully informative equilibrium

about η.

3. If the marginal distribution of γ is continuous and if E[η|γ] is non-increasing in γ,

then at high stakes equilibria are approximately uninformative about η̂.

(Owing to their centrality, the proofs of Proposition 2 and Proposition 3 are in Appendix

D rather than the Supplementary Appendices.)

Parts 1 and 2 of Proposition 2 are relatively straightforward given our discussion in the

2 × 2 setting. Regarding part 2, recall that if there were no cross types, then standard

arguments based on the single-crossing property imply that a separating equilibrium would

exist at any level of stakes.

Part 3 of Proposition 2 is a consequence of Lemma 4 in Appendix D, which states that

for any pair of cross types, as stakes get large, the type with higher gaming ability must

induce a belief not much lower, and possibly strictly higher, than any belief induced by the

other type. In the limit as s→∞, any type with strictly higher gaming ability than another

type induces a weakly higher belief about its natural action. This monotonicity of beliefs in

the limit provides an upper bound on how informative an equilibrium can be about natural

actions at very large stakes: any limiting distribution of beliefs on η must be “ironed” so

that the set of γ types consistent with a belief η̂ is weakly increasing in η̂ (in the sense of the

strong set order). Under the hypotheses of part 3 of Proposition 2, any limiting distribution

is necessarily uninformative about the posterior mean η̂.

Two observations help explain the hypotheses in part 3 of Proposition 2. First, if the

distribution of γ were not continuous, then a mass of types with the lowest γ and a low η

(or the highest γ and a high η) might separate from other types even in the limit as s→∞,

revealing information about their η. Second, even with a continuous distribution of γ, if the

expectation E[η|γ] were strictly increasing in γ—e.g., because of positive correlation between
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η and γ —then types with higher γ might be able to signal their higher average η by taking

higher actions.

Turning to gaming ability as the dimension of interest:

Proposition 3. Assume τ = γ.

1. If |Θγ| <∞, then at high stakes there is a fully informative equilibrium about γ.

2. If Θ has any cross types, then at low stakes there is no fully informative equilibrium

about γ.

3. If the marginal distribution of η is continuous and if E[γ|η] is non-increasing in η, then

at low stakes equilibria are approximately uninformative about γ̂.

The logic is more or less a mirror image of that Proposition 2, with Lemma 5 in Appendix

D playing an analogous role to Lemma 4.

4. A Linear-Quadratic-Elliptical Specification

This section studies a specification of our general framework that permits an explicit

equilibrium characterization and additional comparative statics. We specialize to a linear

benefit V (τ̂ ; s) = sτ̂ and a quadratic cost C(a, η, γ) = (max{a− η, 0})2 /(2γ). Given stakes

s > 0, the agent’s payoff is thus

sτ̂ − (max{a− η, 0})2

2γ
. (1)

Furthermore, the agent’s type θ = (η, γ) is drawn from an elliptical distribution: a distribu-

tion in which there is a constant probability density on each concentric ellipse about a mean.

We refer to this specification of preferences and type distribution as the linear-quadratic-

elliptical, or LQE, specification.

Formally, an (absolutely continuous) elliptical distribution E(µ,Σ, g) over a two-dimensional

realization x = (x1, x2) is defined by µ = (µ1, µ2) ∈ R2, Σ =

(
σ2

1 σ12

σ12 σ2
2

)
a positive

definite matrix, and g(·) : R+ → R+ a measurable function called the density genera-

tor. The probability density of this distribution is f(x) = k|Σ|−1/2g((x − µ)Σ−1(x − µ)′),
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with k = 1/(π
∫
g(t)dt) ∈ R++ a constant of integration.18 We take θ to be drawn from

E(µθ,Σθ, gθ), where µθ = (µη, µγ) and Σθ =

(
σ2
η ρσησγ

ρσησγ σ2
γ

)
with ση > 0, σγ > 0, and

ρ ∈ (−1, 1). Our maintained assumption of a compact support corresponds to a requirement

that gθ has compact support. Without loss, let the support of gθ be contained in [0, 1]; then

for i ∈ {η, γ}, the support of the marginal distribution of i is [µi − σi, µi + σi]. In order to

guarantee our maintained assumption that γ > 0 for all types, assume µγ > σγ.

In an elliptical distribution with a given density generator g, the marginal distribution of

component i = 1, 2 depends only on µi and σi. (See Gómez et al. (2003) for an accessible

introduction to this and other properties of elliptical distributions.) The vector of means is

µ. The covariance matrix is αΣ for some constant α > 0 which depends only on g. The

correlation coefficient between the two components is therefore σ12/(σ1σ2). The coefficient

of determination in a linear regression of one component on the other, what is commonly

referred to as the R2, is equal to the square of this correlation coefficient: R2 ≡ σ2
12/(σ

2
1σ

2
2).

Elliptical distributions are a generalization of joint normal distributions. Normality cor-

responds to the density generator g(t) = exp{(−1/2)t}. We cannot use normal distributions

(and have ruled them out by requiring gθ to have compact support) because they would

entail types with γ < 0; an agent with γ < 0 and objective (1) would obtain direct benefits

rather than incurring costs from taking higher actions. A simple example of an elliptical

distribution with compact support is a uniform distribution over the interior of an ellipse,

which corresponds to g(t) = 11{t≤1}. Elliptical distributions preserve many useful properties

of joint normal distributions. Crucially, when (η, γ) is elliptically distributed and the action

a is any linear function of η and γ, it holds that E[τ |a] is a linear function of a. So a linear

strategy in the agent’s type will imply a linear market belief. (Quadratic costs and linear

benefits will ensure a linear strategy is optimal given a linear market belief.)

Our analysis in this section is related to Fischer and Verrecchia (2000), Bénabou and

Tirole (2006, Section II.B), and Gesche (2016). Fischer and Verrecchia (2000) and Bénabou

and Tirole (2006) have previously studied related specifications to what we use; they take

their type distribution to be bivariate independent normal and focus on the dimension of

interest being (their analog of) τ = η.19 Bénabou and Tirole study equilibrium actions.

18 We assume g(·) is Lebesgue integrable with
∫
g(t)dt ∈ R++. The notation |Σ| refers to the determinant

of Σ and (x− µ)′ refers to the transpose of (x− µ). Vectors x and µ are row vectors prior to transposition.
19 Recall from Subsection 2.3 that γ can be reinterpreted as parameterizing private benefits rather than

gaming ability. Specifically, when γ > 0, the objective (1) is equivalent to sγτ̂ − (max{a− η, 0})2/2. This
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We emphasize comparative statics of equilibrium informativeness, which were studied in

Fischer and Verrecchia’s Corollary 3, and which play a role in Ali and Bénabou (2016). Our

analysis adds broader dimensions of interest (allowing for τ = γ and even a mixture) as

well as correlation of types. Permitting correlation is important for our applications. For

example, types are correlated when students from a higher socioeconomic class can more

easily pay for effective test preparation (higher γ) and also tend to be better prepared for

college (higher η). We owe the idea of using elliptical distributions to Gesche (2016); his

equilibrium characterization is related to ours for the case of τ = η, but he makes somewhat

different assumptions than we do and he does not focus on market information.

Consistent with the common practice in models with normal distributions, we will focus

on linear equilibria in our LQE specification: equilibria in which an agent of type (η, γ)

takes action a = lηη + lγγ + b, for some constants lη, lγ, and b. In any such equilibrium, the

market belief, τ̂(a), is a linear function of the agent’s action.20 Moreover, (i) the vector (τ, a)

is elliptically distributed with the same density generator gθ as (η, γ), and (ii) the ex-ante

distribution of posteriors βτ about τ given a is determined entirely by R2
τa, the R2 between

τ and a. Fixing gθ and fixing the prior distribution of τ , a higher R2
τa implies an equilibrium

that is more informative about the market belief τ̂ . An R2
τa of 1 implies a fully informative

equilibrium about τ̂ (and hence also about τ). An R2
τa of 0 is uninformative about τ̂ .21 See

Lemma 6 and Lemma 8 in Supplementary Appendix SA.3 for details.

We begin by characterizing linear equilibria. As in our general analysis earlier, free down-

ward deviations ensures that any equilibrium must have a market posterior τ̂(·) that is

non-decreasing in a on the equilibrium path, and that there is a pooling equilibrium in

which τ̂(·) is constant. Thus, a linear equilibrium is informative about τ̂ if and only if the

latter objective is still meaningful when some agents have γ < 0, under the interpretation that some agents
prefer lower market beliefs to higher. If the cost function is then modified from (max{a− η, 0})2/2 to
(a− η)2/2, i.e., to let downward deviations from the natural action be symmetrically costly to upward
deviations, one recovers the objective function analyzed by Fischer and Verrecchia (2000), Bénabou and
Tirole (2006), and Gesche (2016). In that specification, agents with γ < 0 will take actions below their ideal
point η at a positive cost in order to reduce market beliefs.

20 Strictly speaking, the market belief is only pinned down at on-path actions. It is without loss for our
purposes to stipulate a globally linear market belief.

21R2
τa = 0 implies that τ and a are uncorrelated: τ̂ , the posterior mean conditional on a, is constant

with respect to a. However, while the equilibrium is uninformative about τ̂ , it is still informative about
τ . The support of τ depends on a, for instance. Indeed, when two random variables are jointly elliptically
distributed, they can be independent only if the distribution is joint normal (Kelker, 1970).
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market belief is increasing in the agent’s action. An increasing linear equilibrium has

τ̂(a) = La+K (2)

for some L > 0. Given a market belief of the form (2), the agent’s optimal action is unique:

a = η + sLγ. (3)

When the agent plays a linear strategy, the market’s posterior beliefs will be elliptically

distributed with mean linear in the agent’s action. Increasing linear equilibria are determined

by solving for a fixed point: values of L > 0 and K under which the market’s induced beliefs

have mean equal to that hypothesized. While we relegate the details to Lemma 9 in Appendix

SA.3, it is useful to note that an equilibrium value of L > 0 is determined as:

L =
L(s, L, τ)σ2

τ + L(s, L,¬τ)ρσησγ
σ2
η + s2L2σ2

γ + 2sLρσγση
, (4)

where ¬τ refers to the dimension other than the dimension of interest (e.g., ¬τ = γ when

τ = η), and L(s, L̃, η) ≡ 1 and L(s, L̃, γ) ≡ sL̃. By Equation 2, the equilibrium constant L

measures the responsiveness of the market belief τ̂ to the agent’s action.

Remark 3. By Equation 3, the agent takes an action above her natural action in any in-

creasing linear equilibrium. Consequently, such equilibria are unaffected by relaxing free

downward deviations: making it costly for the agent to take actions a < η (e.g., C(a, η, γ) =

−(a− η)2/(2γ)) would only make some deviations even less attractive.

Remark 4. Fixing a joint distribution over η and γ with ρ ≥ 0, an equilibrium will be less

informative about η̂ and more informative about γ̂ when the coefficient sL in Equation 3 is

larger; see Lemma 7 in Appendix SA.3. Fixing the marginal distribution of τ and varying ρ

or σ¬τ , though, sL is no longer a sufficient statistic for information. One will need to look

at R2
τa, with explicit formulas given in Equations SA.6 and SA.7 of Appendix SA.3.

4.1. Dimension of interest is the natural action

Assume τ = η. As described above, informativeness about η̂ is captured by the one-

dimensional value R2
ηa ∈ [0, 1].

Proposition 4. In the LQE specification, assume τ = η and ρ ≥ 0.

1. There is a unique increasing linear equilibrium.
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2. In that equilibrium: (a) As s→ 0, R2
ηa → 1; (b) As s→∞, R2

ηa → ρ2.

3. Furthermore: (a)
d

ds
R2
ηa < 0; (b)

d

dµγ
R2
ηa = 0; (c)

d

dσγ
R2
ηa < 0; (d)

d

dρ
R2
ηa > 0.

For the case of ρ = 0, Fischer and Verrecchia (2000) have obtained similar conclusions to

Proposition 4 using their specification.

Part 1 of Proposition 4 is self-explanatory. Part 2(a) says that as stakes vanish, the

increasing linear equilibrium becomes fully informative about η̂; this result is a counterpart

to part 1 of Proposition 2. Part 2(b) says that as stakes grow unboundedly, the equilibrium

becomes uninformative about η̂ when ρ = 0, which is consistent with part 3 of Proposition 2.

However, for any ρ > 0, there is some information revealed about η̂ even in the limit of

unbounded stakes; as explained after Proposition 2, the intuition is that when E[η|γ] is

increasing in γ, higher γ types can signal their higher average η by taking higher actions.

The unbounded-stakes limit becomes fully informative as ρ→ 1.

Part 3 of Proposition 4 provides comparative statics for interior stakes. Part 3(a) confirms

our fundamental theme that higher stakes reduce information about the natural action. The

other parts address comparative statics that we have not touched on so far. Part 3(b) notes

that the ex-ante mean of the gaming ability has no effect on equilibrium informativeness

about η̂; rather, changes in µγ only shift the agent’s action and the market belief function

by a constant. Part 3(c) says that greater ex-ante uncertainty about γ reduces equilibrium

information about η̂. Together, parts 3(b) and 3(c) underscore that loss of information about

the natural action is not due to gaming per se, but rather heterogeneity in gaming ability.

Finally, part 3(d) says that increasing an already non-negative correlation between η and γ

leads to more equilibrium information about η̂. An intuition is that a greater non-negative

correlation reduces the amount of heterogeneity in γ conditional on any η: for elliptical

distributions, Var(γ|η) = ασ2
γ(1− ρ2). At the limit when ρ = 1, the type space is effectively

one-dimensional and the equilibrium fully reveals all private information.

Although Proposition 4 is stated for ρ ≥ 0, the key points also extend to ρ < 0. The

complication is that when ρ < 0 and stakes are intermediate, there can be multiple increasing

linear equilibria. Nevertheless, the comparative statics in s, µγ, and ση all generalize subject

to the caveat of focusing on the appropriate equilibria.22

22 Two points bear clarification about ρ < 0. First, R2
ηa → 0 as s→∞, as is consistent with the “ironing”

logic discussed in the context of part 3 of Proposition 2. Second, comparative statics on ρ are not clear-cut.
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4.2. Dimension of interest is the gaming ability

Assume τ = γ. Informativeness about γ̂ is captured by R2
γa.

Proposition 5. In the LQE specification, assume τ = γ and ρ ≥ 0.

1. (a) When ρ = 0, there is an increasing linear equilibrium if and only if s > σ2
η/σ

2
γ;

the increasing linear equilibrium is unique when it exists.

(b) When ρ > 0, there is a unique increasing linear equilibrium.

2. In the increasing linear equilibrium: (a) When ρ > 0 and as s→ 0, R2
γa → ρ2; (b) As

s→∞, R2
γa → 1.

3. Furthermore: (a)
d

ds
R2
γa > 0; (b)

d

dµη
R2
γa = 0; (c)

d

dση
R2
γa < 0; (d)

d

dρ
R2
γa > 0.

Part 1 of Proposition 5 says that an increasing linear equilibrium exists only when either

ρ = 0 and stakes are sufficiently large, or when ρ > 0. When ρ = 0 (but not when ρ > 0),

for any level of stakes there is an equilibrium in which the agent plays a = η: the agent takes

her natural action at no cost, and the market learns nothing about γ̂.23

To interpret Part 2(a) of Proposition 5, observe that as s → 0 the agent’s play in an

increasing linear equilibrium must converge to a = η; at the limit, the market learns η, which

implies R2
γa = R2

γη = ρ2. Part 2(b) says that as stakes grow unboundedly, the equilibrium

becomes fully informative about γ̂; this is a counterpart to part 1 of Proposition 3. Part

3(a) confirms our fundamental theme that, even away from limiting stakes, higher stakes

increase information about gaming ability. The remaining comparative statics in part 3 are

analogous to those discussed in the context of Proposition 4.

4.3. Mixed dimensions of interest

The tractability of the LQE specification makes it possible to study a number of additional

questions. Supplementary Appendix SA.3.4 studies an extension in which the agent cares

about the market’s belief about both η and γ. Specifically, we consider a signaling benefit

23 As ρ → 0+, the unique increasing linear equilibrium converges to the increasing linear equilibrium of
ρ = 0 if s > σ2

η/σ
2
γ , while it otherwise converges to the equilibrium where the agent plays a = η. When

ρ = 0, the equilibrium in which a = η is uninformative about γ̂, but it is not uninformative about γ; see
fn. 21. Note that this equilibrium exists irrespective of free downward deviations. There also exists a fully
uninformative equilibrium (just as when τ = η) supported using free downward deviations, in which the
agent pools on a sufficiently low action independent of type.
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s[κγ̂+(1−κ)η̂], where κ ∈ (0, 1). We show that even with these mixed dimensions of interest,

higher stakes reduce market information about the agent’s natural action and increase market

information about the agent’s gaming ability.

