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Abstract

Many U.S. colleges now use test-optional admissions. A frequent claim is that by
not seeing standardized test scores, a college can admit a student body it prefers, say
with more diversity. But how can observing less information improve decisions? This
paper proposes that test-optional policies are a response to social pressure on admission
decisions. We model a college that bears disutility when it makes admission decisions
that “society” dislikes. Going test optional allows the college to reduce its “disagreement
cost”. We analyze how missing scores are imputed and the consequences for the college,
students, and society.
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1. Introduction

With college admissions in the United States under increasing scrutiny, there is a vibrant
debate about the role of standardized test scores. The last decade has seen an increase in
colleges going test optional, i.e., not requiring applicants to submit standardized test scores.
The University of Chicago made waves when it adopted this policy in 2018. By 2019, one
third of the 900+ colleges that accepted the Common Application did not require test scores.

For obvious reasons, the Covid-19 pandemic dramatically increased the adoption of test-
optional policies: in the 2021–22 application season, 95% of Common-Application colleges
did not require test scores. But even after the pandemic, notwithstanding a few prominent
reversals, most U.S. colleges have stayed test optional. Furthermore, although our paper em-
phasizes college admissions, the shift away from requiring standardized tests is also pervasive
in other segments of education.1

Proponents of test-optional admissions often cite concerns that standardized testing may
disadvantage low-income students and students of color. Indeed, many schools that go test
optional claim to do so in order to increase the racial and income diversity on campus.2 But
a test-mandatory college is free to admit students with low test scores if they are strong
on other dimensions. Only with the 2023 U.S. Supreme Court’s ruling on SFFA v. Harvard
has the consideration of race been banned. Moreover, other components of applications
may also be subject to racial and income disparities,3 and test scores are unlikely to be
completely uninformative about college preparedness. Indeed, MIT reinstated its testing re-
quirement for the 2022-23 admissions cycle, arguing that “standardized tests help us identify
socioeconomically disadvantaged students who lack access to advanced coursework or other
enrichment opportunities that would otherwise demonstrate their readiness for MIT.” Simi-
larly, a 2020 report by the University of California found that standardized test scores help

1 According to Forbes magazine in January 2022, “The most public break-up [with standardized tests] has
been in undergraduate admissions and the SAT/ACT, but kindergarten, high school, and graduate school
admission offices have also been rejecting standardized tests . . . [there is a] near-universal shift away from
standardized tests that started before the pandemic but has accelerated in the last eighteen months.”

2 For example, in 2015 a George Washington University school official said that “The test-optional policy
should strengthen and diversify an already outstanding applicant pool and will broaden access for those
high-achieving students who have historically been underrepresented at selective colleges and universities,
including students of color, first-generation students and students from low-income households”.

3 In a 2016 Washington Post opinion titled ‘Letters of recommendation: An unfair part of college ad-
missions,’ John Boeckenstedt from DePaul University argues that: “If you wanted to ensure that kids from
more privileged backgrounds have a better chance to get into the schools with the most resources, letters of
recommendation would be one of the things you’d start with.”
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predict student success, across demographic groups and disciplines, even after controlling for
high school GPA (UC Academic Senate, 2020).

Hence a puzzle: if a college can use test scores as it would like, why choose not to have
access to a student’s score? Why throw away potentially valuable information? Indeed,
in Dessein, Frankel, and Kartik (2025), we show that under a broad set of conditions, a
college that can freely use information—and commit to how it will do so—cannot benefit
from going test optional. The conditions allow for differential costs of test preparation and
different distributions of test scores for reasons unrelated to ability.4

There are a few ways out of the puzzle. Students may not trust admission policy pro-
nouncements. Being test optional could then be a credible signal that a college does not seek
to put much weight on test scores. Relatedly, a college may be limited in how effectively it
can control its admissions officers, who may put too much weight on test scores due to moral
hazard or other reasons. An alternative explanation is that students may simply dislike
taking tests, and hence apply to otherwise-similar colleges that do not require them. Yet
another possibility is that test optional allows colleges to report higher average (submitted)
standardized test scores and thereby improve their rankings; Conlin, Dickert-Conlin, and
Chapman (2013) provide empirical evidence of strategic admission decisions in this regard.

Our paper proposes, instead, that test-optional policies are driven by social pressure on
admission decisions. When a selective college admits a low-scoring student while rejecting
a high-scoring student with an otherwise similar GPA, it may be subject to social pressure
from a community that disagrees with the weight it puts on tests versus legacy status or
racial diversity. Such pressure may come from the broader US public; indeed, polls show that
the general public believes race and legacy status should be deemphasized relative to test
scores.5 Public pressure is exemplified by the lawsuits that led to the aforementioned 2023
U.S. Supreme Court ruling against affirmative action in college admissions. Alternatively,
social pressure may come from a college’s internal stakeholders with the opposite views; for
instance, current students may have a stronger preference for diversity in admissions than

4 The conditions do preclude prohibitive costs of sitting, as opposed to studying, for the test. It is not
clear to us that, outside of pandemics, the costs of sitting for a test are a compelling rationale for going
test optional. In fact, prior to the Covid-19 pandemic, 25 U.S. states required either the SAT or ACT for
high school graduation. Low income students can also receive fee waivers for both sitting for the SAT and
submitting their scores to colleges (fees link).

5 In a 2022 PEW research survey, only 26% of respondents thought that race or ethnicity should be even
a minor factor in college admissions, with 25% for legacy status. By contrast, 39% thought that test scores
should be a major factor, and an additional 46% thought they should be a minor factor.
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the college administration.

Our broad argument is that by hiding score disparities among students who do not sub-
mit their test scores, a college lowers the cost of disagreement with “society”. The lower
disagreement cost may also lead the college to admit students it likes more, based on di-
versity, extracurriculars, or legacy preferences—but this is not necessary for the college to
benefit from not seeing test scores. Notably, our argument does not rely on any naivety: we
assume that society is Bayesian and understands that students who don’t submit scores tend
to have lower scores. Also important, we show that being test optional can help a college
regardless of whether, for any given group of students, it wishes to be less selective than
society (i.e., to use a lower test-score threshold) or more selective (a higher threshold).

In more detail, our model in Section 3 has a college with preferences over which students
to admit, based on both their non-test observable characteristics (e.g., GPA, race, SES,
extracurriculars, and legacy status) and test scores. Society has its own preferences. Society
does not make any decisions, but the college places some value on minimizing disagreement
between its admission decisions and those that society would make. The college commits
to an admissions policy: an acceptance rule mapping observables and test scores into an
admission decision, and, in a test-optional regime, an imputed test score that it assigns to
students who don’t submit scores (as a function of non-test observables). A student submits
their test score if and only if it is higher than the score the college would impute. Society
assesses test scores in a Bayesian manner: non-submitters are evaluated based on their
expected test score, given non-test observables and submission behavior.

Whenever society disagrees with the college’s admission decision, the college incurs a
disagreement cost. Importantly, this cost is only based on the admission decision given the
available information; society does not judge the college for its choice of information.6 If the
college accepts an applicant that society wants to reject, the disagreement cost is proportional
to society’s disutility from acceptance. If the college rejects an applicant society wants to
accept, this cost is proportional to society’s disutility from rejection. The college chooses
its admissions policy—both the imputation and acceptance rules—to maximize its ex-ante
expected utility from admissions decisions less disagreement costs.

When a college can freely choose its imputation rule, the college can’t be worse off under
test optional than test mandatory. It could simply replicate the test-mandatory outcome by

6 In their experimental study concerning the use of test scores, Liang and Xu (2024) emphasize direct
preferences over what information to observe.
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imputing a low enough test score that all students submit. Our key insight, though, is that
the college can benefit—strictly—from going test optional.

To see how, consider the case of a student with non-test observables such that the college
is less selective than society: the college has a lower test-score bar than society to admit
this type of applicant. For instance, take students who excel in fencing, and suppose the
college values able fencers more than society.7 One option for the college is to impute a very
high test score for fencers, with the policy of admitting all those with the imputed score (or
higher). Then none of the fencers submit their scores, and all of them are admitted. The
cost for the college is that it admits some very low-scoring fencers. The benefit, though, is
that bringing high-scoring fencers into the non-submission pool reduces disagreement costs
from admitting some fencers that the college wanted but society did not. Indeed, if society
is willing to accept fencers with average test scores, then imputing a very high score allows
the college to accept all of these now-undifferentiated fencers at zero disagreement cost. At
the extreme, if the college prefers to admit every fencer regardless of test score, it obtains
its first best for this group—they are all admitted, with no disagreement cost.

Section 2 expands on this example to also show how test optional can benefit the college
when it is more selective than society. The college then pools non-submitters in order to
reduce the disagreement cost of rejecting, rather than admitting, these students. As in the
example, we find more generally in Section 4 that student groups for whom the college is
less selective than society benefit from test optional—they are more likely to be admitted—
while student groups for whom the college is more selective are hurt. Furthermore, at every
student observable, society is (weakly) harmed by test optional.

For test optional to never harm a college, the imputation rule must be judiciously chosen.
In practice, many schools promise that non-submitters will be treated “fairly”. The University
of Southern California’s statement is representative: “applicants will not be penalized or put
at a disadvantage if they choose not to submit SAT or ACT scores.” While the meaning of
such policies is ambiguous, one interpretation is that of a no adverse inference imputation
rule: a student who does not submit a test score is imputed their expected score given other
observables, but crucially, not conditioning on non-submission. Subsection 4.3 studies test-
optional outcomes under this or some other fixed imputation rule. We establish a sense in
which students with good non-test observables (and low test scores) benefit when a college
goes test optional because it increases their admission rate. Students with intermediate

7 According to the New York Times in October 2022, “a way with the sword can help students stand out
in the college admissions game. . . because each good school, especially Ivy League schools, have fencing.”
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observables (and intermediate scores) are harmed. Other students are unaffected.

When constrained to use an imputation rule like no adverse inference, colleges may be
worse off under test optional than test mandatory (by contrast with flexible imputation).
Determining the college’s preferred testing regime requires more structure on the environ-
ment. We show that, under mild conditions, for any fixed imputation rule, the college is
worse off under test optional if either the social-pressure intensity is low or the college’s
preferences are similar to society’s. We use this result to discuss the recent reversal by a few
colleges—e.g., Dartmouth and John Hopkins—to test mandatory.

Towards further insight on restricted imputation, we also discuss an extended example in
Subsection 5.1. There, we study how the college’s choice of testing regime can depend on
whether affirmative action—that is, an admission rule that directly conditions on race—is
allowed. Our interest stems from the public and legal debate around the use of affirmative
action in the US, culminating in the 2023 Supreme Court ruling that severely limited race-
based admissions. In the example, we show that banning affirmative action can push a
college from preferring test mandatory to preferring test blind.8 The intuition is that if
students in the college’s favored group have lower test scores, then the college values tests
less when it cannot condition on group membership. We explain how a ban on affirmative
action may thus “backfire” on society, which prefers that the college be test mandatory.

Finally, Subsection 5.2 briefly explores competition between colleges. A test-optional
college facing a test-mandatory competitor may face a form of adverse selection: if the college
admits students who do not submit test scores, the students with unobserved low scores
are more likely to accept this admission offer, because they are less likely to be admitted
somewhere else. This adverse selection may push a college to match its competitor’s testing
regime, choosing test-optional only when the other is test-optional. As we show, however,
this force may also go in the opposite direction, meaning that a college sometimes wants to
mismatch its competitor’s testing regime.

Related literature. There are several empirical papers studying test-optional (or test-
blind) college admissions using data from prior to the Covid-19 pandemic (e.g., Belasco,
Rosinger, and Hearn, 2015; Saboe and Terrizzi, 2019; Bennett, 2022). In a review, Dynarski,
Nurshatayeva, Page, and Scott-Clayton (2022, pp. 53–54) conclude that test-optional policies

8 Test blind is when students simply cannot submit tests scores, or the college ignores test scores entirely.
In our model, this is equivalent to test optional in which non-submission is imputed as the highest test score.
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had limited effect on increasing diversity and applications, but may have helped colleges
boost their public rankings by raising the average (submitted) standardized test score of
enrolled students. Using data from a sample of student test-takers in the 2021-22 admission
cycle, McManus, Howell, and Hurwitz (2024) document sophisticated submission behavior.
Not only did students withhold low scores, but they conditioned their choice on their other
academic characteristics as well as colleges’ selectivity and testing policy statements.

The use of standardized tests in college admissions has been studied in economic theory
as well. Krishna, Lychagin, Olszewski, Siegel, and Tergiman (2024) propose pooling test
scores into coarse categories to reduce the wasteful costs of test preparation. Lee and Suen
(2023) study how low-powered selection—such as putting less weight on test scores—may
help a college by reducing students’ incentives to improve their scores.9 Garg, Li, and
Monachou (2021) assume that some students have no access to standardized tests, which
means that a test-optional/blind policy broadens the applicant pool even though it provides
less information about those who do apply. Borghesan’s (2023) structural analysis of college
admissions also emphasizes students’ costs of taking standardized tests: going test blind
reduces a college’s information but allows students with high test-taking costs to apply. He
predicts that this policy would reduce student quality at top schools without increasing
diversity. Related to costly test-taking is Adda and Ottaviani’s (2023) model of (grant)
allocation with costly application. They show that using more noisy measures of applicant
quality can enlarge an applicant pool.

In contrast to the papers in the preceding paragraph, our argument for why colleges
benefit from going test optional does not rely on the cost of obtaining or improving test
scores, nor on the cost of applying to a college. Our model assumes that students are simply
endowed with a test score and application is costless.10

Among theoretical papers on affirmative action in college admissions, a topic we take up in
Subsection 5.1, most related is Chan and Eyster (2003).11 They model a college that values

9 More broadly, in a “muddled information” framework (Frankel and Kartik, 2019), Frankel and Kartik
(2022) and Ball (2023) explore how a decisionmaker should commit to underutilize manipulable information
to improve decision accuracy.

10 In their empirical studies, Goodman (2016) and Hyman (2017)) find that government policies mandating
high school students to take standardized tests increase college enrollment rates of low-income students,
either because the students discover they are higher-achieving than they thought or because colleges discover
and then recruit students through such testing. More generally, scholars have suggested that eliminating
application barriers for low-income students can increase the number of students that apply to and enroll in
selective colleges (Hoxby and Avery, 2012; Hoxby and Turner, 2013; Goodman, Gurantz, and Smith, 2020).

11 Various other papers model aspects of college admissions that we do not address, such as early ad-

6



both student quality and diversity. When affirmative action is banned, the college may adopt
an admission rule that puts less weight on academic qualifications, such as standardized test
scores, in order to promote diversity. The logic is related to that of statistical discrimination
(Phelps, 1972; Arrow, 1973), except that instead of race serving as a signal of qualification,
qualification serves as a signal of race. Notably, Chan and Eyster (2003) do not provide a
rationale for why a college strictly benefits from not observing test scores; in their model,
being test blind is equivalent to being test mandatory and putting zero weight on tests. In
our model, social pressure can lead a college to strictly prefer test blind.

Prior work has modeled adverse selection, or an “acceptance curse”, among colleges com-
peting for students (e.g., Chade, 2006; Chade, Lewis, and Smith, 2014). Novel to our analysis
in Subsection 5.2 is how the adverse selection stems from a test-optional college facing a test-
mandatory competitor, and the implications for incentives to be test optional.

Our paper also connects to the large literature on voluntary disclosure of verifiable infor-
mation. The canonical result here is that of “unraveling” (Grossman, 1981; Milgrom, 1981),
which corresponds to all students submitting their scores even when it is optional. It is re-
ported, however, that fewer than half of U.S. college applicants who applied early decision in
Fall 2022 submitted test scores. Unraveling does not arise in our model because the college
can commit to how it will treat students who do and do not submit their score.

Finally, in our model, the college’s and society’s information depends on which students
submit test scores. This is determined by the testing regime and, under test optional,
the college’s imputation rule. Our work thus relates to Bayesian persuasion and information
design (Kamenica and Gentzkow, 2011; Bergemann and Morris, 2019). Unlike in much of that
literature, our college cannot choose arbitrary information structures; Appendix E elaborates
on why it is (only) this constraint that precludes reducing our problem to standard Bayesian
persuasion. We accordingly join other recent work on “constrained information design” (e.g.,
Antic and Chakraborty, 2024; Doval and Skreta, 2024; Onuchic, 2024). One information-
design paper that connects to our economic themes is Liang, Lu, Mu, and Okumura (2024).
They explore how a designer may ban the use of certain inputs, such as test scores, because
of disagreement with how a decisionmaker would use those inputs. While they explain why
society may choose to prevent a college from using test scores, we show why a college may
itself choose to not see test scores. Like us, Liang et al. (2024) also discuss why a college

missions (e.g., Avery and Levin, 2010), managing enrollment uncertainty (e.g., Che and Koh, 2016), college
tuition determination (e.g., Fu, 2014), and which colleges a student should apply to (e.g., Chade and Smith,
2006; Ali and Shorrer, 2025).
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may choose to not see test scores if society bans affirmative action; however, unlike our
mechanism of social pressure, theirs entails conflicting preferences between the college and
its admissions officers.

2. An Illustrative Example

Consider a single student who has applied to a college. (An alternative interpretation
is that of a mass of students who share common observable characteristics.) The student’s
test score t is drawn from a uniform distribution between 0 and 100. Society’s utility from
admitting the student is us(t) = t − 40, and its utility from not admitting the student is
normalized to 0. So, ignoring indifference, society wants to admit the student if and only if
their test score is above 40. The college receives some information about the student’s test
score—we will consider different possibilities below—and then chooses whether to accept or
reject the student. Society then judges the college’s decisions given the available information.
Importantly, the college and society have the same information; information asymmetry
between them is not our driving mechanism. Rather, what is crucial is that the college faces
disagreement costs from social pressure for making decisions that society disagrees with.

Disagreement cost. The disagreement cost is proportional to the extent of society’s dis-
agreement with the college’s decision, given the available information. Concretely, disagree-
ment equals the increase in society’s expected utility if society were to make admission
decisions as opposed to the college. If the college accepts the student and society would also
prefer to accept them (i.e., E[us(t)] > 0), or the college rejects the student and society would
also prefer to reject (E[us(t)] < 0), then the college bears no disagreement cost. That is, in
each of those cases, the respective disagreement costs dA=1 and dA=0 are both 0, where A = 1

denotes acceptance and A = 0 denotes rejection. However, if the college rejects the student
when society prefers to accept, the college bears a disagreement cost of dA=0 = E[us(t)] > 0.
Likewise, if the college accepts a student that society prefers to reject, the disagreement cost
is dA=1 = −E[us(t)] > 0. See Figure 1.

Why not observe test scores? We now illustrate how the college can reduce disagree-
ment costs by not observing test scores.

First consider test mandatory : the student’s test score is observed. If the college chooses to
accept regardless of the test score, it bears a disagreement cost of 40−t whenever the score is
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Figure 1 – Disagreement cost from accepting (A = 1) and rejecting (A = 0) an student.

below 40 (and 0 otherwise), and so the expected disagreement cost is
∫ 40

0
1

100
(40− t)dt = 8.

Analogously, if the college instead chooses to reject regardless of test score, it bears an
expected disagreement cost of

∫ 100

40
1

100
(t− 40)dt = 18.

Now consider test blind : the student’s test score is not observed. Here, with no information
beyond the uniform prior over the test score, society evaluates the student as if their score
were equal to the expected value E[t] = 50. If the college accepts the student, it now faces a
disagreement cost of 0: absent test score information, society agrees that the student should
be accepted. So if the college were going to accept the student regardless of their test score,
then hiding the score reduces its expected disagreement cost from 8 to 0.

If the test-blind college rejects the student, it does face a disagreement cost: society’s
expected utility from admitting the student is E[t]− 40 = 10, and so the college’s disagree-
ment cost from rejection is 10. Nonetheless, hiding the test score reduces the expected
disagreement cost of rejecting all applicants from 18 to 10.

The upshot is that for either decision the college makes—so long as it is independent of
the test score when that is observed—the college can reduce expected disagreement cost by
hiding the test score, i.e., going test blind. The fundamental reason is that both disagreement
cost curves dA=1(t) = max{40 − t, 0} and dA=0(t) = max{t − 40, 0} are convex, as seen in
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Figure 1. Mathematically, the reduction of expected disagreement cost by going test blind is
a consequence of Jensen’s inequality: the disagreement cost evaluated at the expected test
score is smaller than the expectation of the disagreement costs across test scores.

We highlight two points. First, social pressure induces a form of non-consequentialist
preferences: the college has preferences over what information it has even when its decision
is independent of the test score. Second, society judges the college only on its admission
decision given the available information. That is, the disagreement cost is evaluated using
the information the college has, not the information it could have had.12 Moreover, the
college is not directly penalized for its choice not to require test scores.

Test optional. If the college seeks to admit only some students—rather than accepting or
rejecting all of them—it might improve upon test blind by going test optional : the student
can choose whether to submit their score. For example, suppose the college wants to admit
students with test scores above 60, while society’s preferred threshold remains 40. Under
test optional, the college could commit to treat non-submitters “as if” they have a score of
60, and only accept students with scores (strictly) above 60. If students with scores below 60
(optimally) do not submit their score,13 this policy implements the college’s desired threshold
with zero disagreement cost. (Society’s expected utility from admitting a non-submitting
student is E[t|non-submission]− 40 = −10, so it agrees with rejecting non-submitters.)

A tradeoff. In general, a college faces a tradeoff between using information to make better
decisions and not seeing information to reduce disagreement costs. We explore this tradeoff
in the rest of the paper. We study how test-optional colleges decide which applicants to
admit, how students choose whether to submit test scores, and how the resulting outcomes
differ from a test-mandatory benchmark.

3. A Model of Admissions under Social Pressure

We model a student applying to a college, with a broader “society” playing a passive
role. The student can be viewed as a representative applicant; we will sometimes use the

12 Mathematically, if the disagreement cost from admitting a student without a test score were
E [max{−us(t), 0}] instead of our assumed max{−E[us(t)], 0}, then admitting the student under test blind
would lead to the same disagreement cost as under test mandatory.

13 A small acceptance probability for students with a score of 60, including non-submitters, would make
this strategy strictly optimal for students.
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plural students for exposition. Society represents any external group that might scrutinize
admission decisions and has preferences over who ought to be admitted: alumni, parents,
local governments, the popular press, and even the judicial branch.

The student is endowed with some publicly observable characteristics and a test score,
which is their private information. In a test-mandatory regime, the student mechanically
submits their test score, making it public to the college and society. In a test-optional regime,
the student chooses whether to submit their score. In either regime, the college chooses
whether to admit the student based on their observable characteristics and, if submitted,
their test score. Both the college and society have preferences over whether the student
should be admitted as a function of their observables and their true test score. The college
also places some weight on reducing disagreement between its admission decision and the
decision society would want it to make, given all available information.

3.1. Model Primitives

Observables and test scores. Formally, the student/applicant has a type (x, t) ∈ X ×R,
where x is an observable (or vector of observables) and t is the test score. The distribution
of observables is given by Fx and the test score has conditional distribution Ft|x.14

The observable x is public information to all players. The test score t is private information
to the student, which may be submitted (S = 1) or not (S = 0). Submitting the score makes
it observable to all other players. Our primary interest is in two college admission regimes:
test mandatory, in which test scores must be submitted, and test optional, in which scores
may be submitted. We will also talk about test blind, wherein the score cannot be submitted.

Preferences. The college decides whether to admit the student (denoted A = 1) or not
(A = 0), based on observables x and, if submitted, the test score t. The student strictly
prefers a higher probability of being admitted. Society’s utility and the college’s material or
“underlying” utility if the student is accepted are given, respectively, by

us(x, t) := vs(x) + ws(x)t,

uc(x, t) := vc(x) + wc(x)t,

14 More precisely, X is a measurable space and Fx is a probability measure on that space. To simplify
some technicalities, we assume that for each x, Ft|x is either continuous or is discrete with no accumulation
points, and that all relevant expectations exist.
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where the superscripts have the obvious mnemomic (society and college), and each wi(·) > 0

for i = s, c. We view monotonicity of these preferences in the test score as natural; the affine
specifications aid subsequent interpretation and tractability. Both society’s and the college’s
underlying utility are normalized to 0 if the student is not admitted.

In addition to its underlying utility, the college suffers disutility from social pressure on
its admission decision. To formalize that disutility, let ts denote the test score society treats
the student as having; this will be determined endogenously. Anticipating equilibrium, think
of ts = t if the score is submitted, and ts = E[t|x, S = 0] under non-submission. For any ts,
society’s disagreement with the college’s decision is given by

d(x, ts, A) :=

max{us(x, ts), 0} if A = 0,

max{−us(x, ts), 0} if A = 1.
(1)

This disagreement captures society’s benefit if it were to decide on the admission decision
instead of the college. There is no disagreement if, given the available information, society’s
preferred decision is the same as the college’s decision; but when there is a conflict in preferred
decisions, then disagreement is linear in the magnitude of society’s expected benefit from its
preferred decision. As before, the monotonicity here is natural; linearity is for tractability.
Specifically, following the logic of Section 2, if we fix the college’s admission decisions, then
hiding test-score information from society would reduce the disagreement given by any func-
tion that is convex in society’s expected utility. The assumed linearity of us(x, t) in the test
score t is what allows (1) to be written with us(x, ts) instead of E[us(x, t)], where the expecta-
tion is with respect to the distribution of t given x and the student’s (non-)submission. The
functional form (1) facilitates our analysis of endogenous admission decisions, particularly
under test optional.

The college’s overall payoff U c is its underlying utility less the (scaled) disagreement:

U c(x, t, ts, A) := Auc(x, t)− δd(x, ts, A), (2)

where δ > 0 is a parameter capturing the intensity of social pressure on the college. We refer
to δd(·) as the disagreement cost to the college.

Admissions policies. The college’s admissions policy has two components, one of which—
how to treat students who don’t submit test scores—is irrelevant under test mandatory.

12



First, given the student’s observable x, we assume that the college treats non-submission
of a test score as equivalent to some specific test score, which we call the imputation. More
precisely, there is an imputation rule τ : X → [−∞,+∞],15 with τ(x) the imputation for
observable x. We will be interested in two settings: either the college can choose the imputa-
tion rule arbitrarily, which we call flexible imputation, or the imputation rule is exogenously
given, which we call restricted imputation.

Second, the college chooses an acceptance rule α : X × [−∞,+∞] → [0, 1], where α(x, t̂)

is the probability of admitting a student with observable x and imputed/submitted test
score t̂. We stress that the acceptance rule cannot (directly) condition on the student’s true
test score, and it does not distinguish between imputed and submitted scores—this captures
our notion that imputing a score means treating a non-submitting student as if they have
submitted that imputed score. As in Chan and Eyster (2003), we assume that α must be
monotonic in the sense that for any x, α(x, ·) is weakly increasing.

College’s problem. Since the college’s acceptance rule is monotonic, there is a simple
best response for the student: submit their score if t > τ(x) and don’t submit if t ≤ τ(x).
We restrict attention to the student playing this strategy. Given this student strategy, we
assume society is Bayesian in evaluating the student. In particular, if the student submits
their test score, then ts = t; if the student does not submit, then ts = L(τ(x)|x), where L

(mnemonic for “lower expectation”) is defined by

L(t′|x) := E[t|t ≤ t′, x].16

The college’s problem is to choose—commit to—its imputation rule τ (under test op-
tional with flexible imputation) and its acceptance rule α, to maximize its expected payoff
U c, anticipating the student’s best response and society’s Bayesian inferences. Note that
when τ(x) = ∞, the college is effectively test blind among students with observable x, and
analogously it is effectively test mandatory when τ(x) = −∞.

15 The co-domain is the extended reals for technical convenience when test scores can be arbitrarily small
or large; if test scores lie in a compact set, then we could take the co-domain of τ to be that compact set.

16 For t′ ≤ inf Supp[Ft|x], we set L(t′|x) := inf Supp[Ft|x].
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3.2. Discussion of the Model

3.2.1. Imputation and acceptance rules

A test-optional admissions policy in our model is an imputation rule paired with a mono-
tonic acceptance rule. We view the framework of imputation as an appealing and versatile
way to capture how colleges may actually treat missing test scores. For example, it allows us
to discuss cultural or legal norms about how non-submitters should be treated (as elaborated
below). Monotonicity of the acceptance rule is without loss if students can “freely dispose”
of test scores—a student with test score t can costlessly reduce it to any value less than t.

At a theoretical level, however, the natural alternative would be to specify an admissions
policy as an arbitrary mapping from observables, whether the student submits their score,
and the score if submitted, to an admissions probability. We show in Appendix B that the
outcome under this alternative is the same as that under flexible imputation. In other words,
given flexible imputation, it is without loss of generality to stipulate that the college treats
missing test scores via imputation and uses a monotonic acceptance rule.

3.2.2. Restricted imputation rules

With flexible imputation, the college can arbitrarily choose how to impute missing test
scores. With restricted imputation, we consider the other extreme, in which an imputa-
tion rule is exogenously specified. Although our analysis will not have any results tied to
particular restricted imputation rules, we allow for them to cover some colleges’ practice of
publicly promising not to “penalize” or “disadvantage” students who don’t submit scores. We
interpret such promises as mapping to some version of what we call the no adverse infer-
ence imputation rule, τ(x) = E[t|x]. Contrast this expression to the Bayesian imputation
rule used by society, in which ts = E[t|x, S = 0]: no adverse inference updates based on
observables but not on the choice not to submit. That is, the college imputes test scores as
if students who did not submit chose to do so non-strategically.17

Even when ignoring the submission decision, the college might condition its expectation
only on some subset of observables. For instance, if the observable vector x = (x0, x1) has
component x1 corresponding to “grades” and component x0 corresponding to “demograph-
ics”, the college might impute τ(x) = E[t|x1] rather than τ(x) = E[t|x]. Indeed, certain
demographic features such as race are legally protected categories, and it may be forbidden

17 After switching to test optional in 2020, Dartmouth announced “Our admission committee will review
each candidacy without second-guessing the omission or presence of a testing element.”
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to impute scores differently based on these factors—even if they are in fact predictive. In the
limiting case, a college might deem all observables irrelevant, in which case it would impute
τ(x) = E[t] identically for all applicants.

3.2.3. Key assumptions

Simplifications. Our model makes a number of simplifying assumptions in order to focus
on the channel of social pressure as an explanation for going test optional. For instance, we
abstract away from a student’s decision of how much to study for, or whether to even take,
the test. Instead, we endow students with a test score. We then give the college and society
a reduced form preference over these test scores rather than microfounding any inference
over underlying ability. We also don’t model the student’s application decision.

Another simplification is that our college has a fixed underlying utility threshold for
admission. In particular, even if a switch from test mandatory to test optional leads to a
different number of admitted students, the college does not raise or lower its threshold for
admission in order to keep its class size constant.18 We return to this point in the Conclusion.

Student submission behavior. McManus et al. (2024) show that student submission
behavior does appear to vary with their belief about how colleges might impute missing test
scores. We assume that students submit a test score if their true score t is strictly above the
college’s imputed value τ(x), and they withhold the score if t is weakly below τ(x). A higher
true or imputed test score can only help admission chances, as the college uses a monotonic
acceptance rule. Hence, while there may be other optimal student strategies, the one we
focus on is weakly dominant for students who know the college’s imputation rule (except
for students with score t = τ(x), who are indifferent no matter the acceptance rule). In
addition, the result in Appendix B implies that our specification of student behavior does
not hurt the college under flexible imputation.19

We note that although the strategy we focus on is robust to a student’s uncertainty over
the college’s acceptance rule, it is sensitive to the student’s belief about their imputed test

18 Our model can be consistent with a capacity constraint if we interpret the zero utility level as the
utility both the college and society get from admitting students from a group in excess supply, with no social
pressure. For example, many highly-selective colleges claim they could fill their entire class with a group of
fairly homogeneous students who submit near-perfect SAT scores.

19 Under restricted imputation, it is possible that the college would be better off were students to use a
different optimal strategy. Nevertheless, we view the weak-dominance rationale for our student behavior as
plausible.
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score. Of course, in the real world, students face uncertainty about how colleges treat missing
test scores; we return to this point in the Conclusion.

3.3. Ex-Post Utility

When ts = t, as will be the case if the student submits their score, Equation 1 and
Equation 2 imply that the college’s net benefit from admitting the student is given by

U c(x, t, t, 1)− U c(x, t, t, 0) = uc(x, t)− δ [d(x, t, 1)− d(x, t, 0)]

= uc(x, t) + δus(x, t)

∝ 1

1 + δ
uc(x, t) +

δ

1 + δ
us(x, t)

=: u∗(x, t). (3)

We refer to u∗(x, t) as the college’s ex-post utility. For a score-submitting student, our dis-
agreement cost formulation implies that the college’s net benefit from admission is equivalent
to (i.e., proportional to) a convex combination of the college’s underlying utility and society’s
utility. If the student submits their score, the college’s payoff is maximized by admitting the
student if and only if (modulo indifference) u∗(x, t) > 0.

For i ∈ {c, s}, we refer to ti(x) such that ui(x, ti(x)) = 0 as the college/society’s test-score
bar for admission: it is the score threshold such that each would—if unencumbered by social
pressure—prefer to admit the student with observable x if and only their score is above that
threshold. We denote the ex-post utility bar by t∗(x); it is defined by u∗(x, t(x)) = 0 and
is the threshold above which, accounting for social pressure, the college wants to admit the
student.20 We say that the college is less selective than society at observable x if tc(x) < ts(x),
while it is more selective if tc(x) > ts(x). In either case, the ex-post utility bar t∗(x) is in
between the two parties’ bars, and it monotonically shifts from tc(x) to ts(x) as the social-
pressure intensity parameter δ increases.