5. Applications

5.1. Manipulability and information provision

Our main results are couched in terms of changes in the signaling stakes, which affect

the benefits of signaling. Now let us add a parameter to the model that affects the costs of

signaling: the manipulability of the signal, M > 0. Consider an agent’s payoff function of

the form

V (τ̂ ; s)− C(a, θ)

M
. (5)

Higher manipulability scales down the signaling costs for all agent types. For an agent, this

payoff function is isomorphic to MV (τ̂ ; s) − C(a, θ), with M satisfying all the conditions

on s in Assumption 2. Increasing manipulability thus has the same equilibrium effect as

raising the stakes. When the dimension of interest is the natural action, it reduces market

information; when the dimension of interest is the gaming ability, it increases information.

In some cases manipulability is a property of the signaling technology. Google’s PageRank

algorithm for web site ranking is considered harder (i.e., costlier) to game than earlier search

engines that were based primarily on keyword density. Different types of tests might cover

material that is easier or harder to study for; for instance, it is often thought to be harder

to study for tests that measure “aptitude” rather than “achievement.”24

Manipulability may also depend on agents’ knowledge about the signaling technology.

One aspect of this is familiarity or experience with the technology. A designer trying to in-

crease market information about natural actions may benefit from altering a test format or

by replacing a credit scoring or search engine ranking algorithm with a new one. Even if the

new signaling technology is inherently no less manipulable, agents may initially find it more

difficult to game. A constant battle between designers and agents could result. Indeed, it is

reported that Google tweaks its search algorithm as often as 600 times a year partly to mit-

igate undesirable search engine optimization (http://moz.com/google-algorithm-change).

24 “SAT” was originally an acronym for Scholastic Aptitude Test, but the College Board changed the name
in 1994 to remove the connotation that it measured something innate and unchangeable. It is no longer an
acronym for anything.
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Designers can also control how much information is given out about the workings of the

signaling technology. Google keeps its precise algorithm secret; past SAT questions were

kept hidden until the 1980s; and US News sometimes changes its ranking algorithm with

an explicit announcement that the algorithm will not be revealed until after the rankings

are published (Morse, 2010). Our model gives a straightforward reason for such practices:

a more opaque signaling technology may be less manipulable or more costly to game than

a transparent one. When the dimension of interest is the natural action, less manipulable

implies more informative. Weston (2011, pp. 8–9) writes that prior to legislation requiring

the Fair Isaac Corporation to reveal some details about its FICO algorithm, “The company

said it worried that consumers [...] would try to ‘game the system’ if they knew more.

Fair Isaac feared that its formulas would lose their predictive abilities if consumers started

changing their behavior to boost their scores.”

It is important to recognize, however, that revealing information about the workings of

an algorithm need not scale down gaming costs uniformly across agents as posited in (5).

If gaming costs were reduced differentially across types, then the impact on market infor-

mation could be ambiguous. To make this point precise, recall the cost specification of

C(a, θ) = c(a, η)/γ, in which case (5) becomes V (τ̂ ; s)− c(a,η)
Mγ

. Increasing M is now isomor-

phic to uniformly scaling up the gaming abilities of all agent types. But, as discussed earlier,

knowledge of or experience with the signaling technology may be a source of heterogeneity on

gaming ability. In that case, revealing information could effectively increase gaming ability

more for the low-γ types than the high-γ ones. At the extreme, revealing all information

about the algorithm could raise all gaming abilities to the same high level, eliminating het-

erogeneity on γ. There would then be a separating equilibrium with full information on η.

Away from the extreme, Proposition 4 (part 3) for the LQE specification suggests a simple

rule of thumb: the amount of information about η decreases with the variance of γ, while it

is independent of the mean of γ. Any intervention lowering the variance of gaming ability

should tend to improve market information about the natural action. So, if some people are

better able to study for the SAT than others because they have greater access to past SAT

questions, the College Board may prefer to reveal these questions to everyone.

Similarly, subsidizing direct monetary costs of gaming could effectively raise the gaming

ability of all agents. This would seem to be a bad policy to increase information about

natural actions. But if heterogeneity on gaming ability had been driven by wealth differences

in the first place, then such a policy might increase gaming ability more for low-γ types than

high-γ types, with the effect of increasing information about natural actions. This is our
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interpretation of the College Board’s recent move to “level the playing field” between rich

(high γ) and poor (low γ) students by producing and publicizing free test prep material

(College Board, 2014a). The intervention does not just transfer surplus from rich to poor;

it improves the information content of SAT scores.

5.2. Informational externalities across markets

Suppose a designer can choose whether or not to reveal agents’ actions to different ob-

servers. The direct effect of revealing the actions to a new observer is that the new observer

is more informed. With more observers, however, agents have stronger incentives to signal:

signaling stakes increase. Our analysis therefore implies an indirect informational effect on

preexisting observers. When the dimension of interest is the gaming ability, an agent’s ac-

tion becomes more informative; but when the dimension of interest is the natural action, the

action becomes less informative. In this latter case, a designer must trade off the benefits

of revealing the action to marginal observers with the negative informational externality

imposed on inframarginal observers.

For concreteness, consider different markets in which credit reports are useful. Lenders use

credit scores to determine how much credit to offer borrowers, and at what terms. Employers

check credit reports during the hiring process to assess risks like employee theft or general

trustworthiness. Automobile and homeowners insurance companies now also commonly use

information from credit reports to help determine insurance rates. In recent years, a number

of states have considered or passed legislation restricting the use of credit history in insurance

underwriting and in employment. Many of the arguments in favor of these laws are based

on some notion of “fairness”—it is not fair to deny someone employment based on their high

credit card debt, or to raise their insurance rates because of missed mortgage payments.

We suggest a different concern. Making credit information available to markets such as

insurance and employment could alter consumers’ gaming behavior in a way that dilutes the

information contained in credit scores, thereby harming efficiency in the loan market.

To formalize the argument, let the dimension of interest be the natural action, η, and let

V (η̂; s) = v(η̂) + w(E[η]) + (s− 1)
(
w(η̂)− w(E[η])

)
for s ∈ {1, 2}, (6)

with v(·) and w(·) strictly increasing. The designer chooses s ∈ {1, 2} to maximize allocative

efficiency, E[V ]. The interpretation is that there is some benchmark first market which

always observes the signal—e.g., the loan market in the credit scoring application. Showing
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the signal to this market corresponds to baseline stakes of s = 1, and gives agents a payoff

v(η̂). Agents also participate in a second market—e.g., automobile insurance—in which the

signal may or may not be observed. If the signal is not observed (s = 1), the agent gets a

payoff w(E[η]) in the second market. If the signal is observed (s = 2), the agent gets a payoff

w(η̂) in the second market.

The key condition is that information is more socially valuable in the first market. In

particular, let v(·) be strictly convex and let w(·) be linear. (Taking w to be approximately

linear but with a small amount of convexity would give similar results; a concave w would

only strengthen the point.) There is a positive social value of information in the first market

in that more information implies higher allocative efficiency. For example, in the loan market,

it efficient to make more, or larger, loans to lower-financial-risk consumers. In the second

market, though, any information just redistributes surplus across types. For example, in

the market for auto insurance, lower-financial-risk consumers receive lower rates because

this is correlated with their filing fewer claims, but (almost) no people are on the margin of

car ownership based on their insurance rates. So information about financial risk leads to

monetary transfers in the auto market but does not affect allocations.

By construction, there is no direct effect on allocative efficiency in the second market from

observing agents’ actions. The only effect on allocative efficiency is the indirect effect on the

first market. Our analysis implies that higher stakes lead to a less informative signal, and

therefore lower allocative efficiency. We have argued for this comparative static result in a

number of ways throughout the paper; a precise statement obtains, for example, in the 2× 2

setting using Proposition 1:

Corollary 1. Consider the 2× 2 setting with τ = η. Let V (·) be of the form (6), with v(·)
strictly convex and w(·) linear. For any equilibrium under s = 2, there exists an equilibrium

under s = 1 with weakly higher allocative efficiency, E[V ].

In other words, to support the efficiency of the “loan” market in which information about

natural actions is socially valuable, the signal should be hidden from the “auto insurance”

market in which the social value is negligible. There is, of course, a converse: if the dimension

of interest were the gaming ability rather than the natural action, then revealing the signal to

a second market would generate a positive informational externality on the first market. The

designer might want to show the agent’s action to the purely redistributive second market

just to ramp up stakes, which would increase gaming and information about gaming ability.
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In Appendix B, we analyze informational externalities when information is equally valu-

able across markets: all markets have the same convex v(·) function. There is now a direct

allocative benefit as well as an indirect cost when a new market observes signals. We study

whether allocative efficiency is maximized by showing signals to as many markets as possible,

or whether there is an interior optimum after which the benefit to new markets is outweighed

by the cost to existing markets. Of course, a designer interested in agent welfare—allocative

efficiency minus signaling costs—would also consider the benefits that lower stakes confer

through less gaming.

6. Conclusion

This paper has studied a model of signaling with two-dimensional types and one-dimensional

actions. Equilibria typically confound the two dimensions of an agent’s type: there is mud-

dled information. In a nutshell, we find that when stakes increase, there is less equilibrium

information about the agent’s natural action and more information about her gaming ability.

We have argued that this simple but robust finding provides insight into a number of appli-

cations and yields a novel tradeoff regarding how information such as credit scores should

be regulated across markets. We close by noting some additional issues.

Our comparative statics on information stem from costs of signaling being driven by the

natural action at low actions and the gaming ability at high actions. Specifically, we assumed

that for any given pair of cross types, the ratio of marginal costs for the type with higher

natural action relative to the type with higher gaming ability is monotonically increasing in

the action (Assumption 1 part 4). As discussed in Subsection 2.3, we believe this assumption

is a good approximation for many applications, including those we have highlighted.

However, our framework also provides insight into settings where this marginal cost ratio

is not everywhere increasing, or where signaling costs depend on more than two dimensions

of a type. While obtaining global comparative statics is generally infeasible, it is possible

to derive limiting results on information as stakes get large or small. Essentially, at low

(resp., high) stakes the market learns about the dimension that determines marginal costs

at low (resp., high) actions. Suppose, for instance, that musicians differ on natural talent

and on quality of coaching. For untrained musicians, performance quality—or the cost of

performance improvement—is determined by natural talent. As musicians begin to train and

reach higher levels of performance, the quality of coaching becomes important. Finally, those

at the highest levels have absorbed all coaching lessons, and performance improvements are
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again driven by differences in talent. We would then expect a non-monotonic relationship

between stakes and information about natural talent: very low and very high stakes generate

precise information about natural talent.

A simplification of our model is that an agent’s action is directly observed by the market.

In practice, markets sometimes only observe a noisy signal of an agent’s action. For example,

in test taking, agents choose effort which stochastically translates into the test score. Such

noisy signaling would complicate the analysis, but, we believe, not fundamentally change

our main points.

Finally, our analysis of information yields direct implications for the allocative efficiency of

equilibria. Other quantities are also of of interest. A promising avenue for future research is to

explore the broader implications of multidimensional heterogeneity and muddled information

in signaling games.
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uous Elliptical Vector Distributions,” Revista matemática complutense, 16, 345–361.

31

https://www.collegeboard.org/releases/2014/expand-opportunity-redesign-sat
https://www.collegeboard.org/releases/2014/expand-opportunity-redesign-sat
https://secure-media.collegeboard.org/digitalServices/pdf/sat/sat-percentile-ranks-composite-crit-reading-math-writing-2014.pdf
https://secure-media.collegeboard.org/digitalServices/pdf/sat/sat-percentile-ranks-composite-crit-reading-math-writing-2014.pdf


Kartik, N. (2009): “Strategic Communication with Lying Costs,” Review of Economic
Studies, 76, 1359–1395.

Kartik, N., M. Ottaviani, and F. Squintani (2007): “Credulity, Lies, and Costly
Talk,” Journal of Economic Theory, 134, 93–116.

Kelker, D. (1970): “Distribution Theory of Spherical Distributions and a Location-Scale
Parameter Generalization,” Sankhya: The Indian Journal of Statistics, Series A, 32, 419–
430.

Mailath, G., M. Okuno-Fujiwara, and A. Postlewaite (1993): “Belief-Based Re-
finements in Signalling Games,” Journal of Economic Theory, 60, 241–276.

Matthews, S. A. and L. J. Mirman (1983): “Equilibrium Limit Pricing: The Effects of
Private Information and Stochastic Demand,” Econometrica, 51, 981–96.

Morse, R. (2010): “U.S. News Takes Steps to Stop Law Schools
From Manipulating the Rankings,” US News Blog; http://www.

usnews.com/education/blogs/college-rankings-blog/2010/05/20/

us-news-takes-steps-to-stop-law-schools-from-manipulating-the-rankings.

New York Times (2008): “Baylor Rewards Freshmen Who Retake SAT,” http://www.

nytimes.com/2008/10/15/education/15baylor.html.

——— (2014): “A New SAT Aims to Realign With Schoolwork,” http://www.nytimes.

com/2014/03/06/education/major-changes-in-sat-announced-by-college-board.

html.

Quinzii, M. and J.-C. Rochet (1985): “Multidimensional signalling,” Journal of Math-
ematical Economics, 14, 261–284.

Rick, A. (2013): “The Benefits of Miscommunication,” Unpublished.

Spence, M. (1973): “Job Market Signaling,” Quarterly Journal of Economics, 87, 355–374.

Stamland, T. (1999): “Partially informative signaling,” Journal of Economic Theory, 89,
148–161.

Stein, J. C. (1989): “Efficient Capital Markets, Inefficient Firms: A Model of Myopic
Corporate Behavior,” Quarterly Journal of Economics, 104, 655–669.

Wall Street Journal (2015): “How to Perfect Your Credit Score,” http://www.wsj.

com/articles/how-to-perfect-your-credit-score-1420832973.

Weston, L. P. (2011): Your Credit Score: How to Improve the 3-digit Number that Shapes
Your Financial Future, FT Press, 4th ed.

32

http://www.usnews.com/education/blogs/college-rankings-blog/2010/05/20/us-news-takes-steps-to-stop-law-schools-from-manipulating-the-rankings
http://www.usnews.com/education/blogs/college-rankings-blog/2010/05/20/us-news-takes-steps-to-stop-law-schools-from-manipulating-the-rankings
http://www.usnews.com/education/blogs/college-rankings-blog/2010/05/20/us-news-takes-steps-to-stop-law-schools-from-manipulating-the-rankings
http://www.nytimes.com/2008/10/15/education/15baylor.html
http://www.nytimes.com/2008/10/15/education/15baylor.html
http://www.nytimes.com/2014/03/06/education/major-changes-in-sat-announced-by-college-board.html
http://www.nytimes.com/2014/03/06/education/major-changes-in-sat-announced-by-college-board.html
http://www.nytimes.com/2014/03/06/education/major-changes-in-sat-announced-by-college-board.html
http://www.wsj.com/articles/how-to-perfect-your-credit-score-1420832973
http://www.wsj.com/articles/how-to-perfect-your-credit-score-1420832973


Appendices

A. Relating the Signaling Benefit to Consumer Demand

Here we illustrate how a benefit function V (·; s) may be derived from demand curves in a

competitive market in which consumers have heterogeneous costs of service. The convexity

of V relates to the efficiency improvement from firms’ learning about consumer costs.

Example 2. A consumer chooses an action a that is observed by a competitive market of

firms. Firms then offer the consumer a price p, and the consumer (mechanically) purchases

a quantity given by the demand curve D(p, s). The stakes parameter s is a public and

exogenous demand-shifter: ∂D(p,s)
∂s

> 0. The firms’ expected cost of transacting with or

serving the consumer depends on the consumer’s type on the dimension of interest, τ , with

higher types having lower cost. Specifically, the service cost per unit is k − ατ , with the

most costly consumer having τ = τ . The market is competitive, so the price offered to a

consumer will equal the expected cost: p = k − ατ̂ . A consumer who is thought to be type

τ̂ receives gross consumer surplus V (τ̂ ; s) =

∫ k−ατ

k−ατ̂
D(k−αt, s)dt. Allocative efficiency—the

expected consumer surplus—measures the full social value of information in this example,

because firms receive no surplus. Agent (consumer) welfare, which is allocative efficiency

minus expected costs of signaling, is total welfare.