Figure 2 illustrates with a leading specification in which x ∈ R, and for each i ∈ {c, s},
ui(x, t) = ai + x + wi × t. In this specification, the college weights test scores more than
society when wc > ws, and weights test scores less than society when wc < ws. The three
lines indicate the respective test-score bars at each x. When the college weights test scores
less, as in the figure’s left panel, at low x it is more selective (has a higher bar) than society,

20 More explicitly, since ui(x, t) = vi(x)+wi(x)t and u∗(x, t) = (uc(x, t) + δus(x, t)) /(1+ δ), we compute
ti(x) = −vi(x)/wi(x) and t∗(x) = − (vc(x) + δvs(x)) / (wc(x) + δws(x)).
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but at high x it is less selective (has a lower bar); and the reverse when the college weights
test scores more than society, as in the right panel.

x

t

ts

tc
t*

(a) College weights tests less than society:
wc < ws.

x

t

tc

ts
t*

(b) College weights tests more than society:
wc > ws.

Figure 2 – Test score admission bars for society (ts), the college’s underlying utility
(tc), and ex-post utility (t∗). For this figure, x ∈ R and ui = ai + x+ wi × t.

3.4. Test-Mandatory Admissions

In a test-mandatory regime, both the college and society always know the student’s score.
In light of social pressure, the college simply maximizes its ex-post utility for each (x, t); its
admission decision is determined by the ex-post bar.

Proposition 1. Under test mandatory, the college admits a student with observable x if
u∗(x, t) > 0 (equivalently, t > t∗(x)) and rejects the student if u∗(x, t) < 0 (equivalently,
t < t∗(x)).

As the social-pressure intensity parameter δ increases, the college becomes less selective at
observable x if, based on its underlying utility, it is more selective than society (tc(x) > ts(x)),
and conversely if it is less selective than society. Plainly, the student with observable x

benefits in the former case and is harmed in the latter case.21

21 Benefit/harm here is in the sense of set inclusion. For example, suppose the college is more selective
than society at x. Then a student with that observable may be rejected when social pressure intensity is
low, and admitted when intensity is high; or they may receive the same outcome at both intensities.
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4. Test-Optional Admissions

4.1. Optimal Acceptance Rule

In a test-optional regime, our college has two instruments: the imputation rule and the
acceptance rule. Only the imputation rule affects students’ score submission, and in turn
the college’s and society’s information. Moreover, the only decision that students make is
whether to submit their score. So, no matter the imputation rule, the college’s optimal
acceptance rule simply maximizes its ex-post utility given students’ submission behavior.
Formally, recalling that L(τ(x)|x) is the average test score of non-submitters with observable
x given the imputation τ(x):

Lemma 1. Consider test optional with any imputation rule τ . The college has an optimal
acceptance rule in which a student with observable x and imputed/submitted score t̂ is accepted
if (i) t̂ > τ(x) and u∗(x, t̂) > 0 or if (ii) t̂ = τ(x) and u∗(x, L(τ(x)|x)) > 0, and is rejected
otherwise.

As confirmed in the lemma’s proof, any optimal acceptance rule has the college making
ex-post optimal decisions—which by definition are monotonic—on path. The lemma also
specifies rejecting any student who has a test score below the imputed level but who chooses,
off path, to submit. When the non-submitters are accepted, we could replace this behavior
with any other monotonic rule and the outcome would be the same. When the non-submitters
are rejected, though, monotonicity of the admission rule requires the college to also reject
any score submission below the imputed score. In this latter case, commitment to the policy
may be necessary: off path, the college may be rejecting students that it ex-post prefers
to accept. For example, suppose test scores at some observable x are distributed uniformly
between 0 and 100, and the imputation is τ(x) = 50. Students with scores between 0 and 50
don’t submit, leading to an average score of 25 for non-submitters. If the college’s ex-post
bar for acceptance is in between 25 and 50, say t∗(x) = 40, then the college will reject the
non-submitters. The college must then reject all off-path submissions of scores below 50,
including—ex-post suboptimally—those above its ex-post bar of 40.

Lemma 1 allows one to deduce, at any given observable x, the college’s value from inducing
any belief (the expected test score), say t̃. This is because the lemma tells us what acceptance
decision A the college would make, and we can plug that into (2) with tc = ts = t̃. But even
so, the college’s problem cannot be solved with standard information-design tools because of
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a constraint on what information the college can generate: it can only choose an imputation
and then rely on the students’ score disclosure.

4.2. Flexible Imputation

We now turn to studying optimal admission policies under flexible imputation. Clearly,
the college can ensure that it is no worse off than under test mandatory: after all, the
imputation rule τ(·) = −∞ ensures that all students submit their scores. But when and how
can the college do better?

In choosing its imputation τ(x) for some observable x, the college trades off making better
admission decisions with reducing disagreement cost. Raising τ(x) leads fewer students to
submit their test scores. The cost is that the college now has less information with which to
make admissions decisions. The benefit is that by pooling together a larger set of test scores
(those of the non-submitters), the college can reduce the disagreement cost it bears with
society, as we saw in Section 2. In particular, consider two students who are both rejected
or both accepted. If their test scores are either both below society’s bar ts(x) or both above,
the disagreement cost is the same regardless of whether these students submit their scores
or are pooled together. But if these students are on opposite sides of society’s bar, then the
disagreement cost is lower when the students are pooled together.

When solving for the optimal admissions policy, the college’s problem is separable across
observables. That is, we can optimize at each observable x and then “stitch” together the
solutions across x’s to get the globally optimal admission policy.

Given some fixed x, it is useful to consider separately the case in which the college is
less selective than society (tc(x) < t∗(x) < ts(x)) and the case in which it is more selective
(ts(x) < t∗(x) < tc(x)).22 For both cases, we will assume without loss that the imputation
level τ(x) is set as τ(x) ≥ t∗(x), and that any submitted score t > τ(x) is accepted.23

22 The remaining case, tc(x) = t∗(x) = ts(x), is trivial, as there is no disagreement at the observable x.
The first-best is achieved when the college uses imputation τ(x) = t∗(x) and accepts a student if and only
if they submit a score t > τ(x).

23 Suppose the college were to reject imputed/submitted scores up to some threshold t′ > τ(x). Then
it could instead raise the imputation level to t′, still reject non-submitters, and now accept all submitted
scores. This alternative policy leads to the same admission decisions but weakly lowers disagreement costs
by pooling a superset of scores. Given that the college accepts any submitted score t > τ(x), Lemma 1
implies that τ(x) ≥ t∗(x).
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College is less selective than society. When the college is less selective, setting τ(x) =

t∗(x) and rejecting non-submitters replicates not only the test-mandatory admission deci-
sions, but also the college’s test-mandatory payoff. This is because all of the scores being
pooled together are below society’s acceptance threshold ts(x). Furthermore, the college does
worse if it sets τ(x) > t∗(x) and then rejects non-submitters: it is now rejecting students
that it preferred to accept even if it had to pay a disagreement cost to do so. Altogether,
if the college rejects non-submitters, then it cannot improve on setting τ(x) = t∗(x) and
replicating the test-mandatory outcome.

The college might improve on test mandatory, however, by accepting non-submitters at
some observable. Monotonicity of the acceptance rule means that the college would then
accept all students with this observable. With all of these students being accepted, the
college would minimize disagreement costs by setting the imputation level to infinity, so that
none of these students submit scores.24 Of course, relative to test mandatory, the college
would then be admitting too many low-scoring students. Hence:

Proposition 2. Consider flexible imputation and some observable x. When the college is
less selective than society (tc(x) < t∗(x) < ts(x)), it is optimal for the college to either:

1. Impute τ(x) = ∞ and accept students regardless of imputed/submitted score t̂; or

2. Replicate the test-mandatory outcome by imputing τ(x) = t∗(x), rejecting students with
imputed/submitted score t̂ ≤ t∗(x), and accepting students with t̂ > t∗(x).

Figure 3a and Figure 3b illustrate the two possibilities.

College is more selective than society. Let us turn to observables at which the college
is more selective than society. Unlike when the college is less selective, the college can
improve on test mandatory by imputing the ex-post optimal bar, rejecting non-submitters,
and accepting submitters. Pooling together the scores of all the rejected students now
reduces disagreement cost because society prefers to reject some of those students (those
with t < ts(x)) and accept others (t ∈ (ts(x), t∗(x)). In general, the college might do even
better by choosing a higher imputation, altering the set of admitted students.

Proposition 3. Consider flexible imputation and some observable x. When the college is
more selective than society (ts(x) < t∗(x) < tc(x)), the college optimally chooses imputation

24 If E[t|x] > ts(x), then any large enough τ(x) would also be optimal as that would ensure that society
prefers to accept the pool of non-submitters, resulting in zero disagreement cost.
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(a) College’s payoff is maximized by setting τ = ∞ (or any τ ≥ 80) and accepting non-submitters.
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(b) College’s payoff is maximized by setting τ ≤ 55 = t∗ and rejecting non-submitters.
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Fix some observable x. The distribution of test scores given x is t ∼ U [0, 100]. Utilities are uc(x, t) =
t− tc, us(x, t) = t− ts, and δ = 1, implying t∗ = (tc + ts)/2. Along the red portion of the curves, the
college prefers to reject non-submitters; along the blue portion, the college prefers to accept them.

Figure 3 – College’s test-optional payoff as a function of the imputed test score, when
the college is less selective than society.
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τ(x) ∈ [t∗(x), tc(x)]; it rejects students with imputed/submitted score t̂ ≤ τ(x) and it accepts
students with t̂ > τ(x).

The proposition’s proof establishes that the optimal τ(x) is determined by comparing the
function L(·|x), which gives the average test score of non-submitters, with society’s bar ts(x).
Specifically, letting t◦ be a score at which L(t◦|x) = ts(x),25 the college sets

τ(x) =


t∗(x) if t◦ ≤ t∗(x)

t◦ if t◦ ∈ (t∗(x), tc(x))

tc(x) if t◦ ≥ tc(x)

.

For the intuition behind Proposition 3, consider the case in which t◦ ∈ (t∗(x), tc(x)).
The optimal admissions policy then involves setting τ(x) = t◦, rejecting non-submitters, and
accepting submitters.26 This imputation makes society indifferent over whether to accept the
pool of non-submitters, as their expected test score is L(τ(x)|x) = ts(x). Moreover, society
wants to accept any submitter, since their score is t ≥ τ(x) > ts(x). So the disagreement cost
is zero. Now consider a marginal change of the imputation level τ(x) from t◦ to t′. On the one
hand, raising the imputation level τ(x) to t′ > t◦ cannot help. Doing so and then rejecting
the larger pool27 yields the same set of admitted students and the same disagreement cost
as setting τ(x) = t◦ and then rejecting students with scores t ∈ (t◦, t′]; there is no benefit
from pooling the scores of these marginal students with those below t◦ since society does not
strictly prefer to reject the pool of non-submitters. But the latter policy is dominated by the
originally proposed policy of setting τ(x) = t◦ and accepting students with scores t ∈ (t◦, t′],
as they provide positive ex-post utility. On the other hand, lowering the imputation level
to t′ < t◦ also cannot help. Doing so and then rejecting students with t ∈ (t′, t◦] yields the
same set of admitted students but higher disagreement cost, since society strictly prefers to
reject the pool of non-submitters when τ(x) = t′; doing so and then accepting students with

25 If L(·|x) is everywhere below ts(x) then let t◦ = ∞, and if L(·|x) is everywhere above ts(x) then let
t◦ = −∞. Otherwise, for simplicity of discussion, we assume there is a solution to L(t◦|x) = ts(x), as is
guaranteed when the distribution of t|x is atomless.

26 To see why this acceptance policy is optimal given the imputation τ(x) = t◦, notice that disagreement
cost is zero regardless of whether non-submitters are accepted or rejected, because L(τ(x)|x) = ts(x). Since
t◦ < tc(x), it is better for the college to reject non-submitters at this imputation level. It is better to accept
submitters, on the other hand, because t◦ > t∗(x).

27 For any marginal change, the college will still prefer to reject the pool, since the expected test score of
non-submitters is strictly below t∗(x).

22



t ∈ (t′, t◦] yields a worse set of admitted students from the college’s perspective, as t < tc(x),
but identical (zero) disagreement cost.

Figure 4 illustrates two examples of Proposition 3. Panel 4a shows a case in which the
optimal τ(x) is in (t∗(x), tc(x)). Panel 4b shows a case in which the optimal τ(x) is equal to
tc(x), and the college achieves its first best: it accepts students if and only if t > tc(x), and
it incurs no disagreement cost. Although not illustrated in the figure, it is also possible that
the optimal τ(x) = t∗(x).

How are students affected? The outcomes of a college-optimal admissions policy under
test-optional admissions have clear-cut and intuitive implications for student welfare relative
to the outcomes of test-mandatory admissions.

Students benefit from test optional at observables where the college is less selective than
society. Specifically, at these observables, Proposition 2 implies that either the college repli-
cates the test-mandatory admissions, or it admits all students. In the latter case, high-
scoring students (with t > t∗(x))) are indifferent between test optional and test mandatory,
but low-scoring students (t < t∗(x)) strictly benefit.

By contrast, students are harmed by test optional at observables where the college is more
selective than society. Specifically, Proposition 3 implies that when the optimal imputation
is τ(x) = t∗(x), the test-mandatory outcome is replicated for all students. But when the
optimal imputation is τ(x) > t∗(x), intermediate-scoring students (with t ∈ (t∗(x), τ(x)])
are rejected under test optional while they would have been accepted under test manda-
tory, whereas the outcomes for low- and high-scoring students (t < t∗(x) and t > τ(x),
respectively) are unchanged.

How is society affected? Recall that only our college incurs disagreement costs; society
just cares about which students are admitted. It follows that relative to test mandatory,
a move to test optional with flexible imputation harms society (at least weakly) at every
observable x. At observables where the college is less selective than society, additional
students are now admitted, while the college was already admitting all students society
wants admitted. At observables where the college is more selective, fewer students are now
admitted, while the college was already rejecting all students society wants rejected.

In addition, under test optional with flexible imputation, society can be worse off when
the social-pressure intensity δ increases (unlike with test mandatory). Consider the example
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(a) College’s payoff is maximized by setting τ = 50 ∈ (t∗, tc) and rejecting non-submitters.

10025 5540 50 80
τ

-10

-5

0

5

10

15
Uc

Mandatory

Reject
Non-Submitters

Accept
Non-Submitters

ts tct*

(b) College achieves its first best by setting τ = 70 = tc and rejecting non-submitters.
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Fix some observable x. The distribution of test scores given x is t ∼ U [0, 100]. Utilities are uc(x, t) =
t− tc, us(x, t) = t− ts, and δ = 1, implying t∗ = (tc + ts)/2. Along the red portion of the curves, the
college prefers to reject non-submitters; along the blue portion, the college prefers to accept them.

Figure 4 – College’s test-optional payoff as a function of the imputed test score, when
the college is more selective than society.
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from Figure 3a, where δ = 1 and at the relevant observable the college optimally sets τ = ∞
(effectively test blind), accepting all students. If the intensity drops to δ ≈ 0, then it becomes
optimal for the college to set τ = −∞ (effectively test mandatory) and reject students with
scores below the ex-post bar. Since society is more selective than the college, society is
better off when δ ≈ 0 than δ = 1. So, concretely, if social pressure reflects the current
student body’s preference to admit fewer legacy applicants, then increasing pressure could
be counterproductive.

4.3. Restricted Imputation

We now turn to test-optional admissions when the imputation rule τ(·) is exogenously
given. The college only optimizes its acceptance rule. As discussed in Subsection 3.2.2, many
colleges announce a policy that we interpret as no adverse inference imputation. Restricted
imputation also subsumes test-blind admissions, as that is equivalent to τ(·) = ∞.

The optimal acceptance rule. As with flexible imputation, we can solve for an optimal
acceptance rule under restricted imputation separately for each observable x. An optimal
acceptance rule readily follows from Lemma 1:

Proposition 4. Consider some observable x and imputation level τ(x). An optimal accep-
tance rule for the college is as follows. A student with submitted score t > τ(x) is accepted
if and only if t > t∗(x); a student with submitted score t < τ(x) is rejected; and a student
with imputed/submitted score τ(x) is accepted if and only if L(τ(x)|x) > t∗(x).

The proposition says that the college’s acceptance rule on path is determined by comparing
a student’s expected score—the score if submitted, or L(τ(x)|x) if not submitted—with
the ex-post bar. (Submission of t ≤ τ(x) only occurs off path.) Whether the college is
more or less selective than society does not affect the college’s optimal acceptance rule; the
distinction matters under flexible imputation (Subsection 4.2) only because it affects the
optimal imputation.