If the consumer’s demand curve were completely inelastic—D(p, s) independent of p—then

V (·, s) would be linear. Additional information in the market would just transfer surplus

from low to high types: a consumer of higher type would face a lower price and a consumer of

lower type would face a higher price, but purchases would be unaffected. With a downward

sloping demand curve, information becomes socially valuable. A consumer with higher cost

of service purchases less, as is efficient, while a consumer with lower cost of service purchases

more. This induces a convex benefit function V (·; s). ‖

B. More on Informational Externalities Across Markets

Revealing the agent’s action to a new observer makes that observer more informed about

the agent’s type. But, as we argued in Subsection 5.2, it can have an informational externality

on others who already observed the agent’s action. When the dimension of interest is the

natural action, existing observers tend to become less informed when “the stakes are raised”

by revealing the action to new observers.
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Continuing from Subsection 5.2, suppose an agent participates in a number of markets.

Information about the agent’s action may be revealed, or not, to each such market. Con-

trasting with the environment of Corollary 1, however, information is socially valuable in

all markets (i.e., strictly convex benefit functions); indeed, markets are homogeneous inso-

far as information is equally valuable in each market. There is no longer a way to reveal

the agent’s action to (more convex) high-value markets before revealing it to (less convex)

low-value markets. Is the social value of information—allocative efficiency—maximized by

showing signals to as many observers as possible, or is there is an interior optimum?

Throughout this section, let the dimension of interest be the natural action, η. Let

V (η̂; s) = sv(η̂) for v(η̂) = w(η̂)− w(E[η]),

with w(·), and therefore v(·), strictly increasing, convex, and twice differentiable. The de-

signer chooses stakes s ≥ 0, and is interested in maximizing allocative efficiency E[V (η̂; s)].

For any given s, we focus on equilibria with the highest allocative efficiency.

The interpretation of the benefit function V and the stakes s is that there is a large

number of markets in which the agent participates. The agent’s value as a function of beliefs

is w(·) in each market, scaled by the size of the market. In a mass s of these markets, the

agent’s action is observed, in which case the beliefs on the agent’s type are η̂. In all other

markets, the agent’s action is hidden, and beliefs remain at the prior E[η]. Showing the

signal to a given market turns it from uninformed to informed, leading to a net agent benefit

of v(η̂) = w(η̂)−w(E[η]). (We omit the constant payoff that the agent receives in the other

uninformed markets.) The total value of information aggregated across markets is the value

per observation, E[v], times the mass of observers, s: E[V (η̂; s)] = s · E[v].

The key assumption here is that the function determining the value of information, w(·),
is homogeneous across markets. In the consumer pricing example (Example 2 of Appendix

A), the corresponding assumption would be that, up to linear scalings, the demand curve is

identical across markets, and that beliefs on η yield the same prices across markets.

It is clear that if the market doesn’t become uninformative in the limit as the stakes

s gets unboundedly large—if E[w(η̂)] stays bounded away from w(E[η]), or equivalently

E[v(η̂)] is bounded away from 0—then the designer who cares about maximizing allocative

efficiency should increase s without bound.25 The tradeoff between the marginal benefit

25 This result applies, for example, when Θ contains an extreme type—one below or above all other types
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and inframarginal cost of adding observers is only interesting when each observer becomes

uninformed in the limit.

We analyze two simple settings. The first, as a proof of concept, shows that information

is maximized at an interior s when the type space is a single pair of cross types. The second

illustrates a richer type space in which η and γ are independently distributed. There we

find that it is optimal to take s → ∞: the gain from increasing information for marginal

observers dominates the loss from worsening information for inframarginal observers.

Two Cross Types. When there are only two cross types, information is maximized at an

interior value of the stakes s:

Proposition 6. Assume Θ = {θ1, θ2} where θ1 and θ2 are cross types, and V (η̂; s) = sv(η̂)

with v(η̂) = w(η̂) − w(E[η]) for some strictly convex w. The allocative efficiency sE[v] is

maximized over choice of s and choice of equilibrium at some finite s > 0.

Recall from Observation 1 part 1 that in a two-cross-types setting, there is an informative

equilibrium for any s > 0 but the informativeness vanishes as s → ∞. In the current

context, therefore, E[v] > 0 at all s > 0 and E[v]→ 0 as s→∞. We establish in the proof

of Proposition 6 (in Supplementary Appendix SA.4.2) that sE[v]→ 0 as s→∞.

Independent η and γ. Now consider the case when η and γ are independently distributed.

The simplest specification with independent types that gets an uninformative limiting equi-

librium (E[v] → 0 as s → ∞) is when η has a binary distribution while γ is continuously

distributed; see Proposition 2 part 3. Here we find that the designer would increase s without

bound if he could, because even though allocative efficiency increases at a less than linear

rate with s, it still grows without bound.

Proposition 7. Assume η and γ are independent, Θη = {η, η}, and γ is continuously

distributed. Let V (η̂; s) = sv(η̂) with v(η̂) = w(η̂)− w(E[η]) for some strictly convex w, and

let C(a, η, γ) = (max{a− η, 0})r/γ for some r > 1. As s → ∞, there exists a sequence of

equilibria with allocative efficiency sE[v]→∞.

We prove Proposition 7 in Supplementary Appendix SA.4.2 by constructing a class of two-

action equilibria—all types take actions at either a = η, or at some higher stake-dependent

in both η and γ—that occurs with positive probability. The extreme type(s) can separate from the other
types even in the limit, and the positive mass hypothesis keeps v(η̂)− v(E[η]) bounded away from 0.
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action—in which E[v] goes to 0 at a limiting rate of s
−2
r+1 in s, and hence allocative efficiency

sE[v] increases at a limiting rate of s
r−1
r+1 .26 In fact, the proof is more general than independent

types, and establishes some conditions under which allocative efficiency increases linearly in

the stakes when the distribution of gaming abilities for high-η agents is in some sense above

that of low-η agents.

Our analysis of homogeneous markets suggests that while it is possible to construct ex-

amples in which the social value of information is maximized by obscuring information from

some observers, in more plausible settings the social value of information is maximized by

showing signals to as many observers as possible. We stress, however, that our discussion

ignores signaling costs. A designer who takes agents’ signaling costs into account might

prefer to hide information from some observers.

C. Proof Sketch of Lemma 3 in Subsection 3.1

The proof of Lemma 3 is in Supplementary Appendix SA.2.2. Here we provide a sketch.

Part 1 of Lemma 3. Let τ = η, and fix some equilibrium at some s0 > 0. It suffices to

show that as s varies in a neighborhood of s0, we can perturb the equilibrium to be (weakly)

more informative as s decreases and less informative as s increases.

For small changes in stakes, in many cases one can maintain the distribution of beliefs βτ

as stakes vary simply by continuously moving actions while not changing the (mixed) play

of each type across these actions. For instance, as stakes go down, one may be able to go

“left to right” decreasing each subsequent on-path action in a manner that keeps all of the

relevant incentive constraints binding.

This approach fails when there is a pair of actions a1 < a2 such that two different types

are both mixing over these actions. In that case it is impossible to move either of the actions

without breaking one of the types’ indifference. When this occurs, we hold a1 and a2 fixed

as stakes vary; instead, we alter the mixing probabilities such that as stakes go down, (i)

incentive constraints remain binding, and (ii) high natural action types are shifted to higher

actions, and low natural action types are shifted to lower actions. Point (ii) ensures that the

equilibrium becomes more informative about η as stakes are reduced: beliefs in the initial

equilibrium were monotonic, and the perturbation spreads beliefs out further.

26 We do not suggest this rate is optimal; there are examples in which E[V ] increases at a faster rate.

36



aora1 a2 aceη

ηγ
η γ

ηγ
η γ

a

(ηγ)
(ηγ )
(ηγ )

(a) When the gamer type ηγ does not have an incentive to take an action below a1.
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(b) When the gamer type ηγ has an incentive to take an action below a1.

Figure 2 – 2×2 setting, τ = η: Perturbing an equilibrium to become more informative
as s decreases.

More specifically, the above situation involves the gamer (η, γ) and the natural type (η, γ)

both indifferent between actions a1 ∈ [η, aor) and a2 ∈ (aor, ace]. Start from an equilibrium

at stakes s0 in which the gamer and the natural type both mix over actions a1 and a2.

There are two qualitative ways in which the mixing probabilities may need to be shifted

while holding a1 and a2 fixed. First, suppose that at stakes s0 the gamer strictly prefers a1

over any action below a1. A reduction in stakes makes a1, which has a lower market belief,

relatively more appealing than a2, which has a higher belief. To recover indifferences, we

adjust the mixing probabilities so that the gamer shifts some mass from a2 to a1 while the

natural type shifts from a1 to a2. Since τ = η, this increases the belief at a2 and reduces the

belief at a1, making a2 relatively more appealing once more. See Figure 2 panel (a); in the

figure, parentheses indicate that there may be a mass of such types taking actions in some

range. Second, suppose that at stakes s0 the gamer is indifferent between a1 and an action

below a1; in equilibrium, this lower action will be η. A reduction in stakes makes a = η

relatively more attractive than a1, and also makes a1 more attractive than a2. We can adjust

mixing probabilities by having the gamer move some mass from a2 to η, improving beliefs at

a2, and then move from mass from a1 to η, improving beliefs at a1. Once again, this change

recovers indifferences and increases information. See Figure 2 panel (b). Q.E.D.

Part 2 of Lemma 3. Let τ = η, and fix some equilibrium at some s0 > 0. We argue that
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Figure 3 – 2×2 setting, τ = γ: Perturbing an equilibrium to become more informative
as s increases.

as stakes increase in a neighborhood, we can perturb the equilibrium to (weakly) increase

information. Analogously to the proof sketch of Lemma 3 part 1, in many cases one can

maintain the distribution of beliefs βτ as stakes increase by going “left to right” and increasing

actions while not changing the behavior of each type across these actions.

This approach fails when the gamer (η, γ) and the natural type (η, γ) are both indifferent

over on-path actions a1 ∈ [η, aor) and a2 ∈ (aor, ace]. When this occurs, we hold a1 and a2

fixed as stakes vary; instead, we alter the mixing probabilities such that as stakes increase, (i)

incentive constraints remain binding, and (ii) high gaming ability types are shifted to higher

actions, and low gaming ability types are shifted to lower actions. Point (ii) ensures that the

equilibrium becomes more informative about γ as stakes are increased. More specifically,

an increase in stakes makes action a2 (with higher belief) relatively more appealing than a1

(with lower belief). So, we shift a high gaming ability type—either the gamer, or the type

(η, γ)—who had previously been playing a2 to an action a3 above a2. This change reduces the

belief at a2, recovering the indifference between a1 and a2. See Figure 3, where parentheses

indicate that there may be a mass of such types taking the specified action. Q.E.D.

D. Additional Results and Proofs for Subsection 3.2

Lemma 4. Assume τ = η. Fix any two cross types, θ1 = (η, γ) and θ2 = (η, γ) with

η < η and γ < γ, with the corresponding cost-equalizing action ace. Across all type spaces Θ

containing {θ1, θ2} and across all equilibria, it holds that if η̂i is some belief that θi induces

in equilibrium (i = 1, 2), then V (η̂2; s)− V (η̂1; s) ≤ C(ace, θ1) = C(ace, θ2).

Proof of Lemma 4. Fix any type space containing θ1 and θ2, and any equilibrium in which

each θi (i = 1, 2) uses action ai inducing belief η̂i. If η̂2 ≤ η̂1 then the result is trivially true,

so suppose η̂2 > η̂1. By belief monotonicity, a1 < a2. Incentive compatibility implies
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C(a2, θ2)−C(a1, θ2) ≤ V (η̂2; s)−V (η̂1; s) ≤ C(a2, θ1)−C(a1, θ1). Hence, V (η̂2; s)−V (η̂1; s)

is bounded above by the maximum of C(a2, θ1)−C(a1, θ1) subject to a2 ≥ a1 and C(a2, θ1)−
C(a1, θ1) ≥ C(a2, θ2)−C(a1, θ2). Lemma 1 implies that the constraint is violated if a2 > ace;

hence the maximum is obtained when a2 = ace and a1 = η. Q.E.D.

Proof of Proposition 2. Part 1: Θη is finite by hypothesis. We claim that for small

enough s > 0 there is an equilibrium in which every θ = (η, γ) takes its natural action,

a = η; any off-path action a /∈ Θη is assigned the belief τ̂ = min Θη. Clearly, no type has

a profitable deviation to any off-path action nor to any action below its natural action. It

suffices to show that there is no incentive for any type to deviate to any on-path action above

its natural action (an “upward deviation”) when s > 0 is small enough. The proposition’s

hypotheses about Θ imply there is an ε > 0 such that C(a, η, γ) > ε for all (η, γ) ∈ Θ and

a ∈ Θη ∩ (η,∞). For any type, the gain from deviating to any action is bounded above by

V (max Θη; s)− V (min Θη; s), which, by Assumption 2, tends to 0 as s→ 0. It follows that

for small enough s > 0, the cost of any upward deviation outweighs the benefit for all types.

Part 2: The result follows from Lemma 4 and part 3 of Assumption 2.

Part 3: Given an equilibrium, let η̂(θ) denote a belief induced by type θ. Given a sequence

of equilibria as s→∞, let η̂∗(θ) denote any limit point of such beliefs as s→∞ (passing to

sub-sequence if necessary). We first claim that in any sequence of equilibria, it holds for any

θ′ = (η′, γ′) and θ′′ = (η′′, γ′′) with γ′′ > γ′ that η̂∗(θ′′) ≥ η̂∗(θ′); in words, in the limit any

type with a higher gaming ability induces a weakly higher belief about its natural action.

If η′′ ≥ η′, the claim follows from the fact that θ′′ and θ′ are ordered by single-crossing and

hence θ′′ must induce a weakly larger belief than θ′ in any equilibrium; if η′′ < η′, the claim

follows from Lemma 4 and part 3 of Assumption 2.

Now fix an arbitrary sequence of equilibria as s → ∞. Given the hypothesis that the

marginal distribution of γ is continuous, it suffices to prove that for any type θ = (η, γ)

with γ ∈ (min Θγ,max Θγ), η̂
∗(θ) = E[η]. To contradiction, suppose there is a type θ′

with γ′ ∈ (min Θγ,max Θγ) and η̂∗(θ′) = E[η] + ∆ for ∆ > 0. (A symmetric argument

applies if ∆ < 0.) Let S∆ = {θ : η̂∗(θ) ≥ E[η] + ∆}. The claim in the previous paragraph

establishes that there exists some γ̃ < max Θγ such that S∆ contains all types with gaming

ability strictly above γ̃ and no types with gaming ability strictly below γ̃. In other words,

modulo “boundary types” with γ = γ̃—a set that has probability zero, by the hypothesis of

a continuous marginal distribution of γ—we can take S∆ = {θ′′ = (η′′, γ′′)|γ′′ ≥ γ̃}; note that

S∆ has positive probability. Hence, E[η|θ ∈ S∆] = E[η|γ ≥ γ̃] ≤ E[η], where the inequality
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owes to the hypothesis that E[η|γ] is non-increasing in γ. But this contradicts the Bayesian

consistency requirement that E[η|θ ∈ S∆] = E[η̂∗(θ)|θ ∈ S∆] ≥ E[η] + ∆. Q.E.D.

Lemma 5. Assume τ = γ. Fix any two cross types, θ1 = (η, γ) and θ2 = (η, γ) for η < η

and γ < γ, with the corresponding cost-equalizing action aor. Suppose {θ1, θ2} ⊆ Θ and

V (max Θγ; s) − V (min Θγ; s) ≤ C(aor, θ1). Then across all equilibria, it holds that if γ̂i is

some belief that θi induces in equilibrium (i = 1, 2), then γ̂1 ≤ γ̂2.

Proof of Lemma 5. Suppose there is an equilibrium with a pair of actions a1 and a2, used

respectively by θ1 and θ2, yielding beliefs γ̂1 > γ̂2. By belief monotonicity, a1 > a2. That

neither type strictly prefers the other action over its own implies a1 > aor, for otherwise

C(a1, θ2)−C(a2, θ2) < C(a1, θ1)−C(a2, θ1). That type θ1 is willing to play action a1 rather

than its natural action implies C(a1, θ1) ≤ V (max Θγ; s) − V (min Θγ; s), because the left-

hand side of this inequality is the incremental cost while the right-hand side is an upper

bound on the incremental benefit. It follows from the strict monotonicity of C(·; θ1) on

(aor, a1) that C(aor, θ1) < V (max Θγ; s)− V (min Θγ; s). Q.E.D.