To better understand the admissions policy under restricted imputation, we can consider
exogenously varying the imputation τ(x) at a given x. In that case, there is a threshold T (x)

such that if τ(x) < T (x), then it is optimal to reject non-submitters, whereas if τ(x) > T (x),
then it is optimal to accept non-submitters.28 Figure 3 and Figure 4 illustrate, at some fixed

28T (x) ≥ min{ts(x), tc(x)}, implying that if the imputation is below both the college’s and society’s bars,
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observable x, how the college’s payoff and its decision of whether to accept non-submitters
may depend on the imputation level.

How are students affected? Whether students at an observable x benefit from test
optional under restricted imputation (relative to test mandatory) depends on how the im-
putation level τ(x) and the lower expectation L(τ(x)|x) compare with the ex-post bar t∗(x).
To understand how these vary with observables, we must make further assumptions.

Accordingly, say that there is an ordered subset of increasing observables X ′, which we
(re-)label to be on the real line (X ′ ⊂ R), if on x ∈ X ′ it holds that: (i) uc(x, t) = vc(x) + t

and us(x, t) = vs(x) + t, with vc(x) and vs(x) both increasing; (ii) the distribution of test
scores has the monotone likelihood ratio property (MLRP),29 and (iii) τ(x) is increasing.
Property (i) guarantees that the ex-post bar t∗(x) is decreasing in the observable, while
properties (ii) and (iii) guarantee that the expected test score conditional on not submitting,
L(τ(x)|x), is increasing. Property (iii) is implied by property (ii) when τ is the no adverse
inference rule defined by τ(x) = E[t|x].

A subset of increasing observables yields straightforward implications for which students
benefit or are harmed by test-optional admissions with restricted imputation, as can be seen
using Figure 5. As detailed in the figure’s subcaption, students with “low” observables (those
with x such that τ(x) < t∗(x)) are unaffected. Those with “medium” observables (x such
that τ(x) > t∗(x) but L(τ(x)|x) < t∗(x)) are harmed: within this group, high- and low-
scorers (t > τ(x) and t ≤ t∗(x), respectively) are unaffected while medium-scorers lose (they
are only admitted under test mandatory). Students with “high” observables (x such that
L(τ(x)|x) > t∗(x)) benefit: in this group, low-scorers win (they are only accepted under test
optional) while the rest are unaffected.

Restricted vs. flexible imputation. Under restricted imputation, given a subset of
increasing observables, students with good observables benefit under test optional while
students with medium observables are harmed. By contrast, under flexible imputation, it is
students with observables at which the college is less selective than society that benefit and

then it is optimal to reject non-submitters. In fact, T (x) = ∞ if E[t|x] ≤ t∗(x). If E[t|x] > t∗(x), then so
long as the distribution of test scores conditional on x has full support and is atomless, T (x) is the unique
solution to L(T (x)|x) = t∗(x).

29 That is, there is a test-score density/probability mass function f(t|x) such that for each x′ > x′′ in X ′

and each t′ > t′′, it holds that f(t′|x′)f(t′′|x′′) ≥ f(t′|x′′)f(t′′|x′).
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Under test optional, a student submits their score if t > τ , and a non-submitter is admitted if L > t∗.
Under either test optional or mandatory, a submitter is admitted if t > t∗. So students in the lightly
shaded region are rejected under both regimes, while students in the unshaded region are accepted
under both. Students in the “Win” region are only accepted under test optional; students in the “Lose”
are only accepted under test mandatory.

Figure 5 – How test-optional with restricted imputation affects students on a subset of
increasing observables.

those with observables at which the college is more selective that are harmed. Looking back
at Figure 2, we see that these predictions may go in the same qualitative direction, or may
go in opposite directions.30 In the figure’s left panel, where the college weights tests less than
society, the college is less selective than society at higher observables. Hence, students with
higher observables benefit from test optional under both flexible and restricted imputation.
In Figure 2’s right panel, where the college weights tests more than society, we have the
reverse: the college is more selective at higher observables. In this case, the predictions
about which students benefit from test optional flip depending on whether imputation is
flexible or restricted.

Recall that under flexible imputation, a switch from test mandatory to test optional
(weakly) benefits the college and harms society. These effects hold at every observable x.
By contrast, under restricted imputation, either party may benefit or be harmed by the
switch at any specific x—it depends on the imputation level τ(x).31 The effects are thus

30 For the example in Figure 2, utilities were defined as ui(x, t) = ai + x + wit, with x ∈ R and wi > 0;
we can rescale these utilities as ui(x, t) = ai

wi +
x
wi + t. So observables are increasing when test scores satisfy

the MLRP and τ(x) is increasing.
31 The effects need not go in opposite directions for the two parties. Consider the example in Figure 4b.
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also ambiguous when aggregating across observables. Nevertheless, we can make two general
observations. First, under test optional with a fixed imputation rule, society is better off
at every observable when the social-pressure intensity δ increases. This is not true under
flexible imputation because it can trigger changes in the imputation rule and alter which
students submit scores. But when the set of submitting students is held fixed, an increase
in δ only pulls the college’s admission decisions towards what society prefers.

Second, there is a sense in which the college strictly prefers test mandatory when either
social pressure is limited or the college’s and society’s preferences are similar. To make that
precise, say that information is valuable for the college at a given imputation rule if in the
absence of any disagreement cost (δ = 0), the college would strictly prefer test mandatory
to test optional with that imputation rule.32

Proposition 5. Fix any imputation rule. The college strictly prefers test mandatory to test
optional if either:

1. Information is valuable for the college, and social-pressure intensity δ is sufficiently
close to zero; or

2. Information would be valuable for the college if it shared society’s preferences, and the
college’s preferences are sufficiently close to society’s.33

The result is mathematically straightforward, as it is no more than a statement of conti-
nuity. But its forces may speak to why a small number of colleges have recently reverted to
test-mandatory admissions. Part 1 of Proposition 5 offers one explanation in terms of dimin-
ished social-pressure intensity. More interestingly, some of the reverting institutions—e.g.,
Dartmouth and John Hopkins—have referenced how their own data from their test-optional
period has informed them about the value of test scores; see Friedman, Sacerdote, and Tine
(2024) for a study using multiple Ivy-Plus colleges. We can interpret these colleges’ pref-
erences on how to weigh test scores as becoming more similar to society’s (recall the 2022
PEW research survey mentioned in our introduction). The reversal to test mandatory is
then consistent with Proposition 5 part 2, so long as their imputation rule is fixed—e.g., to
no adverse inference or some variant thereof.

Society is harmed by any imputation τ(x) > t∗(x), as that leads to fewer students being admitted under test
optional. When τ(x) is sufficiently large, the college is also harmed.

32 This is a mild requirement because the college always weakly prefers test mandatory absent disagreement
cost. A strict preference only requires that there is a positive-probability set of observables for which test
optional with the restricted imputation does not replicate the admissions outcome of test mandatory.

33 Sufficiently close in the metric supx∈X |tc(x)− ts(x)|.
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Constrained imputation. In practice, colleges may not be fully restricted nor fully flex-
ible in their imputation. They may optimize subject to constraints reflecting another di-
mension of social pressure or internal politics. One natural constraint would be that a
college has to use a “monotonic” imputation rule, say imputing a higher test score to an
otherwise-identical student who has a higher GPA. An additional constraint could be that
the imputation rule has to be “continuous” in observables.

Formally, consider our preceding formulation of increasing observables. Assume the prim-
itives satisfy those properties (i) and (ii), and the college can choose from some set of
imputation rules that satisfies property (iii). In words, both the college and society prefer
higher observables, students with higher observables have better test scores, and the college
must impute higher scores for non-submitters with higher observables. As long as the college
can choose the constant imputation τ(·) = −∞ that replicates test mandatory, the college
benefits from being test optional, as under flexible imputation. But in terms of student
welfare, our conclusions under restricted imputation apply.

5. Further Results

5.1. Banning Affirmative Action

In this section, motivated by public debates about affirmative action, we apply our frame-
work to show how banning affirmative action can push a college from test-mandatory admis-
sions to test-blind admissions.34 Conceptually, this serves as an extended example in which
we can say whether a college benefits from test optional for a given restricted imputation.
The formal statements and proofs of the results for this section are in Appendix C.

The setup is as follows. Students come from one of two groups, with group identity
labeled as x0 ∈ {r, g}—red or green. Each student also has an observable x1 ∈ R, which can
represent some aggregate of GPA and/or extracurriculars, and a test score t ∈ {0, 1}. The
college and society agree on the importance of t and x1, but the college has a preference for
admitting group g and society does not. Specifically,

us(x, t) = x1 + t,

uc(x, t) = x1 + t+ β11x0=g − c,

34 We study test blind rather than test optional for simplicity; as noted previously, test blind is equivalent
to test optional when non-submitters are imputed sufficiently high test scores.
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with β > c > 0, and 11x0=g an indicator for x0 = g. So the college has a lower bar than
society for green types and a higher bar for red types. Our leading interpretation is that
group identity x0 corresponds to race, with the college putting an explicit weight on enrolling
underrepresented minorities (x0 = g) while society prefers race-blind admissions.

We assume that the observable x1 has the same distribution for both groups; for tractabil-
ity, we stipulate a uniform distribution over a large enough interval. The test score, by con-
trast, can be correlated with the group identity x0. We assume the distribution of test scores
depends on student characteristics only through x0: Pr(t = 1|x = (x0, x1)) = px0 ∈ (0, 1).
Following the interpretation of group identity as race, assume the underrepresented group g

has a lower average test score: pg < pr.

We consider two affirmative-action regimes. If affirmative action is allowed, the college
may condition admissions on group identity x0. If affirmative action is banned, group identity
is hidden and therefore cannot be used in admissions.

We find that when affirmative action is allowed, the college prefers test mandatory (Propo-
sition 6). Given the test score and other observables, the college sets a lower admission
threshold on x1 + t for its preferred group. When affirmative action is banned, differential
thresholds by group are no longer feasible. Test scores now become a signal of group identity
(as in Chan and Eyster (2003) and others). Because the college’s preferred group g has a
lower average test score, the college now effectively wants to put a lower weight on tests
than does society. Thus, banning affirmative action can push a college to switch to test
blind (Proposition 7). The switch is more likely when social-pressure intensity δ is larger,
the gap in test scores pr−pg is larger, or the college puts a larger weight β on group identity
(Corollary 1).

We also find that holding fixed the college’s testing regime (mandatory or blind), society
prefers to ban affirmative action. After all, society does not want group identity factored in
admissions. Moroever, given any affirmative-action regime, society prefers the college to be
test mandatory rather than test blind. But since banning affirmative action can trigger the
college to ignore test scores, a ban can backfire and make society worse off (Proposition 8).

As of June 2023, affirmative action by race has been banned nationwide by the US Supreme
Court. Even prior to this decision, some commentators had suggested that banning affir-
mative action might induce colleges to avoid seeing test scores (e.g., New Yorker, January
2022). One rationale is that going test blind can suppress evidence of score differentials
across groups, which could have been used in lawsuits alleging that a college makes illegal
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decisions based on group identity. Our story is distinct, but complementary. We assume
that when a college cannot directly condition on race, it wants to put less weight on tests
that are correlated with race. Hiding test scores allows the college to do so in a way that
generates less disagreement with society. This can be interpreted as protecting the college
from criticism of how much weight it places on different elements of an application.

We conclude this subsection by noting that group identity in our extended example can
also represent other attributes besides race. For example, it could be legacy status. Colleges
often give a leg up in admission to students whose family members have attended the college.
The above analysis then applies for evaluating a ban on the use of legacy status in admissions,
with one possible twist. For legacy status, the preferred group might have a higher average
test score than other applicants, instead of a lower one, as legacy students tend to come
from advantaged backgrounds.35 A ban on legacy admissions—which has been implemented
by a few US states, most recently California in September 2024—would then mean that the
college now wants to put extra weight on tests. Hence, the college’s desire to see test scores
would increase.

5.2. Competition Between Colleges

So far, we have considered a single college. We now extend our model to multiple colleges,
making two points. First, when a test-optional college competes against a test-mandatory
counterpart, it may encounter adverse selection. Among its nonsubmitting applicants, the
ones with lower test scores are less likely to be admitted by the competitor. So if the test-
optional college were to admit nonsubmitters, the worse applicants in the pool would be more
likely to matriculate. Second, the consequences of such adverse selection are ambiguous. The
test-optional college now has a lower benefit of accepting nonsubmitters. But, more subtly,
the social-pressure cost of rejecting nonsubmitters can also decrease. A college may thus be
more or less inclined to go test optional when its competitor is test mandatory.

To develop these points formally, we introduce the notion of yield. From the perspective
of any one college, a student’s yield y ∈ [0, 1] is the probability that the student attends
that college conditional on being admitted. This yield will depend on whether a student
is admitted to other colleges, and thus on the admission policies of a college’s competitors.
To incorporate yield into payoffs, we stipulate, naturally, that admitting a student with
observables x, score t, and yield y provides the college underlying (expected) utility y ×

35 For example, the Harvard Crimson reports that legacy students in Harvard’s entering class of 2027 had
an average SAT score of about 28 points higher than their non-legacy counterparts.
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uc(x, t). Our key assumption is that social pressure also scales analogously.36 For applicants
who would certainly attend a college if admitted (y = 1), we recover our original social
pressure costs. At the opposite limit, society doesn’t judge a college’s decision at all for a
student who never would have come anyway (y = 0).

Since underlying benefits and social pressure costs both scale proportionally with yield,
a test-mandatory college will admit a student with arbitrary yield y ∈ [0, 1] if and only if it
would admit that student at yield y = 1. Consequently, a test-mandatory college’s admission
decisions are independent of its competitors’ policies.

By contrast, yield can affect a college’s admissions when it is test optional. The college
must then consider the possibility of differential yield within an observably identical pool of
nonsubmitters. The college might be willing to admit a pool based on the average student,
but not the yield-weighted average student, if students with higher unsubmitted test scores
have lower yield. Such adverse selection can happen when the college has test-mandatory
competitors who only admit students with higher test scores.

To illustrate the adverse selection concretely, consider two identical colleges. These col-
leges have common underlying utility uc, are judged by the same societal utility us, and face
the same social pressure intensity δ. Both colleges are required to use the same restricted
imputation rule τ if test optional. The colleges are also equally attractive to students: any
student admitted at only one college will attend that college, while a student admitted at
both will choose uniformly at random between the two.

Figure 6 illustrates how a test-optional college’s admission decisions can vary with its
competitor’s admission policy. The figure assumes increasing observables in the sense of
Subsection 4.3 and Figure 5. The left panel, Figure 6a, considers the college’s problem when
the competitor is test optional.37 At any given observable x, all of the nonsubmitters have

36 Formally, we modify Equation 2 so that the college’s payoff for making admission decision A for a
student of type (x, t) with yield y(x, t) is (Auc(x, t)− δd(x, ts, A)) y(x, t). Assuming for convenience that for
each observable x, the distribution of test scores has a density f(t|x), society now evaluates a nonsubmitting
student by ts = LY (τ(x)|x), where

LY (τ(x)|x) :=

∫
t≤τ(x)

ty(x, t)f(t|x)dt∫
t≤τ(x)

y(x, t)f(t|x)dt

is the yield-weighted average test score of nonsubmitters. Note that if y(x, t) is constant on t ≤ τ(x), then
LY (τ(x)|x) simplifies to L(τ(x)|x) ≡ E[t|t ≤ τ(x), x], which is what we had without yield.

37 We assume the competitor uses its optimal admission policy based on the unweighted yield (L in the
figure), which is equivalent to the optimal policy absent competition. This policy is indeed a best response.
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The yield-weighted average test score of nonsubmitters is LY . For comparison, the unweighted average
L is also shown. Students withhold test scores when t ≤ τ . At observable x, the college admits
nonsubmitters if LY is above the ex-post bar t∗. So nonsubmitters are admitted for x > x1 in the left
panel and x > x2 in right panel.

Figure 6 – A test-optional college’s yield varies with its competitor’s testing regime.

the same yield because the competitor admits them all or rejects them all. Since there
is no differential yield, there is no adverse selection: the yield-weighted average test score
of nonsubmitters LY is the same as the unweighted average test score L. So the college
makes admission decisions as in our single-college analysis, unaffected by yield. It accepts
nonsubmitters with observables x > x1.

Now consider the right panel, Figure 6b, which depicts a test-mandatory competitor.
Here there are observables at which the competitor selectively admits nonsubmitters with
relatively high test scores—only those above the ex-post bar t∗. So the college faces a
low yield of 1/2 for high-scoring students and a high yield of 1 for low-scoring students.
This adverse selection lowers the yield-weighted average test score, bringing LY below L.
The college is now less inclined to admit nonsubmitters than when it faced a test-optional
competitor; the threshold x at which it accepts nonsubmitters increases from x1 to x2.