Proof of Proposition 3. Part 1: Let ηmax := sup Θη and ηmin := inf Θη and order the

values of γ ∈ Θγ as γ1 < γ2 < · · · < γN . Let acei be the cost-equalizing action between types

(ηmax, γi) and (ηmin, γi+1). At actions a′′ > acei and a′ < a′′, it holds that C(a′′, (η′, γi+1)) −
C(a′, (η′, γi+1)) < C(a′′, (η′′, γi))− C(a′, (η′′, γi)) for any η′, η′′ in Θη.

Now define ai(s) as follows. Set a1(s) = ηmax. For i ≥ 1, given ai(s), inductively define

ai+1(s) to be the action such that C(ai+1(s), (ηmax, γi))− C(ai(s), (ηmax, γi)) = V (γi+1; s)−
V (γi; s). To help interpret, observe that this would be the sequence of least-cost separating

actions at stakes s if the type space were {ηmax} ×Θγ rather than Θ. Assumption 2 implies

that for any i ≥ 2, ai(s) → ∞ as s → ∞. Hence, there exists s̃ such that for any s > s̃,

ai+1(s) > acei for each i = 1, ..., N − 1.

We claim that for any s > s̃, there is an equilibrium in which (i) any type (η, γ1) ∈ Θ takes

action η and (ii) any type (η, γi) ∈ Θ with i > 1 takes action ai(s). Plainly, this strategy

is separating on γ. To see that we have an equilibrium when s > s̃, first consider local

incentive constraints among the on-path actions. Plainly, no type wants to deviate upwards,

because (ηmax, γi) is by construction indifferent between playing ai and ai+1, while all other

(η, γi) types prefer ai to ai+1. No type wants to deviate downwards because ai+1(s) > acei ,

hence the indifference of (ηmax, γi) between ai and ai+1 implies that for any η, type (η, γi+1)

prefers ai+1 to ai. Standard arguments using the single-crossing property on dimension γ
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then imply global incentive compatibility among on-path actions. Finally, off-path actions

can be deterred by assigning them the lowest belief, γ1.

Part 2: The result follows from Lemma 5 and part 3 of Assumption 2.

Part 3: The argument is analogous to that provided for Proposition 2 part 3, switching γ

and η, taking s→ 0 rather than s→∞, and using Lemma 5 to conclude that in the limit of

vanishing stakes, any type with a higher natural action induces a weakly higher belief about

its gaming ability. Q.E.D.
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Supplementary Appendices for Online Publication

SA.1. Proofs for Section 2

Proof of Lemma 1. For any a > η,

C(a, η, γ)− C(a, η, γ) =

∫ a

η
Ca(â, η, γ)

[
1−

Ca(â, η, γ)

Ca(â, η, γ)

]
dâ.

Since Ca(·) > 0 on the relevant region, Part 4 of Assumption 1 implies that the sign of the intergrand above is

the same as that of aor− â, where aor > η is the order-reversing action for the given cross types. This implies

that on the domain a > η, the integral is strictly quasi-concave and attains a strictly positive maximum

at a = aor. Moreover, the integral is zero at a unique point (on the domain a > η), ace > aor, because

Assumption 1 implies there is some ε > 0 such that the integrand is less than −ε for all a > aor + ε. Q.E.D.

Proof of Lemma 2. Fix an equilibrium in which a′ < a′′ are two on-path actions with τ̂(a′) ≥ τ̂(a′′). Part

1 of Assumption 2 implies

τ̂(a′) = τ̂(a′′). (SA.1)

Otherwise, any type would strictly prefer a′′ to a′. Furthermore, any type θ = (η, γ) that uses a′′ must have

η ≥ a′′, and hence

C(a′, θ) = C(a′′, θ) = 0. (SA.2)

Otherwise, Assumption 1 implies θ would strictly prefer a′ to a′′. Now consider a new strategy in which the

agent behaves identically to the given equilibrium except for playing a′ whenever she was to play a′′. By

Equation SA.1, the induced belief at a′ does not change; hence, by Equation SA.2, this new strategy also

constitutes an equilibrium in which a′′ is off path.

Finally, note that in any equilibrium, assigning any off-path action ã the belief specified in item (ii) of the

lemma preserves the property that no type has a strict incentive to use ã. Q.E.D.

SA.2. Proofs for Section 3

SA.2.1. Proof of Observation 1

Throughout this proof, we refer to the gamer (η, γ) as θ1 and the natural type (η, γ) as θ2.

Part 1: In a separating equilibrium, the gamer θ1 plays some action a1 while the natural type θ2 plays

a2 > a1.27 The incentive constraints that each type is willing to play its own action over the other’s are

C(a2, θ1) − C(a1, θ1) ≥ V (η; s) − V (η; s) ≥ C(a2, θ2) − C(a1, θ2). The first inequality says that the gamer’s

incremental cost of playing a2 rather than a1 is higher than the incremental benefit, while the second inequality

says that the incremental benefit is greater than the incremental cost for the natural type. Without loss, we

can take a1 = η, as the gamer would never pay a positive cost to be revealed as the type with the lower

natural action. Substituting a1 = η and rewriting the incentive constraints yields

C(a2, θ1) ≥ V (η; s)− V (η; s) ≥ C(a2, θ2). (SA.3)

27 Due to free downward deviations, each type can be mixing over multiple actions in a separating equilibrium; however,
such an equilibrium is equivalent to one in which the agent uses a pure strategy.
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From (SA.3), there is a separating equilibrium with a2 = η (and a1 = η) if s < s∗∗η , where V (η; s∗∗η ) −
V (η; s∗∗η ) = C(a2, θ1). So restrict attention to s ≥ s∗∗η . For the existence of a separating equilibrium, there

is no loss in assuming the second inequality in (SA.3) holds with equality. This implicitly defines a strictly

increasing and continuous function, a2(s), whose range is [η,∞) for s ∈ [s∗∗η ,∞). A separating equilibrium

exists at stakes s if and only if H(a2(s)) ≥ 0, where

H(a) := C(a, θ1)− C(a, θ2) (SA.4)

is continuous. Let s∗η solve V (η; s∗η)− V (η; s∗η) = C(ace, θ1). Since sign[H(a)] = sign[ace − a] by Lemma 1, it

follows from the definition of s∗η that a separating equilibrium exists if and only if s ≤ s∗η.

Now suppose s > s∗η. We show that a partially pooling equilibrium exists. Consider a strategy where each

type mixes (possibly degenerately) between actions η and ace. By choosing the mixing probabilities suitably,

we can induce via Bayes rule any η̂(ace) and η̂(η) such that η ≥ η̂(a2) > E[η] > η̂(a1) ≥ η. By the definition of

s∗η, there is a pair η̂(ace) and η̂(η) satisfying these inequalities such that V (η̂(ace); s)−V (η̂(η); s) = C(ace, θ1) =

C(ace, θ2); the corresponding mixing probabilities define an equilibrium strategy when belief η is assigned to

any off-path actions.

Finally, we show that equilibria become uninformative as s → ∞. First, note that the belief η̂(a) ∈ [η, η]

at an equilibrium action a is strictly above η if and only if the action is played in equilibrium (with some

probability) by a natural type θ2, and the belief is strictly below η if and only if the action is played by a

gamer θ1. So the lowest belief at an equilibrium action must be achieved at some action played by θ1, and the

highest equilibrium at some action played by θ2. Call these minimum and maximum beliefs η̂1 ≤ η̂2. It suffices

to show that η̂2 − η̂1 → 0 as s → ∞. Towards contradiction, suppose there exists a sequence of equilibria

with η̂2 − η̂1 approaching ε > 0 as s→∞. There must then be a subsequence with η̂2 → η̂lim
2 and η̂1 → η̂lim

1 ,

with η̂lim
2 > η̂lim

1 . Apply Lemma 4 from Appendix D, it holds that for each s, V (η̂2; s)− V (η̂1; s) ≤ C(ace, θ1).

Passing to the limit, it must be that

lim
s→∞

V (η̂lim
2 ; s)− V (η̂lim

1 ; s) ≤ C(ace, θ1).

But Assumption 2 part 3 implies that the left-hand side (LHS) above diverges to infinity, a contradiction.

Part 2: First, let s∗∗γ > 0 solve V (γ; s∗∗γ ) − V (γ; s∗∗γ ) = C(aor, θ1). We show that no informative equilibrium

exists at s ≤ s∗∗γ . The value s∗∗γ is defined so that at any equilibrium under s ≤ s∗∗γ , θ1 would never play

any action above aor; it would strictly prefer to receive the worst belief γ̂ = γ at action a = η. Towards

contradiction, suppose there is an informative equilibrium at s ≤ s∗∗γ . Let a′ and a′′ be two on path actions

such that γ̂(a′) < γ̂(a′′). It follows that a′ < a′′ ≤ aor, by belief monotonicity and the fact that θ1 will not

play any a > aor. Since Ca(a, θ2) < Ca(a, θ1) for a ∈ (η, aor), it further follows that type θ2 will not play a′.

But this implies γ̂(a′) = γ, contradicting γ̂(a′) < γ̂(a′′).

Next, let s∗γ solve V (γ; s∗γ) − V (γ; s∗γ) = C(ace, θ1); note that s∗γ > s∗∗γ because ace > aor. We show that

there is a separating equilibrium when s > s∗γ . In a separating equilibrium, without loss the natural type

θ2 = (η, γ) plays a2 = η and the gamer θ1 = (η, γ) plays a1 > η. (If a1 ≤ η, free downward deviations implies

that the natural type would mimic the gamer.) So a separating equilibrium exists if and only if there is an

a1 > η such that

C(a1, θ2) ≥ V (γ; s)− V (γ; s) ≥ C(a1, θ1). (SA.5)
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The first inequality is the incentive constraint for the natural not to mimic the gamer, while the second

inequality is the gamer’s incentive constraint not to deviate to its natural action. Define a1(s) by setting

the second inequality of (SA.5) to hold with equality; a1(s) is continuous and strictly increasing. It is

straightforward that a separating equilibrium exists at stakes s if and only a1(s) > η and H(a1(s)) ≤ 0,

where H(·) was defined in (SA.4). By Lemma 1, H(a1(s)) ≤ 0 for a1(s) > η if and only if a1(s) ≥ ace; and

a1(s) ≥ ace if and only if s ≥ s∗γ as defined above.

SA.2.2. Proof of Lemma 3

We first establish some straightforward preliminaries for the analysis of equilibria of the 2 × 2 setting.

Throughout this section, in addition to referring to (η, γ) as the gamer and (η, γ) as the natural type (with

aor and ace being the order-reversing and cost-equalizing actions with respect to these cross types), we refer

to (η, γ) as the low type and (η, γ) as the high type.

Claim 1. For any finite type space Θ, up to equivalence, there is a finite upper bound on the number of actions

used in equilibrium over all s and all equilibria.

Proof. First, for any type θ, there can only be a single action (up to equivalence) which is played by θ alone

in a given equilibrium; otherwise that type would be playing two actions with the same beliefs but different

costs. Second, for any pair of types, there can be at most two distinct actions that both types are both willing

to play.28 Consequently, an upper bound on the number of equilibrium actions is |Θ|+ 2
(|Θ|

2

)
. Q.E.D.

Claim 2. Fix any finite type space Θ and let sn → s∗ > 0 be a sequence of stakes. If en → e∗, where

each en is an equilibrium (strategy profile) at stakes sn with corresponding distribution of market beliefs

δn ∈ ∆(min Θτ ,max Θτ ), then (i) there exists δ∗ such that δn → δ∗, and (ii) e∗ is an equilibrium at s∗.29

Proof. The claim follows from standard upper-hemicontinuity arguments, with one caveat. We need to show

that if as sn → s∗ there are two sequences an → a∗ and a′n → a∗, where an and a′n are each on-path actions

in en, then the respective equilibrium beliefs τ̂(an) and τ̂(a′n) converge to the same limit. This ensures that

the belief at a∗ under e∗ is equal to the limiting belief along both an and a′n, and therefore that the payoff

of a∗ under e∗ is equal to the limit of the payoffs along any sequence of actions approaching a∗, whereafter

routine arguments apply.

Suppose, to contradiction, that τ̂(an)→ h and τ̂(a′n)→ l with h > l. For any θ ∈ Θ, C(an, θ)→ C(a∗, θ)

and C(a′n, θ) → C(a∗, θ); hence, for any θ and sufficiently large n, V (τ̂(an); sn) − C(an, θ) > V (τ̂(a′n); sn) −
C(a′n, θ), which contradicts a′n being on path. Q.E.D.

Now, for the 2× 2 setting specifically, we establish that moving high-τ types from actions with low beliefs

to ones with high beliefs, or moving low-τ types from high to low beliefs, increases (Blackwell) information.

By “moving” a type θ from action a to a′ we mean marginally altering the mixed strategy to slightly reduce

the probability that θ takes a, and to correspondingly increase the probability that it takes a′. (As established

in Claim 1, there are finitely many actions in the support and each has strictly positive probability.)

28 Given any market belief function, τ̂(a), type θ is said to be willing to play action a′ if a′ is optimal for θ.
29 Convergence of probability distributions is in the sense of weak convergence. A sequence of equilibria converges if the

corresponding mixed strategies of each type converge. Note that for any sequence of equilibria en, there is an equivalent
subsequence that converges. This is because as sn → s∗, up to equivalence, equilibrium actions are contained in compact
set that is bounded below by min Θη > −∞ and above by ã <∞ satisfying V (max Θτ ; s∗) = C(ã,max Θη,max Θγ).
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Claim 3. In the 2×2 setting, consider information on dimension τ , where Θτ = {τ , τ}. Take some distribution

of types over actions, with two actions al and ah in the support inducing respective beliefs τ̂l < τ̂h. If we move

either a type with τ = τ from al to ah, or move a type with τ = τ from ah to al, then the posterior beliefs

become more informative about the dimension of interest.

(Moving types in the reverse way would lead to less informative rather than more informative beliefs.)

Proof of Claim 3. One posterior distribution of beliefs is Blackwell more informative than another if and

only if, for any continuous and convex function over beliefs U , E[U(βτ )] is higher under the first distribution

than the second. Moreover, in the 2× 2 setting, beliefs βτ about the dimension of interest are fully captured

by the expectation τ̂ . So moving types increases Blackwell information if and only if for any continuous and

convex function U : [τ , τ ]→ R, the move yields an increase in E[U(τ̂)].

To calculate E[U(τ̂)], let f(θ) be the probability of type θ under the prior distribution F , let pθ(a) indicate

the probability that an agent of type θ chooses action a under a specified strategy, and let τ(θ) indicate the

component of θ on the dimension of interest. The belief τ̂(a) at action a is then

τ̂(a) =

∑
θ τ(θ)f(θ)pθ(a)∑
θ f(θ)pθ(a)

,

and E[U(τ̂)] is given by
∑

a U(τ̂(a))
∑

θ f(θ)pθ(a) where the sum over all actions a in the support.

The effect on E[U(τ̂)] of a marginal move from al to ah of a type θ′ is given by d
dpθ′ (ah)E[U(τ̂)] −

d
dpθ′ (al)

E[U(τ̂)]. When τ(θ′) = τ , we can evaluate these derivatives and simplify to get

d

dpθ′(ah)
E[U(τ̂)]− d

dpθ′(al)
E[U(τ̂)] = f(θ′) ·

[(
U(τh) + (τ − τh)U ′(τh)

)
−
(
U(τl) + (τ − τl)U ′(τl)

)]
.

Convexity of U combined with τl < τh ≤ τ guarantees that the bracketed term is nonnegative (positive under

strict convexity), so as required the move increases E[U(τ̂)].

Likewise, the effect on E[U(τ̂)] of a marginal move from ah to al of a type θ′ is given by d
dpθ′ (al)

E[U(τ̂)]−
d

dpθ′ (ah)E[U(τ̂)]. With τ(θ′) = τ the expression evaluates to

f(θ′) ·
[(
U(τl)− (τl − τ)U ′(τl)

)
−
(
U(τh)− (τh − τ)U ′(τh)

)]
which is nonnegative (positive) under τ ≤ τl < τh and (strict) convexity of U . Q.E.D.

To clarify terminology, say that a type plays an action if its strategy assigns positive probability to this

action. An action is an equilibrium action if some type of positive measure plays this action. (Recall Claim 1.)

Claim 4. In the 2×2 setting, any equilibrium is equivalent to one that falls into one of two cases: (1) for any

pair of actions weakly above η, at most a single type is willing to play both actions; or (2) there exist actions

a1 and a2 with η ≤ a1 < a2 such that at least two types are willing to play both a1 and a2. Moreover:

1. In case (1): Consider any three actions a1 < a2 < a3, with a1 ≥ η. If types θ1 and θ2 are both willing

to play a3, if θ1 is willing to play a1, and if θ2 is willing to play a2, then it cannot be the case that any

type plays a2.
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2. In case (2): It holds that η ≤ a1 < aor < a2 ≤ ace. The gamer (η, γ) and the natural type (η, γ) are

both willing to play a1 and a2. No other type is willing to play both of these actions, and for any other

pair of actions weakly above η at most a single type is willing to play both.

Proof of Claim 4. The first assertion of the claim (before the enumerated items) is trivial. So we prove the

two enumerated items. Up to equivalence, we can take all equilibrium actions to be weakly above η.

Case (1): Take three actions a1 < a2 < a3, with types θ1 and θ2 both willing to play a3, with θ1 willing

to play a1, and θ2 willing to play a2. By assumption of Case (1), θ2 is not willing to play a1 and θ1 is not

willing to play a2. So it must be that the types are not single-crossing ordered over the range of [a1, a3]; i.e.,

the two types θ1 and θ2 must be the gamer (η, γ) and the natural (η, γ)—not necessarily in that order—and

it must be that a1 < aor < a3. The low type (η, γ) can only take actions up to a1, and the high type (η, γ)

can only take actions down to a3. So we see that only type θ2 can be willing to play a2.

Now suppose type θ2, which is the only one willing to play a2, does play a2 with positive probability. If it

did, then the beliefs at a2 would reveal the type of θ2. But if θ2 has a high type on the dimension of interest,

τ = τ , then a2 would be at least as appealing to θ1 as a3, so θ1 would be attracted to a2. On the other hand,

if θ2 has a low type on the dimension of interest (τ = τ), then a1 would be at least as appealing to θ2 as a2,

so θ2 would be attracted to a1. Either case yields a contradiction, since θ1 is not willing to play a2 and θ2 is

not willing to play to a1.

Case (2): Take some pair of actions a1 and a2, with η ≤ a1 < a2, that two types are both willing to play.

This cannot hold for any pair of types that are single-crossing ordered, and so it must be that the two types

are the cross types, (η, γ) and (η, γ).30 It follows that C(a2, η, γ)−C(a1, η, γ) = C(a2, η, γ)−C(a1, η, γ), and

hence that η ≤ a1 < aor < a2 ≤ ace. The same logic also implies that there cannot be an action weakly above

η other than a1 and a2 that both types are willing to play.

By single-crossing in the region above aor, (η, γ) cannot be willing to take any actions above a2 or else (η, γ)

would strictly prefer that action to a2; and by single-crossing in the region below aor, the type (η, γ) cannot

be willing to take any actions below a1 or else (η, γ) would strictly prefer that action to a1. Additionally, the

high type (η, γ) is unwilling to play any action below a2, and the low type is unwilling to play any action

above a1; if one of these types were willing to play such an action, then another type currently playing a1 or

a2 would strictly prefer to deviate to that action.

Finally, (η, γ) is unwilling to take any action in (a1, a2) because if this type were willing to take such an

action, then (η, γ) would strictly prefer it to a1 and a2. So only (η, γ) can possibly be willing to take an

action in (a1, a2), but in equilibrium this type does not play any such actions because doing so would break

the equilibrium. In particular, taking such an action in equilibrium would reveal her type. Under τ = η

this would mean she strictly preferred the intermediate action with η̂ = η to a2; and under τ = γ she would

strictly prefer a1 under γ̂(a1) to the intermediate action under beliefs γ̂ = γ. Q.E.D.

We now proceed to prove the two parts of Lemma 3. Throughout, we maintain the assumption that there

is a positive measure of both natural and gamer types; otherwise, the type space is fully ordered and we can

straightforwardly maintain the equilibrium information level of any equilibrium e0 at stakes s0 as stakes vary

30 We can rule out that (η, γ) and (η, γ) are both indifferent over a pair of actions in [η, η], because those actions would
have the same costs and the same beliefs on the dimension of interest. So, up to equivalence, the two actions could be
rolled into the lower action.
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by sliding actions up and down. We allow for there to be a zero measure of high or low types, so that we

subsume the case of only two cross types.

Proof of Lemma 3 part 1. Starting from any given equilibrium at some stakes, we show that as stakes

decrease the equilibrium can be continuously perturbed in a manner that increases information. We will

give local arguments, which show the existence of a path of equilibria nearby the starting point. The upper-

hemicontinuity of the equilibrium set (Claim 2) guarantees that this local construction around any given

equilibrium e0 at any stakes s0 extends to a path of equilibria on s ∈ (0, s0) that are less informative at higher

stakes. In fact, our argument will imply something slightly stronger than claimed in the lemma: we also

show that as stakes increase, the equilibrium can be perturbed to increase information, implying that we can

extend to a global path of equilibria on s ∈ (0,∞).31

There are two kinds of perturbations involved. One slides the location of actions up or down without

changing the distribution of types across actions, which has no effect on information. The other follows steps

illustrated in Figure 2. As stakes decrease, we move types with η = η down from actions with high beliefs to

ones with low beliefs, and/or move types with η = η up from actions with low beliefs to high beliefs. (Recall

that due to free downward deviations, higher equilibrium actions have strictly higher beliefs.) These moves

spread beliefs out and, as formalized in Claim 3, increase information. As stakes increase, we can do the

reverse moves to decrease information.

Using Claim 4, we can categorize all possible equilibria into a number of exhaustive cases (up to equiva-

lence), and then address these cases separately.

Case 1. For any pair of distinct actions weakly above η, at most a single type is willing to play both actions.

Case 2. There exist actions a1 and a2 satisfying η ≤ a1 < aor < a2 ≤ η such that the gamer (η, γ) and the

natural type (η, γ) are both willing to play a1 and a2. No actions in (a1, a2) are played in equilibrium.

Natural types (η, γ) are not willing to play any action strictly below a1 or above a2, low types (η, γ) are

not willing to play any action above a1, and high types (η, γ) are not willing to play any action below

a2. If there is an equilibrium action a0 strictly below a1, it can only be played by types with η = η,

and so would have the worst possible beliefs; hence it must be that a0 = η.

We can divide this case into five subcases:

(a) The actions a1 and a2 are played in equilibrium. Either a1 = η; or, a1 > η, and no type playing a1

is willing to play a = η or any equilibrium any action in (η, a1), and no type playing an equilibrium

action below a1 is willing to play a1.

(b) Either a1 = η or a2 is not played in equilibrium. Up to equivalence, a2 must be played in

equilibrium; otherwise we could assign it low beliefs so that the natural and gamer would strictly

prefer a1 to a2. So it must be that a2 is played, but a1 is not played; moreover, up to equivalence,

a1 has the lowest possible beliefs η̂ = η. For the gamer to be indifferent over a1 and η, then, it

must be that a1 = η. Because low types play an action at least η and at most a1, low types play

a1, and hence this case is only possible if the measure of low types is zero.

31 Our local arguments cover different cases separately, but extending to a global path may require patching together
different cases as one leads in to another.

SA-6



(c) It holds that a1 > η, and there is some type of positive measure that plays both actions a0 = η and

a1. Such a type has η = η, and can be a gamer or a low type. Beliefs η̂ at a0 are at η. Beliefs at

a1 are in (η, η); the natural type plays a1.

(d) It holds that a1 > η, and there is some type of positive measure that plays action a0 = η, and that

does not play a1 but is willing to play a1. Such a type must be the low type—if it were the gamer,

then only the natural type would play a1, and the gamer would prefer a1 over a2. Beliefs at a1

are in (η, η), and so the natural and gamer types both play a1.

(e) It holds that a1 > η, and there is some type of positive measure playing a1 that is willing to play

a0 = η but does not play this action. Such a type has η = η, and can be a gamer or a low type.

Beliefs at a1 are in (η, η), and so the natural type must play a1.

In all cases, we assume without loss that all equilibrium actions are weakly above η.

Case 1. Suppose e0 is a Case 1 equilibrium at stakes s0: no two types are both willing to play the same pair

of actions. We will show that as s varies locally, we can slide actions marginally up or down to maintain all

indifferences without moving types across actions, and therefore without affecting the distribution of posterior

beliefs. We work from left to right, the lowest equilibrium action to the highest. For all such actions we will

check indifferences “to the left” – seeing whether any type that is willing to play the given action is also willing

to play a lower action. Without loss, it suffices to check only indifferences to lower actions that are played

in equilibrium with positive probability, and to action a = η; by free downward deviations, other off-path

actions can be taken to have sufficiently low beliefs that any agent willing to deviate to one of those would

also deviate to a lower equilibrium action or to a = η.

Base case: Start with the lowest equilibrium action, i.e., the lowest action played with positive probability

by any type. If this action is η, then keep it at η and move on to the next step. Otherwise, check if any type

playing this action—in particular, the relevant one would just be the low type (η, γ)—is willing to play a = η

as well at the equilibrium beliefs. If not, then as we locally vary s no agent type wants to deviate down to

η, and so again keep this action fixed and move on to the next step. So suppose that there is a type playing

this action which is willing to play η; by assumption of Case 1 there can only be a single indifferent type. As

s varies, slide this lowest equilibrium action up or down to keep this type indifferent at the given beliefs. In

particular, when stakes s increase then the appeal of the current action relative to a = η increases, as there

is now a larger benefit of taking a higher action to get higher beliefs, and so we slide the action up to recover

the indifference by raising the costs of taking this. When stakes s decrease then the current action becomes

less appealing relative to a = η, and so we lower the action to recover the indifference by lowering costs. All

the while we maintain the probability that each type chooses this action as it shifts around and therefore keep

fixed beliefs at this action. Hence, as we locally vary s, no types currently playing this action want to deviate

down to a = η.

Inductive step: move on to the next-highest equilibrium action. Look at all types willing to play this action

(whether they play it in equilibrium or not). If none of these types are willing to play a lower equilibrium

action or action a = η, then keep this action fixed as we locally vary s; no types currently playing this action

become attracted to a lower action, and no types playing a lower action become attracted to this one. If there

is such a binding indifference, then again there can only be a single indifferent type; this follows from the

assumption that no two types are indifferent over the same pair of actions, combined with the characterization

of Case (1) from Claim 4 that if two types are willing to play two different lower actions a1 and a2, then a2
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cannot be an equilibrium action. Proceed as above, sliding the action up or down to maintain the indifference

to lower actions without changing beliefs or moving types across actions. (Here the indifferences are affected

both by the direct change in the stakes, and also by potentially having moved the lower actions up or down

in previous steps.)

Continue to proceed by induction for each next-higher equilibrium action until we are done. (Recall that

there are only finitely many equilibrium actions.) This gives us a new equilibrium at the locally perturbed

stakes: no type playing one action strictly wants to shift to any new action, because every previously optimal

action remains optimal. This new equilibrium induces the same distribution over beliefs, and so information

has not changed as we varied s.

Case 2. First we will move types across actions and/or slide locations of actions in order to maintain the

appropriate indifferences across all actions actions at or below a2. We treat each subcase separately and show

that for an increase in s these moves will decrease information, and for a decrease in s these moves will increase

information. Following that, without treating each subcase separately, we will slide around actions to maintain

appropriate indifferences over actions above a2 in a way that does not additionally change information.

Subcase (a). For a marginal decrease in s, types which were previously willing to play both a1 and a2 become

more attracted to a1. In this subcase there are no relevant binding incentive constraints attracting types

playing a1 to actions below a1. Consider two possibilities. First, beliefs η̂ at either a1 or a2 are in the

range (η, η), so either natural types play a1 or gamers play a2 with positive probability. In that case,

we follow the logic of Figure 2 panel (a) and move either natural types up from a1 to a2, and/or gamers

down from a2 to a1, to increase beliefs at a2 and decrease beliefs at a1 until we recover the appropriate

indifference of gamers and naturals between actions a1 and a2. By Claim 3, these moves increase

information. The second possibility is that only types with η = η play a1, and only types with η = η

play a2—we already have full separation. In that case the natural types at a2 become more attracted to

a1 (which they were previously indifferent to); we can slide a2 down to lower the cost of a2 and recover

the indifference of the natural type across a1 and a2. Because a2 > aor, sliding a2 down lowers the cost

for the natural type more than for the gamer, and because the natural type is indifferent, the gamer

now strictly prefers a1, the action it was playing, to a2, the action it was not playing. In any event, this

slide does not change information.

For a marginal increase in s, types which were previously willing to play both a1 and a2 become more

attracted to a2. Again, consider two possibilities. First, either natural types play a2 or gamers play

a1 with positive probability. In that case, we effectively reverse the direction of Figure 2 panel (a):

move gamers up from a1 to a2, and/or move naturals down from a2 to a1, to decrease beliefs at a2 and

increase beliefs at a1 until we recover the indifferences. Such a move decreases information. Second, no

natural types play a2 and no gamers play a1 (this can occur if enough high types play a2, and enough

low types play a1, that beliefs at a2 are above beliefs at a1). In that case, slide a2 up without moving

types across actions until we recover the indifference of gamers across a1 and a2. Because a2 was above

aor, sliding a2 up imposes a higher cost increase on naturals than on gamers, and so naturals are no

longer indifferent between a1 and a2; they now strictly prefer a1, which they are already playing. In

any event, this slide does not change information.

Subcase (b). For a marginal decrease in s, the argument proceeds as in subcase (a). Here we are in the

“first possibility” where all natural and gamer types play a2, and so moving gamers down increases

beliefs at a2 while holding fixed beliefs of η̂ = η at a1.
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For a marginal increase in s, we simply keep a2 as it is: natural and gamer types now strictly prefer a2

to a1, and they were not previously playing a1.32

Subcase (c). For a marginal decrease in s, types which were previously willing to play both a1 and a2

become more attracted to a1, and the indifferent type between a0 and a1 becomes more attracted to

a0. Consider two possibilities. First, gamers play a2 with a positive probability. In that case we follow

the logic of Figure 2 panel (b): move the indifferent type (which may be gamers or low types, but in

either case have η = η) left from a1 to a0 to increase beliefs at a1 and recover the indifference between

a0 and a1. Then move gamers left from a2 to a0 to increase beliefs at a2 and recover the indifference

between a2 and a1. Both moves increase information. The second possibility is that no gamers play a2.

In that case, we again start by moving the indifferent type from a1 to a0 to recover that indifference

and increase information. Then we slide a2 down to recover the indifference of natural types between

a1 and a2; this leaves gamers now strictly preferring a1 over a2, and does not affect information.

For a marginal increase in s, types which were previously willing to play both a1 and a2 become more

attracted to a2, and the indifferent type between a0 and a1 becomes more attracted to a1. Now consider

two possibilities. The first possibility is that gamers play a1 with positive probability. In that case we

do two steps: first, move the indifferent type (with η = η) up from a0 to a1 to lower beliefs at a1 and

recover the indifference of that type across a1 and a2. This decreases information, and also makes a1

less attractive relative to a2. Second, move the indifferent type right from a0 to a1 while moving gamers

right from a1 to a2 at exactly the same rate (or, if the indifferent type was the gamer, we can move

gamers directly from a0 to a2, essentially reversing the direction of Figure 2 panel (b)); this keeps beliefs

at a1 fixed, and also at a0, because beliefs were already at η̂ = η. But it decreases beliefs at a2, and so

we can do this until we recover the indifference of naturals and gamers across a1 and a2. The second

possibility is that gamers do not play a1. In that case the indifferent type must be the low type, and

gamers must not be willing to play a0. Here, we first move the low type up from a0 to a1 to lower beliefs

at a1 and recover that indifference, just as before. This decreases information while further increasing

the attractiveness of a2 relative to a1. Next, we slide action a2 up to recover the indifference of natural

types across a1 and a2; the gamers now strictly prefer a2 to a1, since their costs of a2 increase by less

than those of the natural types. But they were not previously playing any action below a2, so this does

not affect their behavior.