Figure 6b also helps us understand why adverse selection isn’t necessarily bad for a test-
optional college. For nonsubmitters who are accepted both before and after a pool gets worse
(x > x2), making the pool worse clearly hurts the college: it decreases underlying payoffs
and cannot decrease social pressure. However, consider nonsubmitters who are rejected both
before and after (x < x1). Now, making the pool worse has no impact on underlying payoffs
but it can decrease social pressure if society had wanted to admit the pool. So at observ-
ables where nonsubmitters are rejected and a less-selective society wants the nonsubmitters
accepted, a test-optional college can benefit from its competitor being test-mandatory.
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The foregoing discussion suggests that, under restricted imputation, a college’s preferred
testing regime can depend on its competitor’s choice. One possibility is strategic comple-
mentarity: a college prefers test mandatory when its competitor is test mandatory, and
prefers test optional when its competitor is test optional. Another is strategic substitutabil-
ity: a college prefers test optional when its competitor is test mandatory, and prefers test
mandatory when its competitor is test optional.

In Appendix D, we provide examples to illustrate how both of those possibilities can arise
from adverse selection. In our complementarity example, a test-optional college admits non-
submitters, and test optional becomes less appealing if its competitor goes test mandatory
and makes the nonsubmission pool worse. In our substitutability example, a test-optional
college does not admit the nonsubmitters, but the less-selective society wants it to admit
them. So test optional becomes more appealing for the college if its test-mandatory com-
petitor worsens the nonsubmission pool.

Finally, a third example illustrates a distinct force that can push towards substitutability.
Consider a college that prefers to be test optional when its competitor is test mandatory. If
the competitor switches to test optional and rejects nonsubmitters, those rejected students
may include some high-scoring ones. The college now has a higher yield for these desirable
students. It reacts by going test mandatory and “cherry-picking” these students.

6. Conclusion

Our paper offers a resolution to the puzzle of why a college would choose to obtain less
information about students by using a test-optional (or test-blind) admissions policy (Dessein
et al., 2025). We propose that going test optional helps a college alleviate social pressure
regarding the students it admits. We introduce and solve a model of college admissions in
which a college faces costs from making admission decisions that an external observer, society,
disagrees with. Society is Bayesian and judges the college based on the available information,
which is common to the college and society. The college commits to an imputation rule—
stipulating, as a function of a student’s observable characteristics, the test score assigned
to non-submitters—and an acceptance rule specifying whether a student with any given
observables and test score is admitted.

Our results in Subsection 4.2 establish that when a college can flexibly choose its imputa-
tion rule, a test-optional regime is always weakly better for the college than a test-mandatory
one. Test optional is often strictly better, reducing the college’s cost from social pressure
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and/or delivering a student body it likes more. In Subsection 4.3, we study restricted im-
putation rules. Here, we find that going test optional may or may not benefit a college.
For both flexible and restricted imputation, we identify which students benefit and which
students are hurt by test optional. In Subsection 5.1 we explore an extended example of
restricted imputation, illustrating that our framework can explain how a ban on affirmative
action can result in a college choosing to go test blind. In Subsection 5.2, we discuss how
competition between colleges can affect the incentives to be test optional.

We close by discussing some alternative modeling assumptions and broader issues.

6.1. Capacity Constraints and Interactions Across Students

Our model assumes that a college admits any student that provides it a utility above some
fixed threshold, normalized to zero. Modulo the caveat in fn. 18, this abstracts away from
capacity constraints: if a college accepts more applicants of one type, it may mechanically
have to accept less applicants of other types.

Incorporating a capacity constraint would not, we believe, fundamentally change the point
that test optional can be used to combat social pressure. But the analysis would be more
complicated, because unlike in our model the college would have to maintain the same number
of students under test optional as under test mandatory. Consequently, if students from one
group benefit from test optional, then students from some other group would necessarily be
harmed. This externality could raise important equity concerns in practice.

Our formulation also abstracts from the college’s or society’s preferences for one stu-
dent depending on the admission outcome of another. In that sense, payoffs are additively
separable across students. This omits considerations such as class balance or diversity (on
legally-permissible dimensions).

6.2. Alternative Restricted Imputation Rules

The restricted imputation rule we have highlighted is that of no adverse inference: τ(x) =
E[t|x]. There are at least two other rules that appear salient.

First, colleges’ claims to not punish non-submitters can be interpreted as a promise to
impute missing test scores as equal to those of an average submitted score: τ(x) = E[t|x, S =

1]. Notice that for any observable x, we cannot have a range of scores being submitted: a
student with the lowest such score would, instead, not submit their score. Hence, this form
of “equal treatment” effectively unravels to no student submitting their score.
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Second, the reason that a college may not be able to flexibly impute missing scores is that it
lacks commitment power, and instead it can only impute via Bayes rule: τ(x) = E[t|x, S = 0].
Now, for any x, if there is a range of scores not being submitted, a student with the highest
such score would instead submit. Hence, this imputation rule effectively unravels to every
student submitting their score.

The upshot, then, is that under either of these alternative forms of restricted imputation,
test optional would collapse to either test blind or mandatory.

6.3. No Commitment to the Acceptance Rule

Suppose the college cannot commit to its acceptance rule, instead admitting students
ex-post optimally given their imputed/submitted scores.

In this case, a college’s acceptance decision is simply determined by whether a student’s
imputed/submitted score is above or below the ex-post optimal bar, t∗(x). Under flexible
imputation, Proposition 2 implies that the outcome is unchanged at observables at which the
college is less selective than society. But when the college is more selective, it can no longer
set τ(x) > t∗(x) and reject non-submitters, which could have been optimal (Proposition 3);
the problem now is that the college must accept students who submit scores above t∗(x).
Consequently, the college now optimally sets τ(x) = t∗(x) and rejects non-submitters.

This means that a test-optional college now accepts all the students it would under test
mandatory, and possibly additional ones (if, for some observable x at which it is less selective
than society, it chooses τ(x) = ∞ and accepts all students with observable x). Hence, all
students benefit, at least weakly, from test optional. Of course, this conclusion relies crucially
on the college not having a capacity constraint.

6.4. Non-Bayesian Society

We have assumed that society is Bayesian. This means that if students from certain
groups have lower test scores on average than others, society accounts for that in evaluating
non-submitters. We view Bayesian updating as a way of tying our hands, showing that
our mechanism goes through even when society can’t be systematically misled. In practice,
though, society might not take into account all information contained in the observables. For
instance, if the observable vector x = (x0, x1) has component x1 corresponding to grades and
component x0 corresponding to race, society might evaluate non-submitters race-neutrally:
ts = E[t|x1, S = 0] rather than ts = E[t|x1, x0, S = 0], where S = 0 indicates non-submission.
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A college that faces such a non-Bayesian society may get an additional benefit from
not seeing test scores. In particular, recall that in the specification of Subsection 5.1, the
college always prefers test mandatory when affirmative action is allowed. If society is instead
constrained to race-neutral updating, one can show that there are parameters at which
the college benefits from going test blind even when it can condition admissions on race.
Intuitively, when red types have higher test scores than green types (pr > pg), going test
blind effectively makes society value green types more and red types less, on average. Going
test blind thus brings the non-Bayesian society’s preferences even closer to the college’s.

6.5. Non-Equilibrium Behavior by Students

Our model assumes that students correctly understand a college’s admissions policy—in
particular, its imputation rule—and best respond in their score submission. In practice,
students are often uncertain about whether to submit their score, leading to mistakes. With
flexible imputation, such mistakes can only reduce a college’s benefit from being test optional;
effectively, the college’s problem transforms from one of flexible imputation to restricted
imputation. The upshot can be that test optional does not actually benefit the college.

Colleges’ inability to fine-tune student submission behavior through their imputation rules
provides another explanation, in addition to that after Proposition 5, for why some colleges
have recently reinstated their testing requirements. Indeed, one of the factors in Dartmouth’s
2024 decision was that under test optional some applicants did not submit their scores even
when submission would have “helped that student tremendously, maybe tripling their chance
of admissions,” according to Professor Bruce Sacerdote.

6.6. Why Test Scores?

Our paper is silent as to why colleges choose to make test scores, rather than other appli-
cation components, optional. One reason—outside of our model—may be that standardized
test scores are easier for society to evaluate, whereas the personal essay, the GPA at a par-
ticular high school, or extra-curricular achievements require more specialized expertise to
evaluate. As such, while these other components may be informative of college success,
they are subject to less outside scrutiny and generate less disagreement costs. Indeed, every
lawsuit opposing affirmative action has used standardized test scores as evidence of discrim-
ination (New Yorker, January 2022).
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Appendix

A. Proofs

A.1. Proof for Subsection 3.4

Proof of Proposition 1. Under test mandatory, the student’s score is always observed by
both the college and society. So the college’s problem for any observed (x, t) is to choose
A ∈ {0, 1} to maximize

AU c(x, t, t, 1) + (1− A)U c(x, t, t, 0).

From the definition of the ex-post utility function u∗(x, t) in (3), it is equivalent for the
college to maximize Au∗(x, t), which implies the result.

A.2. Proofs for Section 4

Proof of Lemma 1. Fix test optional with some imputation rule τ . Consider a student
with observable x and imputed/submitted score t̂. Given our assumption that the student
submits if they have score t > τ(x) and does not submit if t ≤ τ(x), whether the im-
puted/submitted score t̂ is on path or off path depends only on the support of the score
distribution Ft|x. If t̂ is off path, then any college acceptance decision is optimal. Since any
t̂ < τ(x) is necessarily off path, it is optimal to reject such t̂. There are two remaining cases:

1. t̂ > τ(x), and it is on path. Then the student must have submitted t̂, and so by the
logic of Proposition 1, it is optimal for the college to accept the student if u∗(x, t̂) > 0

and reject the student otherwise.

2. t̂ = τ(x), and it is on path. Then t̂ is an imputed score. By similar reasoning to
that in Proposition 1, the expected utility gain from accepting these students types is
proportional to the ex-post utility u∗(x, L(τ(x)|x)), and so it is optimal to accept if
that ex-post utility is positive and reject otherwise.

We note that the resulting acceptance rule is monotonic, as L(τ(x)|x) ≤ τ(x) and u∗(x, ·) is
increasing.

For clarity and notational ease, in the remainder of this Appendix section we assume that
for each x, the cumulative distribution of test scores Ft|x has a density f(t|x). The proofs
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of Propositions 2 and 3 can be extended to arbitrary distributions of t|x with additional
notational burden.

Lemma 2 below will be used in the proofs of Propositions 2 and 3. In words, the lemma
compares the disagreement from pooling (e.g., via non-submission) versus separating (via
submission) different groups of students, holding fixed the acceptance decisions. Part 1 says
that breaking up one pool into two increases disagreement, at least weakly, which is then
further increased by separating the higher pool. Part 2 says that, if one pool is broken into
two and society would make the same decision on both of the new pools—either rejecting
both when E[t|x, t ∈ (τ, τh]] ≤ ts(x), or accepting both when ts(x) ≤ L(τ |x) ≡ E[t|t ≤ τ ]—
then breaking up this pool does not in fact change disagreement costs. Part 3 establishes
that turning a pooling region into a separating region doesn’t change disagreement if society
would make the same decision for all students in that range. Formally:

Lemma 2. Fix observables x. Given −∞ ≤ τ l < τh, let Dpool(τ l, τh;A) and Dsep(τ l, τh;A)

be the disagreement levels from making acceptance decision A for all students with scores
t ∈ (τ l, τh] while, respectively, pooling all students together or separating them:

Dpool(τ l, τh;A) :=

∫ τh

τ l
d(x,E

[
t|x, t ∈ (τ l, τh]

]
, A)f(t|x)dt;

Dsep(τ l, τh;A) :=

∫ τh

τ l
d(x, t, A)f(t|x)dt.

1. Take any ∞ ≤ τ ≤ τh. It holds that

Dpool(−∞, τh;A) ≤ Dpool(−∞, τ ;A) +Dpool(τ, τh;A)

≤ Dpool(−∞, τ ;A) +Dsep(τ, τh;A).

2. Take any τ < τh. If E
[
t|x, t ∈ (τ, τh]

]
≤ ts(x) or ts(x) ≤ L(τ |x), then

Dpool(−∞, τh;A) = Dpool(−∞, τ ;A) +Dpool(τ, τh;A).

3. Take any τ l < τh. If τh ≤ ts(x) or ts(x) ≤ τ l, then

Dpool(τ l, τh;A) = Dsep(τ l, τh;A).

Proof of Lemma 2. Part 1 follows from convexity of the disagreement function d(x, ts, A)
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in ts. Part 2 and part 3 follow from the linearity of d(x, ts, A) on the domain ts ≤ ts and on
the domain ts ≥ ts. For part 2, we also apply the fact that L(τ |x) ≤ E[t|x, τ < t ≤ τh], and
hence the assumptions guarantee that L(τ |x) and E[t|x, τ < t ≤ τh] are both on the same
side of ts(x). For part 3, the assumptions guarantee that τ l and τh are both on the same
side of ts.

Proof of Proposition 2. Fix some observable x at which the college is less selective than
society. To reduce notation, the rest of this proof omits the x argument in τ , tc, t∗, ts, f(t),
and L(t). Note that L(t) is continuous in t under the assumption we have made for this
proof that the test score distribution has a density.

The college’s payoff of imputing τ is constant over τ ∈ [−∞, t∗]: for any of these imputa-
tions, Lemma 1 implies that the college rejects students with scores t ≤ t∗ and accepts those
with scores t > t∗; since t∗ < ts, Lemma 2 (parts 2 and 3) implies that the disagreement cost
does not change.

To prove the result, then, it is sufficient to establish that the college’s payoff from imputing
τ ∈ [t∗,∞] is decreasing and then increasing. In particular, take t† ≥ t∗ such that L(t†) = t∗,
with t† = ∞ if L(t′) < t∗ for all t′. We will show that the college’s expected payoff is
decreasing in τ between t∗ and t†, then increasing in τ above t†.

To show that the college’s payoff is decreasing in τ over the domain τ ∈ [t∗, t†), take
some τ ∈ [t∗, t†). Lemma 1 implies that it is optimal for the college to reject students
with imputed/submitted score t̂ ≤ τ , since L(τ) ≤ L(t†) = t∗. That is, non-submitters are
rejected. Submitters with t > τ are admitted, since τ ≥ t∗. We now consider two cases:
τ < ts and τ ≥ ts.

• If τ < ts, then the college’s expected payoff E[Auc(x, t)− δd(x, ts, A)|x] can be written
as ∫ ∞

τ

uc(x, t)f(t)dt− δ

∫ ts

τ

−us(x, t)f(t)dt

because the college only accepts students with t > τ and only incurs a disagreement cost
for the students it accepts with τ < t ≤ ts. (There is no disagreement cost for rejecting
the non-submission pool, which has L(τ) ≤ t∗ < ts; and there is no disagreement cost
for accepting students with t ≥ ts.) The right-derivative of this expected payoff with
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respect to τ is38

−(uc(x, τ) + δus(x, τ))f(τ).

This derivative is weakly negative because uc(x, τ) + δus(x, τ) ≥ 0 for any τ ≥ t∗:
τ ≥ t∗ implies that u∗(x, τ) ≥ 0, and u∗(x, τ) has the sign of uc(x, τ) + δus(x, τ).

• If τ ≥ ts, then the college’s expected payoff E[Auc(x, t)− δd(x, ts, A)|x] can be written
as ∫ ∞

τ

uc(x, t)f(t)dt

because the college only accepts students with t > τ and does not incur a disagreement
cost for any student. The right-derivative of this expected payoff with respect to τ is

−uc(x, τ)f(τ),

which is weakly negative because τ ≥ tc.

Next, we show that the college’s expected payoff is increasing in τ over the domain
τ ∈ [t†,∞]. Note that when τ ∈ [t†,∞], Lemma 1 implies that it is optimal for the college
to accept non-submitters (who have expected test score of L(τ) > t∗) as well as submitters
with t > τ . Hence, all students are accepted. Moreover, pooling more students by raising τ

always weakly reduces disagreement costs, if raising τ does not change acceptance decisions
(Lemma 2 part 1). Hence, raising τ over this domain weakly benefits the college.

Proof of Proposition 3. Fix some observable x at which the college is more selective than
society. For notational simplicity, the rest of this proof omits the x argument in τ , tc, t∗, ts,
f(t), and L(t).

The college’s payoff of imputing τ is increasing over τ ∈ [−∞, t∗]. To see this, observe
that for any imputation in this range, Lemma 1 implies that the college rejects students
with scores t ≤ t∗ and accepts those with scores t > t∗; Lemma 2 part 1 implies that the
disagreement cost over the students with t ≤ t∗ decreases in the imputation level. (Increasing
the imputation level corresponds to combining a pooling and a separating region into a single
pooling region, while continuing to reject all students in that region.) Without loss, then,
we can restrict attention to τ ≥ t∗.