Subcase (d). For a decrease in s, the low type which is indifferent over a0 = η and a1 becomes more

attracted to a0 relative to a1, since the benefit of higher beliefs has gone down while costs have not

changed. Likewise the gamer and natural type become more attracted to a1 relative to a2. Consider

two possibilities. The first is that gamers do not play a2, so that beliefs at a2 are at η̂ = η. In that case

we can move natural types up from a1 to a2 to decrease beliefs at a1 until we recover the indifference

of the natural and gamer types between a1 and a2. This makes a1 less appealing relative to a0, so we

do not have to worry about low types becoming attracted from a0 to a1. The second possibility is that

gamers play a2. In that case we move gamers down from a2 to a1 to reduce beliefs at a1 and increase

beliefs at a2, recovering the indifference of naturals and gamers between a1 and a2 while increasing

information. This again makes a1 less appealing to the low types relative to a0, so they continue to

play a0.

32 The argument of the “first possibility” of subcase (a) would fail because moving natural types down would discretely
rather than continuously increase equilibrium beliefs at a1 from η to η.
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For a increase in s, proceed as in subcase (c).

Subcase (e). For a decrease in s, proceed as in subcase (c).

For an increase in s, proceed as in subcase (a). The increase in s makes a1 more appealing relative to

a0, and any moves of types across actions do not decrease beliefs at a1, and so the previously indifferent

type now strictly prefers a1 to a0.

As mentioned earlier, the above analysis corrects all of the incentives across actions less than or equal to

a2. We now turn to actions above a2. If the equilibrium has no actions above a2 (i.e., high types only play

a2) then of course we are done. It may also be the case that the equilibrium has one action above a2 (call it

a3), or two actions above a2 (a3 and a4). When there is one action above a2, it is played by the high type and

possibly by the gamer. When there are two actions above a2, the lower one a3 is played by the gamer and the

high type while the higher one a4 is played only by the high type (the gamer and high type cannot both be

indifferent over a pair of actions a3 and a4). In any case, as we vary s, we can slide actions around as in Case

1 to recover the appropriate equilibrium indifferences . Moving again from left to right, if a type that plays

a3 had been willing to play a2, then after the above perturbations simply slide up or down as appropriate

a3 to maintain this indifference; if no such type had been indifferent, then keep a3 where it was. Then do

the same for a4, maintaining any relevant indifferences with lower actions. There are no complications here

because the two relevant types are ordered by single-crossing. Q.E.D.

Proof of Lemma 3 part 2. We proceed similarly to the proof of part 1 above, with three key differences.

First, fixing an equilibrium e0 at stakes s0, we generate a path of equilibria only for s ≥ s0. Second, with

the dimension of interest equal to gaming ability rather than natural action, the direction of the information

effect is reversed: as stakes increase, we find perturbations that increase information. We do this by only ever

moving low-γ types down, from actions with high beliefs to ones with low beliefs, and moving high-γ types up

from low beliefs to high. Third, while in part 1 all of the perturbations moved equilibria continuously, here

we sometimes use a trick of looking for continuous perturbations about an equilibrium that induces the same

distribution of beliefs as equilibrium e0, but has different strategies for some types. This gives us a path of

equilibria over s ∈ [s0,∞) in which distributions of beliefs vary continuously with the stakes, but strategies

may jump discretely at s0.

Using Claim 4, we can categorize all possible equilibria into a number of exhaustive cases (up to equiva-

lence), and then address these cases separately.

Case 1. For any pair of distinct actions weakly above η, at most a single type is willing to play both of these.

Case 2. There exist actions a1 and a2 satisfying η ≤ a1 < aor < a2 ≤ η such that the gamer (η, γ) and the

natural type (η, γ) are both willing to play a1 and a2. No actions in (a1, a2) are played in equilibrium.

Natural types (η, γ) are not willing to play any action strictly below a1 or above a2, low types (η, γ) are

not willing to play any action above a1, and high types (η, γ) are not willing to play any action below

a2.

Any equilibrium action above a2 can only be played by the gamer and high type, and so it must have

belief of γ̂ = γ; thus, there can be at most one such equilibrium action, a3. We now divide this case

into subcases on two separate dimensions: each equilibrium is in one category (i)-(iii) characterizing its

higher actions above a2, and in one category (a)-(c) characterizing its lower actions below a1.
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(i) Some type plays both a2 and a3 > a2. This type can be the high type or the gamer.

(ii) No type plays an action above a2.

(iii) The action a3 is played only by the high type, and the high type does not play a2. Here the gamer

must play a2; otherwise no γ = γ types would be playing a2, so it would have to have beliefs γ̂ = γ

and so a1 would be preferred by all types to a2.

(a) Either there are no equilibrium actions below a1; or, there are lower actions, but no type playing

a lower action is willing to play a1. Because only low and gamer types can be willing to play

actions below a1, and because gamers are willing to play a1, it means that only a low type could

be playing a lower action without being willing to play a1. Up to equivalence, this low type would

play a = η.

(b) Some type plays an equilibrium action below a1, call it a0, and is also willing to play a1. Moreover,

natural types play a2 in equilibrium. The indifferent type between a0 and a1 can be a low or a

gamer type. There can only be one such indifference. In this case a1 must be an equilibrium

action.

(c) Some type plays an equilibrium action below a1, call it a0, and is also willing to play a1. Moreover,

natural types do not play a2 in equilibrium. The indifferent type between a0 and a1 can be a low

or a gamer type. There can only be one such indifference. In this case a1 is an equilibrium action.

Note that because natural types do not play a2, beliefs are γ̂ = γ at a2 so we must be in subcase

(ii) as well, where there are no actions above a2.

In all cases, we assume without loss that all equilibrium actions are weakly above η.

Case 1. This case proceeds exactly as in the proof of Case 1 in Lemma 3 part 1. As stakes increase, we

can perturb the equilibrium by sliding actions around in a way which has no impact on the distribution of

beliefs.

Case 2. First, prior to varying the stakes, we tweak the equilibrium in the following way which does not

affect the information. In subcase (i), do nothing. In subcase (ii), do not change any strategies, but define

a3 to be the action such that the highest type playing a2 (the high type, if such types have positive measure;

the gamer otherwise) would be just indifferent between a2 at the current beliefs under e0 and action a3 under

beliefs γ̂ = γ. Finally, in subcase (iii), slide a3 down by a discrete amount until the gamer is just indifferent

to playing a3. At this level the high type still strictly prefers a3 to a2 at the beliefs under equilibrium e0.

The key to these tweaks is that now the highest type playing a2 (either gamer or high types) has become

indifferent to deviating up to a3, if it was not already indifferent.

Starting from this tweaked equilibrium, we now look for continuous perturbations that increase information

as stakes s increase. As stakes increase, types playing lower actions may become more attracted to higher

actions at higher beliefs.

Now, consider any equilibrium actions strictly below a1. Only low and gamer types can play actions below

a1, and there are either zero, one, or two of these actions. If there are no such actions, then types playing a1

only become less inclined to deviate downwards as s increases, so we can move on. If there is one such action,

fix that action and move on. If there are two, then as stakes increase, fix the lowest action, and marginally
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slide the second-lowest action up as necessary in order to make sure that types playing the lowest action do

not now want to deviate to the second one.

As stakes increase, types playing lower actions may become more attracted to a1, but the reverse does not

hold. Moreover, if in the previous step we slid a lower action up to maintain indifferences, that only makes the

lower action even less appealing to a type playing a1. So we now turn to maintaining indifferences between

the lower actions and a1, and also across higher actions. We treat subcases (a)-(c) separately.

Subcase (a). Here there are no relevant indifferences between lower actions and action a1: as we marginally

increase stakes, any types playing actions below a1 do not become attracted to a1. So we can move on to

indifferences between actions a1 and higher.

The increase in s makes makes a2 more appealing relative to a1. So to recover the indifference of naturals

and gamers between a1 and a2, we move the highest type playing a2 (either gamers or high types) up to a3,

as in Figure 3. (The equilibrium tweak from before guarantees that this type was previously indifferent to

playing a2 or a3.) This move reduces beliefs at a2 as desired, and makes the equilibrium more informative.

Finally we slide a3 as necessary to maintain the indifference of the type being moved between a2 and a3.

Subcase (b). As stakes increase, and as we potentially slide a0 upwards to prevent deviations to a0

from lower actions, action a1 has become more attractive to the previously indifferent type. To recover the

indifference between a0 and a1, we move natural types down from a2 to a1 to reduce beliefs at a1. This move

increases information, since it moves a low-γ type from a high belief action to a low one.

The increase in s makes makes a2 more appealing relative to a1, and the above move of natural types from

a2 to a1—increasing beliefs at a2 and decreasing beliefs at a1—does the same. So to recover the indifference

of naturals and gamers between a1 and a2, we proceed as in subcase (a) and move gamers or high types up

from a2 to a3, then slide a3 as necessary. These moves make the equilibrium more informative.

Subcase (c). As stakes increase, and as we potentially slide a0 upwards to prevent deviations to a0

from lower actions, action a1 has become more attractive to the previously indifferent type. To recover the

indifference between a0 and a1, we slide action a1 up without moving types across actions. This has no effect

on information. Next, slide action a2 up to keep gamers indifferent between a2 and a1; an increase in stakes

has made a2 relatively more attractive, and sliding a1 up does the same, so we have to increase the costs of

a2 to keep the natural and gamer types from deviating to that. Notice that because a1 < aor, sliding a1 up

increases the cost of taking a1 more for gamers than for natural types; and because a2 > aor, sliding a2 up

increases the cost of taking a2 less for gamers than for natural types. So if gamers have been made indifferent

between a1 and a2, naturals now strictly prefer a1; but by assumption of subcase (c), the naturals had not

been playing a2, so we maintain the equilibrium. (In this subcase there is no need to address action a3 because

no types had been playing any action above a2.) Q.E.D.

SA.3. Additional Results and Proofs for Section 4

Define the following notation: for any d ∈ {η, γ}, let ¬d denote η if d = γ and γ if d = η.

SA.3.1. Characterizing linear equilibria

Lemma 6. Consider the LQE specification and fix τ ∈ {η, γ}. Suppose agents of type (η, γ) take action

a = lηη + lγγ + b for some constants lη 6= 0, lγ 6= 0, and b. Then:
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1. The vector (τ, a) is distributed according to E

(
(µτ , µa),

(
σ2
τ στa

στa σ2
a

)
, gτa

)
with

µa = lηµη + lγµγ + b,

σ2
a = 2lηlγρσησγ + l2ησ

2
η + l2γσ

2
γ ,

στa = lτσ
2
τ + l¬τρσησγ ,

gτa(·) = gθ(·).

2. τ̂(a) ≡ E[τ |a] = µτ +
στa
σ2
a

(a− µa).

3. (τ, a) has an R2 of

R2
τa =

(
lτσ

2
τ + l¬τρσησγ

)2
σ2
τ

(
2lηlγρσησγ + l2ησ

2
η + l2γσ

2
γ

) .
Proof of Lemma 6. Parts 1 and 2 follow from the properties of elliptical distributions covered in Gómez

et al. (2003); respectively, see Theorems 5 and 8 of that paper. Part 3 is immediate from Part 1 and that

R2
τa ≡ σ2

τa/(σ
2
τσ

2
a). Q.E.D.

For the strategy a = η + sLγ (Equation 3) with L > 0, a simplification of the expressions from Lemma 6

part 3 yields

R2
ηa =

(ση + sLρσγ)2

2sLρσησγ + σ2
η + s2L2σ2

γ

, (SA.6)

R2
γa =

(ρση + sLσγ)2

2sLρσησγ + σ2
η + s2L2σ2

γ

. (SA.7)

Lemma 7. Hold fixed ση > 0, σγ > 0, and ρ ≥ 0. If sL > 0, then R2
ηa in (SA.6) is decreasing in sL while

R2
γa in (SA.7) is increasing in sL.

Proof of Lemma 7. Both results follow by straightforwardly taking derivatives. The derivative of R2
ηa with

respect to sL can be simplified to

−2sLσησ
2
γ(1− ρ2)(ση + sLρσγ)(

2sLρσησγ + σ2
η + s2L2σ2

γ

)2 < 0.

The derivative of R2
γa with respect to sL can be simplified to

2σ2
ησγ(1− ρ2)(ρση + sLσγ)(

2sLρσησγ + σ2
η + s2L2σ2

γ

)2 > 0. Q.E.D.

For the next result, recall that we use βτ to denote the induced posterior beliefs on τ after observing the

realization of a. These beliefs are determined in equilibrium by the joint distribution of a and τ .
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Lemma 8. Fix τ ∈ {η, γ}, as well as στ , µτ , and gτa. If the equilibrium distribution of (τ, a) is

E

(
(µτ , µa),

(
σ2
τ στa

στa σ2
a

)
, gτa

)
,

then the ex ante distribution of βτ (prior to the realization of the action) depends only on R2
τa ≡

σ2
τa

σ2
τσ

2
a

. Beliefs

are more informative about τ̂ if R2
τa ∈ [0, 1] is larger, with beliefs being uninformative about τ̂ if R2

τa = 0 and

fully informative about τ̂ (and τ) if R2
τa = 1.

Proof of Lemma 8. For any joint distribution of τ and a, the ex ante distribution of βτ is clearly preserved

under affine transformations of the action. Specifically, subtract µa from all actions; multiply actions by 1
σa

;

and then multiply actions by −1 if στa < 0. The transformation normalizes µa = 0, σ2
a = 1, and στa ≥ 0 while

preserving R2
τa. Since στa ∈ [0, στ ] is the only remaining parameter under the normalization, it is immediate

that the ex ante distribution of βτ depends only on R2
τa. Moreover, there is a bijection from στa ∈ [0, στ ] to

R2
τa ∈ [0, 1] in which higher στa corresponds to higher R2

τa.

Given the normalizations above of σ2
a = 1 and µa = 0, Theorem 8 of Gómez et al. (2003) implies that

τ̂(a) = µτ +aστa. Since the marginal distribution of a is independent of στa, changes in στa simply correspond

to scale shifts of the distribution of τ̂ ; hence, for any 0 ≤ στa < στa ≤ στ , the distribution of τ̂ when στa = στa
is a mean-preserving spread of that when στa = στa.

Finally, beliefs are uninformative about τ̂ when R2
τa = 0 because that corresponds to the case where

στa = 0, in which case τ̂(a) is constant across actions. Beliefs are fully informative about τ̂ when R2
τa = 1

because that corresponds to the case where στa = στ , in which case the two variables are perfectly correlated

and the conditional distribution of τ given a is degenerate at a single point. Q.E.D.

Lemma 9. Consider the LQE specification. Given linear market beliefs τ̂(a) = La + K with L > 0 (Equa-

tion 2), the agent’s unique optimal action is given by a = η + sLγ (Equation 3).

Conversely, given a linear strategy of the form a = η+sL̃γ, and denoting L(s, L̃, η) ≡ 1 and L(s, L̃, γ) ≡ sL̃,

the market belief on dimension d ∈ {η, γ} is linear in the agent’s action, with slope coefficient

L(s, L̃, d)σ2
d + L(s, L̃,¬d)ρσησγ

σ2
η + s2L̃2σ2

γ + 2sL̃ρσγση
.

Therefore, an increasing linear equilibrium for dimension of interest τ ∈ {η, γ} is characterized by (2) and

(3), where L > 0 solves

L =
L(s, L, τ)σ2

τ + L(s, L,¬τ)ρσησγ
σ2
η + s2L2σ2

γ + 2sLρσγση
. (SA.8)

Proof of Lemma 9. First consider the agent’s best response to any linear market belief, τ̂(a) = La + K

with L > 0. For any η, γ, the agent solves

max
a∈R

s(La+K)− (max{a− η, 0})2

2γ
.

This maximand is globally weakly concave in a, and strictly concave on a ≥ η. Since L > 0, it is suboptimal

for the agent to choose a ≤ η, and so the first order condition yields the unique optimum a = η + sLγ.
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Now consider the market posterior given a strategy a = η + sLγ. Plugging lη = 1 and lγ = sL into

Lemma 6 parts 1 and 2 gives the stated expression.

By Theorem 8 of Gómez et al. (2003), it follows that for any observed action a, the marginal distribution

of the market posterior on dimension d ∈ {η, γ} is elliptically distributed with mean µd|a given by

µd|a = µd +
ldσ

2
d + l¬dρσησγ

l2ησ
2
η + l2γσ

2
γ + 2lηlγρσγση

(a− k − lηµη − lγµγ).

Plainly, µd|a is linear in a with slope coefficient as stated in the lemma (with obvious notational adjustment).

Q.E.D.

SA.3.2. Proof of Proposition 4

Part 1 of Proposition 4 is subsumed in Lemma 10 below; part 2(a) and 2(b) of Proposition 4 are immediate

consequences of expression (SA.11) and Lemma 11 below; and part 3 of Proposition 4 is Lemma 12 below.