38 We use the right-derivative because although the payoff is continuous in τ (under the assumption of
continuous distributions) and differentiable almost everywhere, there are kinks at t∗ and ts.
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Let t◦ be a test score at which L(t◦) = ts, with t◦ = ∞ if L(t′) < ts for all t′ and t◦ = −∞
if L(t′) > ts(x) for all t′. So for t′ ≤ t◦, L(t′) ≤ ts; and for t′ ≥ t◦, L(t′) ≥ ts. We will show
that it is optimal for the college to set

τ =


t∗ if t◦ ≤ t∗

t◦ if t◦ ∈ (t∗, tc)

tc if t◦ ≥ tc.

• Suppose t◦ ≤ t∗. We seek to show that it is optimal to set τ = t∗.

Under τ = t∗, Lemma 1 implies that the college rejects the pool of non-submitters with
t ≤ t∗ (since L(t∗) ≤ t∗) and accepts submitters with t > t∗. The college’s expected
payoff at τ = t∗ can be written in the notation of Lemma 2 as∫ ∞

t∗
uc(x, t)f(t)dt− δDpool(−∞, t∗;A = 0). (4)

Now consider, instead, τ = τh > t∗. There are two possibilities.

Case 1: L(τh) ≤ t∗. In this case, the college rejects non-submitters (by Lemma 1), and
so (applying Lemma 2 parts 2 and 3) the college’s expected payoff can be written in
the notation of Lemma 2 as∫ ∞

τh
uc(x, t)f(t)dt− δDpool(−∞, τh;A = 0)

=

∫ ∞

τh
uc(x, t)f(t)dt− δ

(
Dpool(−∞, t∗;A = 0) +Dsep(t∗, τh;A = 0)

)
(5)

The expected payoff of setting τ = t∗ minus that of setting τ = τh is given by the
difference of expressions (4) and (5), which is

∫ τh

t∗
(uc(x, t) + δus(x, t)) f(t)dt.

We now observe that uc(x, t) + δus(x, t) has the sign of u∗(x, t), which is positive on
t > t∗, implying that the college prefers setting τ to t∗ rather than τh.

Case 2: L(τh) > t∗. In this case, by Lemma 1, the college accepts non-submitters as
well as the submitters with t > τh. That is, it accepts all students. Since L(τh) ≥
L(t∗) ≥ ts, it faces no disagreement costs, and its expected payoff is simply E[uc(x, t)|x].
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Subtracting this from (4) yields the expected payoff difference of setting τ = t∗ and
τ = τh:

−
∫ t∗

−∞
uc(x, t)f(t)dt− δ

∫ t∗

−∞
us(x, L(t∗))f(t)dt

= −
∫ t∗

−∞
(uc(x, L(t∗)) + δus(x, L(t∗))) f(t)dt,

where the equality is by the linearity of uc(x, t) in t. We now observe that the above
payoff difference is weakly positive because uc(x, t) + δus(x, t) is weakly negative for
any t ≤ t∗, and because L(t∗) ≤ t∗. Hence, the college prefers setting τ to t∗ rather
than τh.

• Suppose t∗ < t◦ < tc. We seek to show that it is optimal to set τ = t◦.

At τ = t◦, the college rejects non-submitters and faces no disagreement cost, so the
college’s expected payoff E[Auc(x, t)− δd(x, ts, A)|x] at τ = t◦ is

∫ ∞

t◦
uc(x, t)f(t)dt. (6)

At any τ = τ l ∈ [t∗, t◦), the college also rejects non-submitters and faces no disagree-
ment cost, so its expected payoff is∫ ∞

τ l
uc(x, t)f(t)dt, (7)

which is clearly less than (6) because uc(x, t) < 0 on (τ l, t◦). Hence the college prefers
to set τ to t◦ over τ l.

Now consider setting τ = τh > t◦. There are two possibilities.

Case 1: L(τh) ≤ t∗. In this case, the college rejects the pool of non-submitters, and its
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expected payoff in the notation of Lemma 2 is∫ ∞

τh
uc(x, t)f(t)dt− δDpool(−∞, τh;A = 0)

=

∫ ∞

τh
uc(x, t)f(t)dt− δ

(
Dpool(−∞, t◦;A = 0) +Dsep(t◦, τh;A = 0)

)
=

∫ ∞

τh
uc(x, t)f(t)dt− δDsep(t◦, τh;A = 0)

=

∫ ∞

t◦
uc(x, t)f(t)dt−

∫ τh

t◦
(uc(x, t) + δus(x, t)) f(x|t)dt, (8)

where the first equality applies Lemma 2 parts 2 and 3; the second equality uses
Dpool(−∞, t◦;A = 0) = 0, since us(x, L(t◦)) = us(x, ts) = 0; and the third equality
uses the definition of Dsep. Observing that uc(x, t) + δus(x, t) > 0 on all t > t∗ implies
that (8) is less than (6).

Case 2: L(τh) > t∗. In this case, the college accepts the pool of non-submitters as well
as the submitters and it pays no disagreement costs, so its expected payoff is∫ ∞

−∞
uc(x, t)f(t)dt =

∫ t◦

−∞
uc(x, t)f(t)dt+

∫ ∞

t◦
uc(x, t)f(t)dt.

This payoff is less than (6) since the first term is weakly negative because t◦ < tc.

• Suppose t◦ ≥ tc. We seek to show that it is optimal to set τ = tc.

The argument is straightforward: setting τ = tc gives the college its first-best payoff.
It admits students with t > tc, and it rejects students with t ≤ tc. The college faces
zero disagreement cost for the accepted students, who all have t ≥ tc > ts. And the
college also faces zero disagreement cost for the rejected pool of non-submitters, since
tc ≤ t◦ and therefore the pool has average test score L(tc) ≤ ts.

Proof of Proposition 4. Follows from Lemma 1.

Proof of Proposition 5. Part 1 holds because the college’s payoff from both test manda-
tory and test optional with the given imputation rule is continuous in δ, and by assumption
the college strictly prefers test mandatory when δ = 0. For part 2, we fix society’s preferences
and only vary the college’s. Following fn. 33, we write uc → us if supx∈X |tc(x)− ts(x)| → 0.
It can be verified that, under either test mandatory or test optional with the given imputa-
tion rule, the college’s payoff converges to its payoff when it shares society’s preferences as
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uc → us. The result follows from the hypothesis that the college would strictly prefer test
mandatory if uc = us.

B. Imputation and Monotonic Acceptance Rules

Let T := R ∪ {ns}, where R is the set of test scores and ns denotes non-submission. A
general policy for the college specifying when to admit a student, which we shall refer to as
an allocation rule to distinguish it from the admission rules considered in the main text, is
a function π : X × T → [0, 1], where π(x, t) is the probability of admitting a student with
observables x ∈ X and score (non-)submission t ∈ T . An outcome under an allocation rule
π is any function X × R 7→ [0, 1] that obtains from composing π with some student best
response. Plainly, the outcome from any admission rule—a combination of an imputation
rule τ and monotonic acceptance rule α, as defined in Subsection 3.1—is the outcome under
some allocation rule π.39 Below, we explain why there is no loss of optimality for the college
in restricting to admission rules: for any outcome under any allocation rule, there is an
admissions rule whose outcome is weakly better for the college.

We start with two observations:

1. Without loss of optimality, the college can restrict to deterministic allocation rules,
i.e., choose some π : X × T → {0, 1}. This stems from the college’s expected utility
being linear in the admission probability, and the student’s optimal action (submission
or non-submission) only depending on the ordinal ranking of probabilities induced by
the actions. See Frankel and Kartik (2023) for further intuition and a proof.

2. (a) If π(x, ns) = 1, then the college weakly prefers an outcome in which students with
observable x do not submit regardless of test score;
(b) if π(x, ns) = π(x, t) = 0 for some score t ∈ R, the college weakly prefers that
students with observable x and true score t not submit.
The argument for both cases is that the outcome for the relevant students is unchanged
if they don’t submit—noting in part (a) that any outcome has students with observable
x admitted regardless of true test score—and the disagreement cost is weakly reduced
by having students pool on non-submission.

39 Any admission rule has a unique outcome, given our assumption in the main text that the student
submits their score if and only if it is strictly above the imputation. So, admissions rule (τ, α) is outcome-
equivalent to the allocation rule π defined by π(x, t) = α(x, τ(x)) if t ≤ τ(x) or t = ns, and π(x, t) = α(x, t)
if t > τ(x).
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Now fix any observable x. The two observations imply that without loss of optimality,
we can restrict to deterministic allocation rules and outcomes such that either (i) non-
submitters are accepted and no student submits, or (ii) non-submitters are rejected and a
student submits if and only if that leads to acceptance. Case (i) is outcome-equivalent to an
admission rule with imputation τ(x) = ∞ and acceptance α(x, ·) = 1, so we can focus on
case (ii).

Accordingly, suppose non-submitters are rejected, and a student submits if and only if
that leads to acceptance. We will establish the claim that there is no loss of optimality in
supposing the allocation rule is monotonic: given x and any tL < tH , if π(x, tL) = 1 then
π(x, tH) = 1. Letting t := sup{t : π(x, t) = 0}, a monotonic allocation rule π is outcome-
equivalent to an admission rule with acceptance α(x, t) = 1 if and only if t > τ(x), where
the imputation is τ(x) = t if either the test score distribution Ft|x is continuous, or t = −∞,
or π(x, t) = 0; and τ(x) = t− ε for sufficiently small ε > 0 otherwise (i.e., if Ft|x is discrete
and π(x, t) = 1).40

To establish the monotonicity claim, first consider the case in which the distribution of
test scores (at the fixed observable x) is continuous. Suppose there is a positive-probability
set of scores that are accepted that are all lower than another positive-probability set of
scores that are rejected. For any t, let GL(t) be the measure of accepted students with scores
below t, and GH(t) be the measure of rejected students with scores above t. Since these are
continuous functions and limt→−∞[GL(t) − GH(t)] < 0 < limt→+∞[GL(t) − GH(t)], there is
t′ ∈ R such that GL(t

′) = GH(t
′). Consider a modification of the allocation rule to reject all

scores below t′ and accept all scores above t′. The new outcome in which students submit if
and only if their score is above t′ is weakly preferred by the college: it improves its underlying
utility (because the accepted students are better) while reducing disagreement costs (because
the rejected non-submitting students are worse). Therefore, the original allocation rule is
improved by a monotonic one.

If the test score distribution is discrete, the same logic applies, except that we may require
a public randomization device to allow splitting of the mass of students with a specific test
score. Specifically, suppose that both the student’s submission decision and the college’s
allocation rule can condition on a public random variable uniformly distributed on [0, 1].
This allows for an arbitrary fraction of students at a certain test score to submit and be
accepted, while the others with that score don’t submit (and will be rejected if they do

40 Recall from fn. 14 that we assume a discrete Ft|x has no accumulation points.
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submit). The same logic as in the previous paragraph then applies.

C. Details for Banning Affirmative Action

C.1. A Model of Affirmative Action

There are two potentially observable non-test dimensions, x = (x0, x1). Dimension x0 is
binary, with realizations in {r, g} (red and green). Dimension x1, which may represent some
aggregate of GPA and/or extra-curricular achievement, takes continuous values in R. Test
scores are binary, with values normalized to 0 and 1.

The college and society have identical preferences over all factors except for the type
dimension x0. Society does not care about this dimension, but all else equal, the college
wants to admit green types over red types.41 Specifically, we assume that

us(x, t) = x1 + t,

uc(x, t) = x1 + t+ β11x0=g − c,

with β > c > 0, and 11x0=g an indicator for green types. The parameter β is the bonus the
college gives to green types over red types. The parameter c is not essential to our analysis,
but it allows for the college and society to have different test-score bars for both red and
green students. It can be interpreted as the (opportunity) cost for a college of admitting
any student. We have normalized the analogous constant in society’s utility to zero. The
assumption β > c > 0 implies that the college has a lower test-score bar than society for
green types and a higher one for red types. Note that the the college’s ex-post utility is

u∗(x, t) = x1 + t+
β

1 + δ
11x0=g −

c

1 + δ
.

Let x0 = g with probability q ∈ (0, 1) and x0 = r with probability 1 − q. We assume
that the distribution of test scores depends on x only through x0: Pr(t = 1|x = (x0, x1)) =

px0 ∈ (0, 1). Our primary interest is in the case of pr > pg, meaning that green types, which
are favored by the college, have a worse distribution of test scores. This may correspond
to green students being an underrepresented demographic group, for instance. But we also
allow for the opposite case of pr < pg, in which the college’s favored group has a better

41 We could allow for society to have preferences over a student’s x0 dimension as well; what is important
is that the college favors green types more than society does.
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test score distribution. Here, green students may correspond to those from rich families,
who have better access to test preparation, and are favored by the college because of donor
considerations. If the green students correspond to legacy applicants, it may be that either
pr < pg or pr > pg.

We take x1 to be independent of both x0 and t. We also assume that x1 is uniformly
distributed over a large enough interval. Specifically, x1 ∼ U [x1, x1], with x1 < c−β−1 and
x1 > c. The inequality on x1 guarantees that there are students with x1 low enough that
neither the college nor society wants to admit them, even if they are otherwise as desirable
as possible (x0 = g and t = 1). The inequality on x1 guarantees that there are students with
x1 high enough that the college and society want to admit them even if they are otherwise
as undesirable as possible (x0 = r and t = 0).

We will consider the college’s choice over whether to be test mandatory or test blind in two
observability regimes. First, we allow both dimensions of x to be observable, which we call
affirmative action allowed. Then we consider only x1 to be observable, with the dimension
x0 unobservable; we call this regime affirmative action banned. We interpret the switch from
the first to the second regime as a policy change where society—which does not intrinsically
care about x0—bans the use of that dimension in admissions. This may represent a law or
court decision forbidding the use of race or legacy status in admissions.42

C.2. Results

Affirmative action allowed. Consider first the case when affirmative action is allowed.

Under test mandatory, the college can choose a distinct threshold of x1 above which to
admit students at each (x0, t) pair.43 This threshold is determined by setting the ex-post
utility to 0. Since the college favors green students, its x1 threshold will be lower by β/(1+δ)

for green students than for red students at each score level t. From society’s perspective,
the college uses an x1 threshold that is too low for green students and too high for red
students—but crucially, the gap between society’s preferred threshold and what the college

42 Note that we assume that when x0 is unobservable to the college, it is also unobservable to society.
While society does not value x0 directly, the observability of x0 to society could still matter for the calculation
of the college’s social costs. This is because, if society can observe x0 but cannot observe test scores, then
it would expect a different test score for green students (pg) than red students (pr). We assume that a
law preventing the college from making inferences of this form also stop society from making/penalizing the
college based on such inferences.

43 Since we will be comparing test mandatory with test blind, it turns out to be convenient for our analysis
to take the perspective of x1 admissions thresholds rather than test score thresholds.
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uses does not vary with t.44

Under test blind, the college chooses an admissions threshold on dimension x1 that de-
pends on the student’s type x0 but not the test score t. However, x0 is informative about t:
the college and society evaluate students of type x0 as if they have the expected test score
E[t|x0] = px0 . If pr > pg, the college’s preference for green students is countered by the
fact that green students have lower test scores on average than red students. So the college
will now use a lower x1 threshold for green students than red students only if its preference
parameter β is sufficiently large: specifically, if and only if β/(1 + δ) > pr − pb. Regardless,
the gap between the college’s chosen x1 threshold and society’s preferred threshold is the
same as under test mandatory, for any test score t—that gap did not depend on the test
score, and utilities are linear in the test score.

We can establish:

Proposition 6. If affirmative action is allowed, then the college prefers test mandatory to
test blind.

The reason is that going test blind leads to a set of students that the college prefers less,
but in the current specification there is never a countervailing benefit of reducing disagree-
ment cost. The latter point stems from two sources. First, as noted above, for any given x0

type (and test score, under test mandatory), the gap between society’s preferred x1 threshold
and what the college uses is independent of the regime, even though these thresholds do shift
across regimes. Second, our assumption of a uniform distribution of x1 means that the total
disagreement cost for students of a given x0 type (at a given test score, or averaging over
test scores) only depends on the size of the gap.

Affirmative action banned. Now consider the case when affirmative action is banned.

Under test mandatory, the observed test score is informative about a student’s type x0.
Specifically, since there are a fraction q of green types in the population and the probability
of test score t = 0 for a student of type x0 is 1−px0 , we compute the probability of a student
being green conditional on t = 0 as

P 0
g := Pr(x0 = g|t = 0) =

q

q + (1− q) 1−pr
1−pg

.

44 The gap is (β − c)/(1 + δ) for green students and c/(1 + δ) for red students.
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Analogously, conditional on t = 1, the probability of a green type is

P 1
g := Pr(x0 = g|t = 1) =

q

q + (1− q) pr
pg

.

Let ∆ := P 0
g −P 1

g be the difference between these two quantities, i.e., a low test score implies
a ∆ higher probability of x0 = g than a high test score. Note that ∆ > 0 if pr > pg, whereas
∆ < 0 if pr < pg. Based on the inference of x0 from t, the college’s underlying utility gives
a bonus of β∆ to students with low test scores relative to those with high scores. As a
result, the college now values a high test score 1−β∆ units higher than a low score, whereas
society still values it 1 unit higher. That is, unlike when affirmative action is allowed, the
gap between society’s preferred x1 admissions threshold and what the college chooses now
varies with the test score.45 We impose the assumption that β∆ < 1, so the college still
prefers students with higher test scores.

There is now an avenue for test blind to help the college. Under test blind, since the
college evaluates all students as having Pr(x0 = g) = q and E[t] = qpg + (1 − q)pr, it is
as if the college’s utility from any student is x1 + E[t] + qβ − c. Analogously, it is as if
society’s utility from any student is x1 + E[t]. If c = qβ, which means the college and the
society seek to admit the same number of students overall, then it is as if their utilities agree,
and the college implements its preferred admissions policy—subject to being test blind and
no affirmative action—at zero disagreement cost. More generally, the disagreement cost is
always lower under test blind than test mandatory. Whether the reduced disagreement cost
outweighs the allocative loss from being test blind depends on parameters, specifically the
intensity of social pressure δ and the college’s bonus to low-scoring students β∆.

Proposition 7. Suppose affirmative action is banned. If (1 + δ)(2β∆ − 1) ≥ (β∆)2, then
the college prefers test blind, and otherwise the college prefers test mandatory.

Recall we assume β∆ < 1. Proposition 7 implies that if β∆ ≤ 1/2, the college always
prefers test mandatory: the allocative losses (“admission mistakes”) from not observing test
scores are larger than those from simply implementing society’s preferred decision rule and

45 Absent affirmative action, it is as if the college’s underlying utility from a student is x1 + t+ βP t
g − c,

and so the college’s gain from a student with test score t = 1 over t = 0 is 1 + βP 1
g − βP 0

g = 1− β∆. Given

its underlying utility, the college’s ex-post utility from a student is x1 + t +
βP t

g−c

1+δ . The gap between the

college’s chosen x1 admissions threshold with society’s preference is the term βP t
g−c

1+δ , which varies with t so
long as P 0

g ̸= P 1
g , or equivalently ∆ ̸= 0.
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incurring no disagreement. When β∆ ∈ (1/2, 1), there is a trade-off, and test blind will be
preferred if the intensity of social pressure, δ, is sufficiently large. The following corollary
develops this and other comparative statics.

Corollary 1. Suppose that affirmative action is banned (x0 is unobservable) and that a low
test score is associated with x0 = g (∆ > 0).

1. There is some β∗ ∈
(

1
2∆

, 1
∆

)
such that the college prefers test mandatory when β < β∗

and prefers test blind when β > β∗.

2. There is some ∆∗ ∈
(

1
2β
, 1
β

)
such that the college prefers test mandatory when ∆ < ∆∗

and prefers test blind when ∆ > ∆∗.

3. If β∆ ≤ 1/2, then the college prefers test mandatory for all δ; if β∆ ∈ (1/2, 1), then
there is some δ∗ > 0 such that the college prefers test mandatory when δ < δ∗ and
prefers test blind when δ > δ∗.

C.3. Society’s Preferences

We now consider society’s payoff under different affirmative action and testing regimes.
Society’s realized utility for an individual student is Aus(x, t), where the dummy variable A

indicates whether the student is admitted. We assume that society’s objective is to maximize
its expected utility across the pool of applicants.

Proposition 8. Society’s preferences over affirmative action and testing regimes are as
follows:

1. Fixing the testing regime as mandatory or blind, society prefers banning affirmative
action to allowing affirmative action.

2. Fixing affirmative action as banned or allowed, society prefers test mandatory to test
blind.

3. Suppose society chooses the affirmative action regime and then the college chooses the
testing regime. Then banning affirmative action can harm society. In particular, if
β∆ ∈ (1/2, 1), there exist thresholds 0 < δ ≤ δ < ∞ such that (i) if affirmative action
is banned, the college chooses test blind if δ > δ, and (ii) society is harmed by banning
affirmative action if δ > δ, while it benefits if δ < δ.46

46 If β∆ ≤ 1/2, the college never goes test blind, and so, by part 1 of the proposition, society always
benefits from banning affirmative action.
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The first two parts of the proposition are intuitive, since society does not want the ad-
mission decision to depend on whether a student is red or green (which suggests part 1) but
does want the decision to depend on the test score (which suggests part 2). If society could
choose both the testing and affirmative action regimes, it would ban affirmative action and
choose test mandatory. However, part 3 of the proposition cautions that if society chooses
the affirmative action regime and the college subsequently chooses the testing regime, society
can be worse off by banning affirmative action. Specifically, when δ is large enough, banning
affirmative action backfires because the college’s response of going test optional results in
a student pool that society likes less than under test mandatory and affirmative action al-
lowed. Indeed, as δ gets arbitrarily large, society’s payoff is arbitrarily close to society’s first
best when affirmative action is allowed and there is mandatory testing, while it is bounded
away when affirmative is banned and the college goes test blind. But when δ is intermediate
(between the thresholds δ and δ in Proposition 8 part 3), society is better off by banning
affirmative even though it results in the college going test blind.47

C.4. Proofs for Results on Banning Affirmative Action

As a preliminary observation, we can write the college’s loss relative to first best as its
allocative loss plus the cost of social pressure. At a given (x0, t) pair of test scores and group
memberships, the assumption of a uniform distribution over x1 implies that the college’s
allocative loss depends only on the difference between the college’s chosen x1-cutoff for
admission and the college’s ideal x1 cutoff. Specifically, let f := 1

x1−x1
be the (constant)

density of the x1 distribution on its support. If the college’s chosen cutoff is r above its ideal
cutoff, then its allocative loss on this (x0, t) pair is∫ r

0

fxdx =
f

2
r2. (9)

Society’s (allocative) loss is given by the same formula, when the chosen cutoff is r above
society’s preferred cutoff.

Proof of Proposition 6. Suppose that affirmative action is allowed. Here, there is no
interaction between the college’s decisions at different realizations of x0. So, it suffices to
show that test mandatory would be preferred to test blind for any fixed x0 = x′

0 in {r, b}.

47 It is possible that δ = δ, in which case whenever a ban on affirmative action leads to test optional,
society is harmed by the affirmative-action ban.
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Fixing x0 = x′
0, let h := uc(x′

0, x1, t)− us(x′
0, x1, t) = β11x′

0=g − c be the difference between
the college’s and society’s utility for admitting a student of type x0 = x′

0, which does not
depend on x1 or t. It then holds that uc(x′

0, x1, t)−u∗(x′
0, x1, t) =

δ
1+δ

h, and that u∗(x′
0, x1, t)−

us(x′
0, x1, t) =

1
1+δ

h. Given its information, the college sets x1 admissions cutoffs at the value
of x1 setting the expectation of u∗(x′

0, x1, t) to 0. Note that the college’s ideal x1-cutoff for
students in group x0 = x′

0 with test score t is −t− h, whereas society’s ideal x1-cutoff is −t.

The college’s loss under test mandatory. At (x′
0, t), the college’s chosen x1-cutoff for

admission is δ
1+δ

h above its ideal point, yielding allocative loss (from (9)) of

f

2

h2δ2

(1 + δ)2
. (10)

Similarly, the college’s chosen x1-cutoff for admission is − 1
1+δ

h above society’s ideal point,
leading to an allocative loss for society of f

2
h2

(1+δ)2
. The college then pays a social pressure

cost equal to δ times that, or

f

2

δh2

(1 + δ)2
. (11)

Both of these expressions are independent of t, meaning that these expressions also represent
the college’s losses averaged over test scores.

The college’s loss under test mandatory, for students with x0 = x′
0, is the sum of (10) and

(11).

The college’s loss under test blind. With unobservable test scores, the players evaluate
students of type x0 = x′

0 as if they have the expected test score of px′
0
. The college’s chosen

x1 cutoff for students of type x0 = x′
0 sets u∗(x′

0, x1, px′
0
) to 0, i.e., a cutoff of x1 = −px′

0
− h

1+δ
.

To calculate the college’s allocative losses, we compare the college’s chosen (test-independent)
x1 admissions cutoffs to its (test-dependent) ideal cutoffs. Recall that the college’s ideal cut-
off at test score t is x1 = −t − h. So at t = 1, the college’s chosen cutoff is 1 − px′

0
+ δ

1+δ
h

above its ideal point; at t = 0, the college’s chosen cutoff is −px′
0
+ δ

1+δ
h above its ideal

point. The college’s expected allocative loss over test scores, once again plugging into (9), is
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therefore given by

px′
0

f

2

(
1− px′

0
+

δ

1 + δ
h

)2

+ (1− px′
0
)
f

2

(
−px′

0
+

δ

1 + δ
h

)2

=
f

2

h2δ2

(1 + δ)2
+

f

2
px′

0
(1− px′

0
). (12)

To calculate social costs, we compare the college’s chosen x1 admissions cutoff not to
society’s ideal cutoff, but to society’s preferred cutoff given that test scores are not observed.
Society’s preferred x1-cutoff is given by −px′

0
. The chosen cutoff is − h

1+δ
above society’s

preferred cutoff. We can now plug into (9) to calculate society’s loss relative to its preferred
cutoff (given its information) as f

2
h2

(1+δ)2
. The college’s social pressure cost is δ times that, or

f

2

δh2

(1 + δ)2
. (13)

The college’s loss under test blind, for students with x0 = x′
0, is the sum of (12) and (13).

Comparison. Comparing expressions (11) and (13), the social pressure cost under test
blind is identical to that under test mandatory. Comparing expressions (10) and (12), the
allocative loss is higher under test blind. Hence, the college prefers test mandatory.

Proof of Proposition 7. Suppose that affirmative action is banned. Let ET := E[t] =
qpr + (1 − q)pg be the average test score in the population, i.e., the share with test score
t = 1. Recall that P t

g = Pr(x0 = g|t). We will now calculate the college’s loss in each testing
regime.

In each case, we will evaluate the college’s allocative loss relative to a benchmark where
the college must make decisions independently of the unobservable x0 type. The college’s
ideal cutoff at test score t, given that it must pool together students across the two x0 types,
is −t− βP t

g + c.

The college’s loss under test mandatory. Society’s ideal x1-cutoff for admitting a
student of with test score t is −t. The college’s chosen cutoff, setting the expected ex post
utility to 0, is −t− 1

1+δ
(βP t

g − c).
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To calculate the allocative loss, observe that the college’s chosen cutoff is δ
1+δ

(βP t
g − c)

above its ideal cutoff at test score t. Plugging into (9), its allocative loss across the two test
scores is given by

(1− ET )
f

2

(
δ

1 + δ
(βP 0

g − c)

)2

+ ET
f

2

(
δ

1 + δ
(βP 1

g − c)

)2

. (14)

To calculate the loss due to social pressure, observe that the chosen x1-cutoff is − 1
1+δ

(βP t
g−

c) above society’s preferred cutoff. The college’s expected loss due to social pressure (plugging
this difference into (9) for each test score, taking expectation over test scores to find society’s
loss, and then multiplying by δ) is therefore

δ(1− ET )
f

2

(
1

1 + δ
(βP 0

g − c)

)2

+ δET
f

2

(
1

1 + δ
(βP 1

g − c)

)2

. (15)

The college’s total loss is (14) plus (15).

The college’s loss under test blind. The average test score is ET , and so society’s
preferred x1-cutoff is −ET . The college’s chosen cutoff, setting the expected ex post utility
to 0, is −ET − 1

1+δ
(βq − c), where q is the probability of x0 = g.

Again, we calculate the college’s allocative loss relative to its ideal point with observable
t but unobservable x0. At test score t, the chosen cutoff minus the ideal cutoff is

t− ET + βP t
g −

qβ

1 + δ
− cδ

1 + δ

Plugging into (9) and taking the expectation across test scores, the college’s allocative loss
is given by

(1− ET )
f

2

(
−ET + βP 0

g − qβ

1 + δ
− cδ

1 + δ

)2

+ ET
f

2

(
1− ET + βP 1

g − qβ

1 + δ
− cδ

1 + δ

)2

.

(16)

The difference between the college’s chosen cutoff and society’s preferred cutoff is − 1
1+δ

(βq − c).
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Plugging into (9) and multiplying by δ, the college’s loss from social pressure is

f

2

δ(βq − c)2

(1 + δ)2
. (17)

The college’s total loss is (16) plus (17).

Comparison. The net benefit of choosing test blind rather than test mandatory is given
by the loss from test mandatory minus the loss from test blind, i.e.,

(14) + (15) − (16) − (17).

Substituting in q = (ET )P 1
g + (1− ET )P 0

g and ∆ = P 0
g − P 1

g and then simplifying, we can
rewrite this net benefit as

f

2

ET (1− ET )

1 + δ

(
(1 + δ)(2β∆− 1)− (β∆)2

)
.

The above expression is weakly positive if and only if (1 + δ)(2β∆− 1) ≥ (β∆)2.

Proof of Corollary 1. Suppose that affirmative action is banned. Proposition 7 establishes
that the college prefers test blind to test mandatory if and only if

(1 + δ)(2β∆− 1) ≥ (β∆)2. (18)

Recall we maintain the assumptions that β > 0, β∆ < 1, and for this corollary, ∆ > 0. We
prove each part of the corollary in turn:

1. Rewriting (18), the college prefers test blind if and only if

−∆2β2 + 2∆(1 + δ)β − (1 + δ) ≥ 0.

The LHS is a concave quadratic that is negative at β = 1
2∆

(equal to −1/4) and positive
at β = 1

∆
(equal to δ). Hence, there exists β∗ ∈ ( 1

2∆
, 1
∆
) such that the college prefers

test blind when β > β∗ and test mandatory when β < β∗. Using the quadratic formula,

β∗ =
1+δ−

√
δ(1+δ)

∆
.

2. Since (18) is symmetric with respect to β and ∆, the argument of the previous part

goes through unchanged after swapping β and ∆. We get ∆∗ =
1+δ−

√
δ(1+δ)

β
.

60



3. If β∆ ∈ (0, 1/2), then the LHS of (18) is nonpositive and the RHS is strictly positive,
implying that test mandatory is optimal.

If β∆ > 1/2, then we can rewrite (18) as δ ≥ (1−β∆)2

2β∆−1
, and hence the result holds for

δ∗ = (1−β∆)2

2β∆−1
> 0.

Proof of Proposition 8. As in (9), at a given (x0, t), society’s loss relative to its first
best when the college’s chosen x1-cutoff for admission is r above society’s ideal cutoff is∫ r

0
fxdx = f

2
r2. Society’s expected loss across all values of x0 and t is equal to the expectation

of f
2
r2 over the distribution of r, with r the difference between the chosen cutoff (which may

depend on x0 and t) and society’s ideal cutoff (which depends only on t). Since the loss f
2
r2

is convex in r, mean-preserving spreads in the distribution of these cutoff differences make
society worse off.

Part 1. Fix any testing regime. The distribution of cutoffs at each test score when
affirmative action is allowed is a mean-preserving spread of the distribution when affirmative
action is banned. Hence, society prefers banning affirmative action.

Part 2. First, suppose that affirmative action is allowed. Fix some type x0 = x′
0, at which

the college has a utility bonus of h := uc(x′
0, x1, t) − us(x′

0, x1, t) = β11x′
0=g − c relative to

society. Under test mandatory, at each test score, the chosen x1-cutoff is h
1+δ

below society’s
ideal cutoff. Under test blind, at t = 1, the chosen cutoff is 1 − px′

0
+ h

1+δ
below society’s

cutoff; and at t = 0, the chosen cutoff is −px′
0
+ h

1+δ
below society’s cutoff. Hence, under test

blind, at each type x′
0, the distribution of society’s cutoff minus the chosen cutoff is given by1− px′

0
+ h

1+δ
with probability px′

0

−px′
0
+ h

1+δ
with probability 1− px′

0
.

This distribution is a mean-preserving spread of the constant h
1+δ

. Hence, society is worse
off under test blind for each realization x′

0 of x0, and so is worse off in expectation.

Next, suppose that affirmative action is banned. As also defined in the proof of Proposi-
tion 7, we let ET := E[t] = qpr + (1− q)pg denote the average test score in the population,
i.e., the share of students with test score t = 1. At test score t, the college’s ideal x1-cutoff
is −t− βP t

g + c (recall P t
g = Pr(x0 = g|t)), and society’s ideal x1-cutoff is −t.