Given τ = η, it will be convenient to rewrite Equation SA.8 as

fη(L, s, ση, σγ , ρ) := s2σ2
γL

3 + 2sρσγσηL
2 + (σ2

η − sρσησγ)L− σ2
η = 0. (SA.9)

Lemma 10. If ρ ≥ 0 then there is unique solution to Equation SA.9 on the non-negative domain; this solution

satisfies L ∈ (0, 1) and ∂fη
∂L > 0 at the solution.

Proof of Lemma 10. Assume ρ ≥ 0. Differentiation shows that fη(·) is strictly convex in L on the domain

L > 0. The result follows from the observation that fη(0, ·) < 0 < fη(1, ·). Q.E.D.

Lemma 11. Let ρ ≥ 0. As s→∞, it holds for the solution L to Equation SA.9 that L→ 0 and L2s→ ρσησγ .

As s→ 0, it holds for the solution L to Equation SA.9 that L→ 1.

Proof of Lemma 11. The result for s → 0 is immediate from Equation SA.9, so we only prove the limits

as s→∞. Assume ρ ≥ 0. Divide Equation SA.9 by s2 to get

σ2
γL

3 −
σ2
η(1− L)

s2
+ ρσησγ

L

s
(2L− 1) = 0.

Let s→∞. Since L ∈ (0, 1), all terms on the LHS above except the first one vanish as s→∞, so it must be

that L→ 0. Next rewrite Equation SA.9 by dividing by Ls as

sσ2
γL

2 + 2Lρσγση − ρσησγ −
σ2
η

Ls
(1− L) = 0. (SA.10)

Suppose, to contradiction, that Ls converges to something finite (which must be non-negative). Then L2s→ 0,

and hence the first two terms on the LHS of (SA.10) above vanish, which means the LHS of (SA.10) goes

to something strictly negative, a contradiction. Hence, Ls → ∞. This implies the LHS of (SA.10) goes to

sσ2
γL

2 − ρσησγ , which implies L2s→ ρσησγ . Q.E.D.

Lemma 12. If ρ ≥ 0, then (i) d
dµγ

R2
ηa = 0, (ii) d

dσγ
R2
ηa < 0, (iii) d

dsR
2
ηa < 0, and (iv) d

dρR
2
ηa > 0.

SA-15



Proof of Lemma 12. First observe that Equation SA.9 implies

2sLρσησγ + σ2
η + s2L2σ2

γ =
ση
L

(ση + sLρσγ).

We now rewrite Equation SA.6 and plug in the above identity to get

R2
ηa =

(ση + sLρσγ)2

2sLρσησγ + σ2
η + s2L2σ2

γ

=
(ση + sLρσγ)2

ση
L (ση + sLρσγ)

= L+ sL2ρ
σγ
ση
. (SA.11)

For the first part, note from (SA.11) that R2
ηa depends neither directly nor indirectly (through the solution

L to Equation SA.9) on µγ . For the other parts, we use the chain rule and the implicit function theorem

(which Lemma 10 ensures we can apply), to derive that for any x = σγ , s, ρ,

d

dx
R2
ηa =

∂R2
ηa

∂L

∂L

∂x
+
∂R2

ηa

∂x
=

1
∂fη
∂L

(
∂R2

ηa

∂x

∂fη
∂L
−
∂R2

ηa

∂L

∂fη
∂x

)
. (SA.12)

Each partial derivative in (SA.12) can be computed from either (SA.9) or (SA.11), and some manipulations

then yield parts (ii), (iii), and (iv) of the result. In more detail:

∂R2
ηa

∂L
= 1 + 2sLρ

σγ
ση
,
∂R2

ηa

∂σγ
=
sL2ρ

ση
,
∂R2

ηa

∂s
= L2ρ

σγ
ση
,
∂R2

ηa

∂ρ
= sL2σγ

ση
,

and

∂fη
∂L

= σ2
η + 3L2s2σ2

γ + (4L− 1)ρsσγση,

∂fη
∂σγ

= Ls
(
2L2sσγ + (2L− 1)ρση

)
,

∂fη
∂s

= Lσγ
(
2L2sσγ + (2L− 1)ρση

)
,

∂fη
∂ρ

= L(2L− 1)sσγση.

Since ∂fη
∂L > 0 at the solution to L (Lemma 10), we drop the 1

∂fη

∂L

term in (SA.12) and compute

d

dσγ
R2
ηa ∝

Ls

ση

(
−L3ρs2σ2

γ + (1− L)ρσ2
η + Lsσγση

(
ρ2 − 2L

))
=
Ls

ση

(
ρ
(
2L2ρsσγση + L

(
σ2
η − ρsσγση

)
− σ2

η

)
− (L− 1)ρσ2

η + Lsσγση
(
ρ2 − 2L

))
= −2L3

(
1− ρ2

)
s2σγ < 0,

where the first line obtains from plugging in the formulae for partial derivatives into (SA.12) and some

algebraic manipulation, the second line obtains from substituting in for −L3ρs2σ2
γ from Equation SA.9, and
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third line is algebraic simplification.

Analogous steps prove
dR2

ηa

ds < 0. Finally, plugging in partial derivatives into (SA.12) and simplifying,

dR2
ηa

dρ
∝ Lsσγ

ση

(
3L3s2σ2

γ + (1− L)σ2
η + Lρsσγση

)
> 0,

where the inequality uses the fact that L < 1, as was established in Lemma 10. Q.E.D.

SA.3.3. Proof of Proposition 5

Part 1 of Proposition 5 is subsumed in Lemma 13 below; Part 2(a) and 2(b) of Proposition 5 are immediate

consequences of expression (SA.14) and Lemma 14 below; and Part 3 of Proposition 5 is Lemma 15 below.

Given τ = γ, it will be convenient to rewrite Equation SA.8 as

fγ(L, s, σγ , ση, ρ) := s2σ2
γL

3 + 2sρσγσηL
2 + (σ2

η − sσ2
γ)L− ρσησγ = 0. (SA.13)

Lemma 13. If ρ > 0 there is a unique solution to Equation SA.13 on the non-negative domain; it is strictly

positive. If ρ = 0, (i) L = 0 is always a solution, and (ii) there is a positive solution if and only if σ2
η < sσ2

γ;

when a positive solution exists, it is unique. For any ρ ≥ 0 and at any solution L > 0 to Equation SA.13, it

holds that ∂fγ
∂L > 0.

Proof of Lemma 13. Assume ρ ≥ 0. First, there is at most one strictly positive solution to Equation SA.13

because fγ(·) intersects 0 from below at any strictly positive solution:

∂fγ
∂L

∣∣∣∣
fγ=0

= σ2
η + 3L2s2σ2

γ + 4s(Lρ)σγση − sσ2
γ > σ2

η + s2σ2
γL

2 + 2Lsρσγση − sσ2
γ

= sσ2
γ +

ρσησγ
L
− sσ2

γ ≥ 0,

where the second equality uses Equation SA.13.

Next, observe that because fγ(0, ·) ≤ 0 while fγ(L, ·) → ∞ as L → ∞, there is always at least one non-

negative solution to Equation SA.13. If ρ > 0, then fγ(0, ·) < 0, so any non-negative solution is strictly

positive. If ρ = 0, fγ(0, ·) = 0, so L = 0 is always a solution; that there is a strictly positive solution if

and only if σ2
η < sσ2

γ follows from the observations that ∂fγ(0,·)
∂L = σ2

η − sσ2
γ and ∂fγ

∂L > 0 for all L > 0 if

σ2
η ≥ sσ2

γ . Q.E.D.

Lemma 14. Let ρ ≥ 0. As s → ∞, it holds for the unique strictly positive solution L to Equation SA.13

that L → 0 and L2s → 1. If ρ > 0 then as s → 0, it holds for the unique strictly positive solution L to

Equation SA.13 that L→ ρσγ.33

Proof of Lemma 14. The proof is omitted as the argument is analogous to that in the proof of Lemma 11,

but applied to Equation SA.13. Q.E.D.

Lemma 15. If ρ ≥ 0, then in an increasing equilibrium (when it exists, i.e. when there is a strictly positive

solution to Equation SA.13): (i) d
dµη

R2
γa = 0, (ii) d

dση
R2
γa < 0, (iii) d

dsR
2
γa > 0, and (iv) d

dρR
2
γa > 0.

33 When ρ = 0, Lemma 13 assures that there is a strictly positive solution if and only if s is large enough.
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Proof of Lemma 15. First observe that Equation SA.13 implies

2sLρσησγ + σ2
η + s2L2σ2

γ =
σγ
L

(ρση + sLσγ).

We now rewrite Equation SA.7 and plug in the above identity to get

R2
γa =

(ρση + sLσγ)2

2sLρσησγ + σ2
η + s2L2σ2

γ

=
(ρση + sLσγ)2

σγ
L (ρση + sLσγ)

= sL2 + Lρ
ση
σγ
. (SA.14)

The rest of the argument is analogous to that in the proof of Lemma 12, but applied to expressions (SA.14)

and (SA.13). The algebraic details are available on request. Q.E.D.

SA.3.4. Mixed dimensions of interest

Here we provide formal results for the LQE specification with mixed dimensions of interest discussed in Sub-

section 4.3. When the agent uses a linear strategy, the market updates on each dimension as given in Lemma 9.

Given any pair of linear market beliefs γ̂(a) = Lγa+Kγ and η̂(a) = Lηa+Kη with κLγ + (1− κ)Lη > 0, the

agent’s unique best response is to play a = η+s (κLγ + (1− κ)Lη) γ. Using the shorthand L ≡ κLγ+(1−κ)Lη,

we have a = η + sLγ. Routine substitutions imply that an equilibrium is now characterized by a pair of con-

stants, (Lη, Lγ), that simultaneously solve

Lη =
σ2
η + sLρσησγ

2sLρσησγ + σ2
η + s2L2σ2

γ

, (SA.15)

Lγ =
sLσ2

γ + ρσησγ

2sLρσησγ + σ2
η + s2L2σ2

γ

, (SA.16)

An equilibrium is said to be increasing if both Lη > 0 and Lγ > 0. From Equation SA.6,

R2
ηa =

(ση + sLρσγ)2

2sLρσησγ + σ2
η + s2L2σ2

γ

= LηLsρ
σγ
ση

+ Lη, (SA.17)

where the second equality can be verified by substituting for Lη using Equation SA.15. Similarly, Equa-

tion SA.7 gives

R2
γa =

(ρση + sLσγ)2

2sLρσησγ + σ2
η + s2L2σ2

γ

= Lγρ
ση
σγ

+ LγsL, (SA.18)

where the second equality can be verified by substituting for Lγ using Equation SA.16.

Proposition 8. Consider the LQE specification with mixed dimensions of interest and ρ = 0. Then, for any

κ ∈ (0, 1), an increasing linear equilibrium exists; moreover:

1. ∀ε > 0, ∃s̃ > 0 such that if s < s̃ then in any such equilibrium, R2
ηa ∈ [1− ε, 1] and R2

γa ∈ [0, ε].

2. ∀ε > 0, ∃ŝ > 0 such that if s > ŝ then in any such equilibrium, R2
ηa ∈ [0, ε] and R2

γa ∈ [1− ε, 1].

3. Any such equilibrium has the following local comparative statics: d
dsR

2
ηa < 0 and d

dsR
2
γa > 0.
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Remark 5. Subject to technical qualifiers, the above result can be generalized to ρ ≥ 0; the only modifications

are that the limiting R2
ηa as s→∞ becomes ρ2 (cf. Proposition 4 part 2(b)) while the limiting R2

γa as s→ 0

becomes ρ2 (cf. Proposition 5 part 2(a)). ‖

Proof of Proposition 8. Assume ρ = 0 and κ ∈ (0, 1). With ρ = 0, Equations SA.15 and SA.16 can be

rewritten as

fκ,η(Lη, Lγ , s, ση, σγ) := Lησ
2
η + s2LηL

2σ2
γ − σ2

η = 0, (SA.19)

fκ,γ(Lη, Lγ , s, ση, σγ) := Lγσ
2
η + s2LγL

2σ2
γ − sLσ2

γ = 0, (SA.20)

and (SA.17) and (SA.18) simplify to

R2
ηa = Lη, (SA.21)

R2
γa = sLγL. (SA.22)

It is straightforward from Equation SA.19 and Equation SA.20 that there is a positive solution (i.e. both

Lη > 0 and Lγ > 0);34 moreover, in any solution, Lη ∈ (0, 1).

Manipulating (SA.19) and (SA.20) along similar lines to the proof of Lemma 11, it can be established that:

1. ∀ε > 0, ∃s̃ > 0 such that if s < s̃ then in any positive solution, Lη ∈ (1− ε, 1) and Lγ < ε.

2. ∀ε > 0, ∃ŝ > 0 such that if s > ŝ then in any positive solution, Lη < ε, Lγ < ε, and sLγL ∈ (1− ε, 1).

Part 1 and part 2 of the proposition follow applying these two facts to Equation SA.21 and Equation SA.22.

To prove part 3, first note that by the implicit function theorem,

∂Lη
∂s

= −

det

∂fκ,η∂s
∂fκ,η
∂Lγ

∂fκ,γ
∂s

∂fκ,γ
∂Lγ


det

∂fκ,η∂Lη

∂fκ,η
∂Lγ

∂fκ,γ
∂Lη

∂fκ,γ
∂Lγ

 and
∂Lγ
∂s

= −

det

∂fκ,η∂Lη

∂fκ,η
∂s

∂fκ,γ
∂Lη

∂fκ,γ
∂s


det

∂fκ,η∂Lη

∂fκ,η
∂Lγ

∂fκ,γ
∂Lη

∂fκ,γ
∂Lγ

 .

Computing all the relevant partial derivatives of fκ,η and fκ,γ and simplifying yields

∂Lη
∂s

= −
2sσ2

γLηL
2

sσ2
γ (3sL2 − κ) + σ2

η

and
∂Lγ
∂s

=
σ2
γL (2sLγL− 1)

sσ2
γ (3sL2 − κ) + σ2

η

. (SA.23)

Using (SA.22) and (SA.23), some algebra yields

d

ds
R2
γa = LγL+ s

∂Lγ
∂s

L+ s
∂L

∂s
Lγ

=
L
[
−sσ2

γLγ
(
2sL2 − κ

)
+ sσ2

γ

(
−κLη + sLγL

2 + Lη
)

+ σ2
ηLγ

]
sσ2

γ (3sL2 − κ) + σ2
η

. (SA.24)

34 Note that this uses κ < 1 (cf. Proposition 5).
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We manipulate (SA.24) as follows:

Numerator of (SA.24) = L
[
−s2L2σ2

γLγ + σ2
ηLγ + sLσ2

γ

]
using L = κLγ + (1− κ)Lη

= 2σ2
ηLγL as Equation SA.20 implies −s2LγL2σ2

γ + sLσ2
γ = Lγσ

2
η

> 0.

Denominator of (SA.24) = sσ2
γ

(
sL2 − L

Lγ

)
+ σ2

η + sσ2
γ

(
L

Lγ
− κ+ 2sL2

)
= sσ2

γ

(
L

Lγ
− κ+ 2sL2

)
as Equation SA.20 implies sσ2

γ

(
sL2 −

L

Lγ

)
+ σ2

η = 0

=
sσ2

γ

Lγ

(
(1− κ)Lη + 2LγsL

2
)
> 0.

Consequently, d
dsR

2
γa > 0. Finally, observe from (SA.21) and (SA.23) that

d

ds
R2
ηa =

d

ds
Lη ∝ −sσ2

γ

(
3sL2 − κ

)
− σ2

η < 0. Q.E.D.

SA.4. Proofs for Subsection 5.2

The proof of Corollary 1 follows immediately from the results of Proposition 1.

SA.4.1. Proof of Proposition 6

Let θ1 = (η, γ) and θ2 = (η, γ), with η < η and γ < γ. Denote the prior mean of η by P ≡ E[η]. Without

loss, we will assume that no actions below η are played in an equilibrium.35

Step 1: For sufficiently large s, any informative equilibrium has two on-path actions. This

follows because the two types can simultaneously be indifferent only over a single pair of actions. Suppose,

to contradiction, that an informative equilibrium involves three (or more) actions. Then one of these actions

is only played by a single type, and so has degenerate beliefs of η̂ = η or η̂ = η. If one action induces beliefs

η̂1 = η, then there must be another action inducing beliefs η̂2 > E[η]. If one action induces beliefs η̂2 = η,

then there must be another action inducing beliefs η̂1 < E[η]. In either case, the benefit of increasing from

the low to the high belief, sv(η̂2)− sv(η̂1)→∞ as s→∞. But by Lemma 4, sv(η̂2)− sv(η̂1) ≤ C(ace, θ1) for

any s; a contradiction.