Under test mandatory with affirmative action banned, the college’s chosen x1-cutoff is
1

1+δ
(βP t

g − c) below society’s ideal point at test score t. That is, a share ET of students have
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cutoffs 1
1+δ

(βP 1
g −c) below society’s ideal point, and a share 1−ET have cutoffs 1

1+δ
(βP 0

g −c)

below. Plugging in q = (ET )P 1
g + (1− ET )P 0

g and ∆ = P 0
g − P 1

g , some algebra yields that
the distribution of society’s ideal cutoffs minus the chosen cutoffs is 1

1+δ
(βq − c)− (1− ET ) β∆

1+δ
with probability ET

1
1+δ

(βq − c) + ET β∆
1+δ

with probability 1− ET.
(19)

Under test blind with affirmative action banned, the college’s chosen x1 cutoff is −ET −
1

1+δ
(βq−c). This means that for the ET share of students with t = 1, the chosen x1-cutoff is

1
1+δ

(βq−c)−(1−ET ) below society’s ideal cutoff of −1; for the 1−ET share with t = 0, the
chosen cutoff is 1

1+δ
(βq − c) +ET below society’s ideal cutoff of 0. That is, the distribution

of society’s ideal cutoffs minus the chosen cutoffs is 1
1+δ

(βq − c)− (1− ET ) with probability ET

1
1+δ

(βq − c) + ET with probability 1− ET.
(20)

Since β∆ < 1 (by assumption) and 1 + δ > 1, the distribution in (20) is a mean-preserving
spread of that in (19). Hence, when affirmative action is banned, society prefers test manda-
tory to test blind.

Part 3. From Proposition 7, if (1 + δ)(2β∆ − 1) < (β∆)2, then the college chooses test
mandatory under an affirmative action ban. If (1 + δ)(2β∆ − 1) > (β∆)2, which implies
β∆ > 1/2, the college chooses test blind under an affirmative action ban.

So, when β∆ ∈ (0, 1/2], society prefers to ban affirmative action: it prefers test mandatory
and no affirmative action to test mandatory with affirmative action (by part 1).

Now suppose that β∆ > 1/2. Let δ := (β∆)2

2β∆−1
− 1 be the solution to (1 + δ)(2β∆− 1) =

(β∆)2. For δ < δ, the college chooses test mandatory, in which case society prefers to
ban affirmative action. For δ > δ, the college chooses test blind. In this case, we need to
compare society’s payoff of test mandatory with affirmative action versus test blind without
affirmative action.

The distribution of chosen x1-cutoffs minus society ideal cutoffs under test mandatory
with affirmative action is 

β−c
1+δ

with probability q

−c
1+δ

with probability 1− q.
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Society’s corresponding payoff loss is

f

2(1 + δ)2
(
c2 − 2cqβ + qβ2

)
. (21)

The distribution of cutoffs minus society ideal points under test blind without affirmative
action is given by (20). Society’s payoff loss is correspondingly

f

2(1 + δ)2
(
(βq − c)2 + (1− ET )ET (1 + δ)2

)
(22)

with ET = qpg + (1− q)pr.

The sign of(22) minus (21) tells us whether society prefers test mandatory with affirmative
action or test blind without affirmative action. The sign of that difference is the same as the
sign of ET (1− ET )(1 + δ)2 − q(1− q)β2. This expression equals zero when δ equals

δ′ := β

√
q(1− q)

ET (1− ET )
− 1.

When δ > δ′, society prefers test mandatory with affirmative action to test blind without
affirmative action; when δ < δ′, the preference is reversed.

Finally, let δ := max{δ, δ′}. We now see that (i) when δ > δ, the college chooses test
blind if affirmative action is banned; and (ii) taking into account the college’s response in
choosing its testing regime, society prefers to ban affirmative action if δ < δ, and prefers to
allow affirmative action if δ > δ.

D. Competition Examples

This section provides three numerical examples to substantiate the discussion in Subsec-
tion 5.2 about competition.

All three examples have two colleges. There is a single observable, and thus we omit the
dependence of all variables on x. At this observable, students have test scores uniformly
distributed between 0 and 100. Two identical colleges have underlying utility uc(t) = t− tc;
society has utility us(t) = t − ts; and the colleges place a weight δ = 1 on social pressure,
implying ex-post utilities u∗(t) = t − t∗ with t∗ = (tc + ts)/2. A test-optional college is
restricted to impute τ = 50, the average test score, for nonsubmitters. If admitted by both
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colleges, a student chooses betwen them uniformly at random.

Example 1 (Complements due to adverse selection). Let tc = 5 and ts = 25, implying
t∗ = 15. Here, society is more selective than the college. Our calculations below will
establish strategic complementarity. That is, when a college’s competitor is test mandatory,
the college prefers to be test mandatory; but when a college’s competitor is test optional,
the college prefers to be test optional.

A test-mandatory college admits students with t > t∗ = 15 and rejects students with
t ≤ 15. Assume that a test-optional college admits nonsubmitters with t ∈ [0, 50], which is
optimal so long as the yield-weighted average test score of nonsubmitters is above t∗ = 15, as
will be the case. The test-optional college also admits the submitting students with t > 50.

A test-mandatory college facing another test-mandatory college has yield of 1/2 for all
of the students it admits, since the other college makes identical admission decisions. The
college then gets underlying utility of 1

2

∫ 100

15
1

100
(t − 5)dt = 22.3125, social pressure costs of

1
2

∫ 25

15
1

100
(25− t)t = .25, and a net payoff of ≃ 22.1.

A test-mandatory college facing a test-optional college also has yield of 1/2 for all of the
students it admits, because the other college admits all students. So its payoff is also ≃ 22.1.

A test-optional college facing another test-optional college has yield of 1/2 for all students.
The yield-weighted average test score for nonsubmitters is just the unweighted expectation of
25. The college’s underlying utility from admitting every student is 1

2

∫ 100

0
1

100
(t−5)dt = 22.5,

and social pressure costs are 0. So its payoff is 22.5.

Finally, a test-optional college facing a test-mandatory college has a yield of 1/2 for
students with t > 15, and a yield of 1 for students with t ≤ 15. The yield-weighted average
test score for nonsubmitters is 20.9615.48 The college’s underlying utility from admitting
every student is 22.5, and social pressure costs are (25−20.9615)· 1

100
·(1·(15−0)+ 1

2
(50−15)) =

1.3125. Its payoff is ≃ 21.2.

We see that when a college’s competitor is test mandatory, the college prefers to be test
mandatory (22.1 > 21.2). When a college’s competitor is test optional, the college prefers to
be test optional (22.5 > 22.1). We also see that a test-optional college prefers its competitor
to be test-optional (22.5 > 21.2).

48 The average test score between 0 and 15 is 7.5; the average test score between 15 and 50 is 32.5; and
the weighted average, putting a weight of 1/2 on test scores between 15 and 50, is (7.5 · (15− 0)+ 1/2 · 32.5 ·
(50− 15))/((15− 0) + 1/2 · (50− 15)).
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Example 2 (Substitutes due to adverse selection). Let tc = 50 and ts = 20, implying t∗ = 35.
Here, the college is more selective than society. Our calculations below will establish strategic
substitutability. That is, when a college’s competitor is test mandatory, the college prefers
to be test optional; but when a college’s competitor is test optional, the college prefers to be
test mandatory.

A college that is test mandatory admits students with t > t∗ = 35 and rejects students
with t ≤ 35. Assume that a test-optional college rejects nonsubmitters with t ∈ [0, 50],
which is optimal so long as the yield-weighted average test score of nonsubmitters is below
t∗ = 35, as will be the case. The test-optional college also admits the submitting students
with t > 50.

A test-mandatory college facing another test-mandatory college has yield of 1/2 for stu-
dents with t > 35 and yield of 1 for students with t ≤ 35, since the other college makes iden-
tical admission decisions. The college then gets underlying utility of 1

2

∫ 100

35
1

100
(t − 50)dt =

5.6875, social pressure costs of
∫ 35

20
1

100
(t− 20)dt = 1.125, and a net payoff of ≃ 4.6.

A test-mandatory college facing a test-optional college has a yield of 1/2 for students
with t > 50 and a yield of 1 for students with t ≤ 50. So it gets underlying utility of∫ 50

35
1

100
(t − 50)dt + 1

2

∫ 100

50
1

100
(t − 50)dt = 5.125, social pressure costs of

∫ 35

20
1

100
(t − 20)dt =

1.125, and a net payoff of 4.

A test-optional college facing another test-optional college has a yield of 1/2 for students
with t > 50 and yield of 1 for students with t ≤ 50. The yield-weighted average test score for
nonsubmitters is just the unweighted expectation of 25. The college’s underlying utility from
rejecting nonsubmitters and accepting submitters with t > 50 is 1

2

∫ 100

50
1

100
(t− 50)dt = 6.25,

and social pressure costs are 1
100

(25− 20)(50− 0) = 2.5. So its payoff is 3.75.

Finally, a test-optional college facing a test-mandatory college has a yield of 1/2 for
students with t > 35, and a yield of 1 for students with t ≤ 35. The yield-weighted average
test score for nonsubmitters is 21.9118.49 The college’s underlying utility from rejecting
nonsubmitters and accepting submitters is 6.25, as above, and social pressure costs are
(21.9118− 20) · 1

100
· (1 · (35− 0) + 1/2 · (50− 35)) = .812515. Its payoff is ≃ 5.4.

We see that when a college’s competitor is test mandatory, the college prefers to be test
optional at this observable (5.4 > 4.6). When a college’s competitor is test optional, the

49 The average test score between 0 and 35 is 17.5; the average test score between 35 and 50 is 42.5; and
the weighted average, putting a weight of 1/2 on test scores between 35 and 50, is (17.5 · (35 − 0) + 1/2 ·
42.5 · (50− 35))/((35− 0) + 1/2 · (50− 35)).
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college prefers to be test mandatory (4 > 3.75). We also see that a test-optional college
prefers its competitor to be test-mandatory (5.4 > 3.75).

Example 3 (Substitutes due to cherry picking). Let tc = 39 and ts = 25, implying t∗ = 32.
Here, the college is again more selective than society. As in Example 2, our calculations below
will establish strategic substitutability, but the mechanism now owes to “cherry-picking”
rather than adverse selection.

A college that is test mandatory admits students with t > t∗ = 32 and rejects students
with t ≤ 32. As in Example 2, a test-optional college rejects nonsubmitters with t ∈ [0, 50]

and admits the submitting students with t > 50.

In contrast to Example 2, the payoff of a test-optional college is now independent of
its competitor’s testing regime: regardless of whether the competitor is test mandatory or
test optional, the college gets a yield of 1/2 for the submitters that it admits, and it faces
no social pressure costs for the nonsubmitters that it rejects. (Society’s bar is 25; and
the yield-weighted average test score is 25 when the competitor is test optional, and it is
below 25 when the competitor is test mandatory.) The test-optional college’s payoff is thus
1
2

∫ 100

50
1

100
(t− 39)dt = 9.

A test-mandatory college facing a test-mandatory competitor has a yield of 1/2 for stu-
dents with t > 32 and a yield of 1 for students with t ≤ 32, since the other college makes
identical admission decisions. The college then gets underlying utility of 1

2

∫ 100

32
1

100
(t−40)dt =

9.18, social pressure costs of
∫ 32

25
1

100
(t− 25)dt = 0.245, and a net payoff of 8.935.

A test-mandatory college facing a test-optional competitor has a yield of 1/2 for students
with t > 50 and yield of 1 for students with t ≤ 50. So it gets underlying utility of∫ 50

32
1

100
(t−39)dt+ 1

2

∫ 100

50
1

100
(t−39)dt = 9.36, social pressure costs of

∫ 32

25
1

100
(t−25)dt = 0.245,

and a net payoff of 9.115.

We see that, as in Example 2, when a college’s competitor is test mandatory, this col-
lege prefers to be test optional (9 > 8.935). When a college’s competitor is test optional,
this college prefers to be test mandatory (9.115 > 9). We also see that a test-mandatory
college prefers its competitor to be test-optional (9.115 > 8.935), because that allows it to
cherry-pick the students with t ∈ (32, 50)—whom it wants to admit, on average—without
competition.
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E. Connection to Bayesian Persuasion

In this appendix, we show that our college’s payoff can be transformed into a familiar
setup of Bayesian persuasion (Kamenica and Gentzkow, 2011). That is, we can view the
college (sender) as having an indirect utility function over society’s (receiver’s) belief about
the test score (state of the world).

However, we cannot simply apply standard Bayesian persuasion tools because there is a
restricted set of information structures available. Instead of generating an arbitrary exper-
iment about the test scores at each observable, our college can choose only an imputation
level τ . This imputation then determines the rest of the information structure: all test
scores below τ are pooled together, and all test scores above τ are revealed perfectly. (This
information structure is sometimes called “lower censorship” in the persuasion literature; see
Remark 1 below.)

The transformation. Fixing some observable and omitting that for notational conve-
nience, we can write our college’s underlying utility as uc(t) = −tc + t and society’s utility
as us(t) = −ts + t for a student with test score t. (At a fixed observable, we can normalize
both parties’ “weights” on the test score to 1.) For a student for whom the available informa-
tion induces posterior belief E[t] = ts, the college’s payoff from making admission decision
A ∈ {0, 1} can be written as

U c(ts, A) = Auc(ts)− δ ·


−us(ts) if A = 1 and ts < ts

us(ts) if A = 0 and ts > ts

0 otherwise.

Lemma 1 establishes that for a fixed information structure, the college’s admission decision
on the equilibrium path is made as if it maximizes the ex-post utility, u∗(t) = uc(t)/(1+δ)+

δus(t)/(1 + δ) = −t∗ + t, for t∗ = (tc + δts)/(1 + δ). The college accepts students with an
expected test score ts above t∗, and rejects students with an expected test score ts below t∗.

We now present an analogous result for the college’s choice of information. Consider some
arbitrary set of possible information structures from which the college may choose, and take
as given that the college will use this information to make ex-post optimal admission deci-
sions. We will find that the college chooses the information that maximizes the expectation
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of an indirect utility function ũ(ts). As we will see, however, this new utility function ũ will
be distinct from the ex-post utility u∗.50

To define ũ, we separately consider two cases. First, suppose the college is more selective
than society: ts < t∗ < tc. In this case, when ts ≤ ts, the payoff U c(ts, A) is zero because
the applicant is rejected (A = 0) and there is no disagreement cost. When ts < ts ≤ t∗, the
applicant is rejected but the college pays a disagreement cost of δus(ts) = δ(t− ts). Finally,
when ts > t∗, the applicant is accepted (A = 1) and there is no disagreement cost, yielding
U c(ts, A) = uc(ts) = −tc + t. Putting this all together, it holds that U c(ts, A) = ũ(ts) for

ũ(ts) :=


0 if ts ≤ ts

−δ · (ts − ts) if ts < ts ≤ t∗

−tc + ts if t > t∗.

(College More Selective)

Next, suppose the college is less selective than society: tc < t∗ < ts. In this case,
when ts ≤ t∗, the payoff U c(ts, A) is zero because the applicant is rejected (A = 0) and
there is no disagreement cost. When t∗ < ts ≤ ts, the applicant is accepted (A = 1),
generating underlying payoff uc(ts) = −tc + ts; but the college also pays a disagreement cost
of −δus(ts) = δ(t − ts). Finally, when ts > t∗, the applicant is accepted (A = 1) and there
is no disagreement cost, yielding U c(ts, A) = uc(ts) = −tc + t. Putting this all together, it
holds that U c(ts, A) = ũ(ts) for

ũ(ts) :=


0 if ts ≤ t∗

(1 + δ)(ts − t∗) if t∗ < ts ≤ ts

−tc + ts if ts > t∗.

(College Less Selective)

Figure 7 illustrates ũ. Notice that in both cases, ũ is neither globally convex nor globally
concave.

Remark 1. As mentioned above, the college can only use lower-censorship information infor-
mation structures: pool scores below a threshold τ and reveal scores above τ .

When the college is less selective than society (Figure 7b), lower censorship can be subop-

50 The ex-post utility u∗(t) is linear in t, meaning that its expectation is the same—the value at the mean
test score—for all information structures at a given distribution. However, the new indirect utility function
ũ(ts) will not be linear.
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timal in the class of all information structures. Specifically, as shown in Proposition 2 (case
2), the optimal admission policy for the college can entail setting τ = t∗ and accepting all
students with scores t > τ . The college then bears a disagreement cost for all those high
scores. When E[t|t > t∗] < ts, the college would be strictly better off by instead pooling
those scores above τ = t∗, now accepting the same set of students at no disagreement cost.

When the college is more selective than society (Figure 7a), on the other hand, we know
from Proposition 3 that it is optimal for the college to set τ ∈ [t∗, tc] and again accept all
students with scores t > τ . By since ũ is now linear in this region, there is never a (strict)
benefit of pooling these high scores.

In fact, the results of Kolotilin, Mylovanov, and Zapechelnyuk (2022) suggest that lower-
censorship information structures are optimal in the class of all information structures when
the college is more selective than society; whereas when the college is less selective, “upper
censorship” (pooling scores above a threshold and revealing them below) is optimal. We say
“suggest” rather than “imply” because formally those authors’ smoothness assumptions on
the sender’s indirect utility preclude the kinks in our function ũ.
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(a) College more selective

tcts t*
ts

u


us u* uc

(b) College less selective

tc tst*
ts

u


us u* uc

Figure 7 – The indirect utility function ũ(ts) for Bayesian persuasion.
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