Step 2: A program that bounds allocative efficiency in two-action equilibria. Fix some

stakes s. Say that in a two-action equilibrium with actions a1 < a2, a probability mass of qi agents take

action ai and induce corresponding belief η̂i, for i = 1, 2. Using the identities q2η̂2 + q1η̂1 = P and q1 + q2 = 1,

we can solve for q1 and q2 as

q1 =
η̂2 − P
η̂2 − η̂1

, q2 =
P − η̂1

η̂2 − η̂1
.

35 If they are, they must all have the same market belief (as these actions are costless to both types), in which case
there is an outcome-equivalent equilibrium that collapses all such actions to single one at η.
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Thus, allocative efficiency is

sE[v(η̂)] = sE[w(η̂)− w(P )] = s
(
q2w(η̂2) + q1w(η̂1)− w(P )

)
= s

(
P − η̂1

η̂2 − η̂1
w(η̂2) +

η̂2 − P
η̂2 − η̂1

w(η̂1)− w(P )

)
.

Lemma 4 implies that sw(η̂2) − sw(η̂1) ≤ C(ace, θ1). The following program therefore gives us an upper

bound on allocative efficiency across all two-action equilibria:

max
η̂2,η̂1

s
(P − η̂1

η̂2 − η̂1
w(η̂2) +

η̂2 − P
η̂2 − η̂1

w(η̂1)− w(P )
)

(SA.25)

subject to η̂1 ≤ P ≤ η̂2 and

w(η̂2)− w(η̂1) ≤ C(ace, θ1)

s
. (SA.26)

We will show that the value of the above program tends to zero as s → ∞; this establishes the desired

conclusion that allocative efficiency is maximized at some interior s, because for any s > 0 there is an equilib-

rium with strictly positive allocative efficiency while allocative efficiency is obviously zero in any equilibrium

when s = 0.

Step 3: The value of the program asymptotes to 0. In the solution to program (SA.25), constraint

(SA.26) must be satisfied with equality; otherwise there is a mean-preserving spread of η̂ that strictly increases

allocative efficiency. Notice also that as s → ∞, the constraints jointly imply η̂2, η̂1 → P , and hence, for s

large, w(η̂2)− w(η̂1) ' w′(P ) · (η̂2 − η̂1). Thus, for any α < w′(P ),

α(η̂2 − η̂1) ≤ w(η̂2)− w(η̂1) ≤ C(ace, θ1)

s

at any solution at large enough s.

Fixing any k > C(ace,θ1)
w′(P ) and noting that relaxing constraint (SA.26) can only increase the value of the

program, it follows that the value of the program (SA.25) for large enough s is no larger than the value of the

following program:

max
η̂2,η̂1

s
(P − η̂1

η̂2 − η̂1
w(η̂2) +

η̂2 − P
η̂2 − η̂1

w(η̂1)− w(P )
)

subject to η̂1 ≤ P ≤ η̂2 and

η̂2 − η̂1 ≤
k

s
. (SA.27)

Since (SA.27) will again be satisfied with equality, we substitute η̂2− η̂1 = k
s into the objective to simplify

the above program to:

max
η̂2∈[P,P+ k

s
]
ϕ(η̂2; s) ≡ s

(
P − η̂2 + k

s
k
s

w(η̂2) +
η̂2 − P

k
s

w

(
η̂2 −

k

s

)
− w(P )

)
. (SA.28)

Claim 5. The function ϕ from (SA.28) satisfies sϕ
(
P + kx

s ; s
) s→∞−→ k2

2 x(1− x)w′′(P ) for x ∈ [0, 1].
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Proof of Claim 5. Using the definition of ϕ(·),

sϕ

(
P +

kx

s
; s

)
= s2

[
(1− x)w

(
P +

kx

s

)
+ xw

(
P − (1− x)

k

s

)
− w(P )

]
.

The second-order Taylor expansion, w(P + ε) = w(P ) + εw′(P ) + ε2

2 w
′′(P ) + o(ε3), yields

sϕ

(
P +

kx

s
; s

)
= s2

[
(1− x)

(
w(P ) +

kx

s
w′(P ) +

k2x2

2s2
w′′(P ) + o(s−3)

)

+ x

(
w(P )− k(1− x)

s
w′(P ) +

k2(1− x)2

2s2
w′′(P ) + o(s−3)

)
− w(P )

]

= s2
(

(1− x)
k2x2

2s2
w′′(P ) + x

k2(1− x)2

2s2
w′′(P ) + o(s−3)

)
=
k2

2
x(1− x)w′′(P ) + o(s−1)

→ k2

2
x(1− x)w′′(P ) as s→∞. Q.E.D.

Claim 5 implies that smaxη̂2∈[P,P+ k

s
] ϕ(η̂2; s) asymptotes to a constant. Hence, allocative efficiency, which

was shown to be bounded above for large s by maxη̂2∈[P,P+ k

s
] ϕ(η̂2; s), asymptotes to 0.

SA.4.2. Proof of Proposition 7

We prove a result that is slightly more general than Proposition 7. We maintain the assumption of binary

η and continuous γ, but we generalize from independent types. (Allowing for discrete distributions of γ or

mixed distributions with atoms would not materially change any conclusions but would complicate notation.)

From Proposition 6, we have an example in which the distribution of high type gaming abilities is below

the low type gaming abilities, and in which allocative efficiency has an interior maximum in s. To guarantee

that there do exist equilibria where allocative efficiency diverges to infinity, we will invoke a condition that

the distribution of high type gaming abilities is in some sense not below that of the low types.

Condition 1. The natural actions are in Θη = {η, η}, with probability mass p ∈ (0, 1) on η and 1 − p on

η < η. Conditional on η ∈ Θη, gaming ability γ is continuously distributed with cdf Gη, pdf gη, and compact

support in R++. Moreover, either

1. max SuppGη ≤ min SuppGη; or

2. there exists γ∗ such that 0 < Gη(γ
∗) < Gη(γ

∗) < 1; or

3. there exists γ∗ such that 0 < Gη(γ
∗) = Gη(γ

∗) < 1, and lim
γ↑γ∗

gη(γ) > 0.

Part 1 says that all high-η types have gaming ability above that of any low types; it implies the type

space is ordered by single-crossing as there are no cross types. Part 2 says that the support of gaming ability

overlaps for the two values of η and that the gaming-ability distribution for high-η types is strictly above

that of low-η types at some point (in the sense that the value of the cdf is below). Part 3 requires that the

distributions are equal at some point where the left-neighborhood contains some high η types. When γ and

η are independent and γ is continuously distributed as in Proposition 7, Condition 1 part 3 is satisfied.
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Proposition 9 (Generalization of Proposition 7). Assume the joint distribution of types satisfies Condition 1.

Let τ = η; let V (η̂; s) = sv(η̂) with v(η̂) = (w(η̂)− w(E[η])) for some strictly convex w; and let C(a, η, γ) =
(a−η)r

γ on a ≥ η, for some r > 1. As s → ∞, there exists a sequence of equilibria with allocative efficiency

sE[v(η̂)]→∞. In particular, if Condition 1 parts 1 or 2 are satisfied, then there exists a sequence of equilibria

with sE[v(η̂)] increasing at a linear rate in s. Under Condition 1 part 3, there exists a sequence of equilibria

with sE[v(η̂)] increasing at rate s
r−1

r+1 (or faster).

If there are no cross types—i.e., Condition 1 part 1 holds—then for all s there exists a separating equilibrium

on η. The result is then trivial because E[v(η̂)] = pv(η)+(1−p)v(η) in any separating equilibrium, and hence

allocative efficiency sE[v(η̂)] increases linearly in s along a sequence of separating equilibria.

The more interesting cases are when parts 2 or 3 of Condition 1 hold. In these cases, we can construct a

two-action equilibrium of the following form, illustrated in Figure 4.

Lemma 16. Suppose τ = η, Condition 1 holds with either part 2 or 3 satisfied, and C(a, η, γ) = (a−η)r

γ on

a ≥ η, for r > 1. Given any γ∗ satisfying 0 < Gη(γ
∗) ≤ Gη(γ

∗) < 1, there exists an action ã > η and a

gaming ability γ̃ < γ∗ such that there is a two-action equilibrium in which agents of type (η, γ) play action

aη(γ) defined by

aη(γ) =

{
η if γ ≤ γ∗

ã if γ > γ∗,

aη(γ) =

{
η if γ ≤ γ̃
ã if γ > γ̃.

Γ� Γ�
Γ

Η

a�
a

aΗ �Γ�aΗ �Γ�

Figure 4 – Strategies under the equilibrium of Lemma 16.
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The following conditions are sufficient for the strategy in Lemma 16 to constitute an equilibrium:36

{
sv(η̂(η)) = sv(η̂(ã))− (ã−η)r

γ̃ if ã > η

γ̃ = 0 if ã ≤ η,
(SA.29)

sv(η̂(η)) = sv(η̂(ã))−
(ã− η)r

γ∗
. (SA.30)

Equation SA.30 requires type (η, γ∗) to be indifferent between actions η and ã. Condition SA.29 requires

indifference for type (η, γ̃) if ã > η; on the other hand, if ã ≤ η, then all high-η types strictly prefer ã (because

both actions are costless but ã induces a higher belief, as confirmed below) and we take γ̃ = 0. Note that

deviations to off-path actions can be deterred by assigning any off-path action the belief η̂ = η.

Given the strategy of Lemma 16, the observer’s posterior probability Π(a) that the agent’s type is η = η

conditional on action a ∈ {η, ã} is given by

Π(η) =
pGη(γ̃)

pGη(γ̃) + (1− p)Gη(γ∗)
, (SA.31)

Π(ã) =
p(1−Gη(γ̃))

p(1−Gη(γ̃)) + (1− p)(1−Gη(γ∗))
. (SA.32)

For a ∈ {η, ã}, η̂(a) = Π(a)η + (1−Π(a))η; that η̂(ã) > η̂(η), or equivalently that Π(ã) > Π(η), follows from

Gη(γ
∗) ≤ Gη(γ∗) and γ̃ < γ∗.

If Gη(γ
∗) < Gη(γ

∗), as it is under Condition 1 part 2, it is straightforward to compute that even if γ̃ → γ∗

as s→∞ (and a fortiori if γ̃ 9 γ∗), η̂(ã) remains bounded away from η̂(η). In this case, E[v] stays bounded

away from 0, and hence allocative efficiency sE[v]→∞ at a linear rate as s→∞. This proves Proposition 9

for Condition 1 part 2.

For Condition 1 part 3, the conclusion of Proposition 9 follows from the following two claims.

Claim 6. In a sequence of equilibria of Lemma 16, if γ∗ − γ̃ → 0 at a rate of f(s), then E[v] → 0 at a rate

of (f(s))2.

Claim 7. Assume Condition 1 holds with part 3 satisfied. In a sequence of equilibria of Lemma 16, γ∗− γ̃ → 0

at a rate of s−
1

r+1 .

Accordingly, it remains to prove Lemma 16, Claim 6, and Claim 7.

Proof of Lemma 16. The strategy has two free parameters: ã and γ̃, with the constraints that ã > η and

γ̃ < γ∗, and the equilibrium conditions (SA.29) and (SA.30). To ease notation going forward, let

η̃(γ̃) ≡ p(1−Gη(γ̃))

p(1−Gη(γ̃)) + (1− p)(1−Gη(γ∗))
η +

(1− p)(1−Gη(γ∗))
p(1−Gη(γ̃)) + (1− p)(1−Gη(γ∗))

η

denote the observer’s belief about η when action ã is observed given a value of γ̃.

Case 1: s[v(η̃(0))− v(η)] ≤ (η−η)r

γ∗ .

36 Modulo inessential multiplicities in γ̃, the conditions are also necessary.
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For this case we look for a solution with γ̃ = 0 and ã ∈ (η, η]. The induced on-path beliefs will be η̂(η) = η

and η̂(ã) = η̃(0). It suffices to check that there exists ã ∈ (η, η] to satisfy the (η, γ∗) indifference at these

beliefs, condition (SA.30). A solution exists precisely under the hypothesis of the case being considered.

Case 2: s[v(η̃(0))− v(η)] >
(η−η)r

γ∗ .

For this case, we look for solutions with ã > η and γ̃ > 0. Supposing that ã > η, combine the indifferences

in (SA.29) and (SA.30) to get (ã−η)r

γ̃ =
(ã−η)r

γ∗ . Fixing any γ̃ ∈ (0, γ∗), this equality uniquely pins down a

corresponding ã, which we write as a function

ã(γ̃) = η +
η − η

(γ∗/γ̃)
1

r − 1
. (SA.33)

The function ã(γ̃) is continuous and increasing in γ̃, with ã(γ̃)→ η as γ̃ → 0+ and ã(γ̃)→∞ as γ̃ → γ∗. We

seek to find a γ̃ > 0 which, along with the corresponding action ã = ã(γ̃), constitutes an equilibrium. It is

enough to find γ̃ satisfying the (η, γ∗) indifference, condition (SA.29), as the (η, γ̃) indifference is assured by

ã = ã(γ̃). Rearranging (SA.29) gives

s
(
v(η̂(ã))− v(η̂(η))

)
=

(ã(γ̃)− η)r

γ∗
. (SA.34)

For any sufficiently small but positive γ̃, η̂(ã) = η̃(0) and η̂(η) = η because min SuppGη > 0 and Gη(γ
∗) >

0. Hence, as γ̃ → 0+, the LHS of (SA.34) goes to s(v(η̃(0)) − v(η)), while the right-hand side (RHS) goes

to
(η−η)r

γ∗ . From the hypothesis of Case being considered, it follows that for sufficiently small γ̃, the LHS of

(SA.34) is greater than the RHS. On the other hand, as γ̃ → γ∗, the LHS of (SA.34) converges to a constant

while the RHS diverges to ∞ (because ã(γ̃)→∞). Hence, for sufficiently large γ̃, the LHS of (SA.34) is less

than the RHS. By continuity, there exists γ̃ > 0 for which (SA.34) holds; this value of γ̃ together with ã(γ̃)

constitutes an equilibrium. Q.E.D.

Proof of Claim 6. To ease notation, let G∗ ≡ Gη(γ∗) = Gη(γ
∗) ∈ (0, 1) and g∗ ≡ lim

γ↑γ∗
g(γ) > 0.

For γ̃ = γ∗− ε with ε > 0 small, Gη(γ̃) is approximately linear in ε; to a first order Taylor approximation,

Gη(γ̃) ' G∗ − εg∗. As ε→ 0+, this yields beliefs at the two actions approaching E[η] at a linear rate, with

η̂(η) ' E[η]− p(1− p)g∗

G∗
(η − η)ε,

η̂(ã) ' E[η] +
p(1− p)g∗

1−G∗
(η − η)ε.

Since E[v] = (pGη(γ̃) + (1 − p)G∗)v(η̂(η)) + (p(1 − Gη(γ̃)) + (1 − p)(1 − G∗))v(η̂(ã)), substituting in the

approximations for η̂(·) at small ε gives E[v] approximately quadratic in ε. Q.E.D.

Proof of Claim 7. First, it is routine to verify using conditions (SA.29) and (SA.30) that γ̃ ↑ γ∗ and

ã = ã(γ̃)→∞ as s→∞.

Second, while ã(γ̃)→∞ as γ̃ → γ∗, it holds that ε · ã(γ∗ − ε) goes to a constant as ε→ 0+. In particular,
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Equation SA.33 implies

ε · ã(γ∗ − ε) = ηε+ (η − η)
ε(

γ∗

γ∗−ε

) 1

r − 1

ε→0+

−→ (η − η)γ∗r

where the limit follows from L’Hopital’s Rule. In other words, for large s, ã is of order 1
ε .

Finally, we observe that for γ̃ = γ∗ − ε, for ε small we have v(η̂(ã)) − v(η̂(η)) approximately linear in ε

(following the proof of Claim 6), and therefore Equation SA.30 implies (ã− η)r—and therefore ãr—diverges

to ∞ at a rate that is linear in s · ε. Applying the previous result, we have ε−r approximately linear in s · ε,
or equivalently ε = γ∗ − γ̃ is of order s

−1

r+1 . Q.E.D.
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